Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2012 (2012), Article ID 140937, 6 pages
http://dx.doi.org/10.1155/2012/140937
Review Article

Macrophage-Mediated Inflammation and Disease: A Focus on the Lung

1MRC Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
2Manchester Collaborative Centre for Inflammation Research (MCCIR), University of Manchester, Manchester M13 9PL, UK

Received 17 September 2012; Accepted 30 October 2012

Academic Editor: I-Ming Jou

Copyright © 2012 Emily Gwyer Findlay and Tracy Hussell. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. J. Janssen, K. A. McPhillips, M. G. Dickinson et al., “Surfactant proteins A and D suppress alveolar macrophage phagocytosis via interaction with SIRPα,” American Journal of Respiratory and Critical Care Medicine, vol. 178, no. 2, pp. 158–167, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. L. S. Van Rijt, S. Jung, A. KleinJan et al., “In vivo depletion of lung CD11c+ dendritic cells during allergen challenge abrogates the characteristic features of asthma,” Journal of Experimental Medicine, vol. 201, no. 6, pp. 981–991, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. K. L. Lin, Y. Suzuki, H. Nakano, E. Ramsburg, and M. D. Gunn, “CCR2+ monocyte-derived dendritic cells and exudate macrophages produce influenza-induced pulmonary immune pathology and mortality,” Journal of Immunology, vol. 180, no. 4, pp. 2562–2572, 2008. View at Google Scholar · View at Scopus
  4. K. Vermaelen and R. Pauwels, “Accurate and simple discrimination of mouse pulmonary dendritic cell and macrophage populations by flow cytometry: methodology and new insights,” Cytometry A, vol. 61, no. 2, pp. 170–177, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. G. M. Green and E. H. Kass, “The role of the alveolar macrophage in the clearance of bacteria from the lung,” The Journal of Experimental Medicine, vol. 119, pp. 167–176, 1964. View at Google Scholar · View at Scopus
  6. H. Chanteux, A. C. Guisset, C. Pilette, and Y. Sibille, “LPS induces IL-10 production by human alveolar macrophages via MAPKinases- and Sp1-dependent mechanisms,” Respiratory Research, vol. 8, article 71, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. P. G. Holt, J. Oliver, N. Bilyk et al., “Downregulation of the antigen presenting cell function(s) of pulmonary dendritic cells in vivo by resident alveolar macrophages,” Journal of Experimental Medicine, vol. 177, no. 2, pp. 397–407, 1993. View at Google Scholar · View at Scopus
  8. T. Thepen, N. Van Rooijen, and G. Kraal, “Alveolar macrophage elimination in vivo is associated with an increase in pulmonary immune response in mice,” Journal of Experimental Medicine, vol. 170, no. 2, pp. 499–509, 1989. View at Google Scholar · View at Scopus
  9. R. L. Blumenthal, D. E. Campbell, P. Hwang, R. H. DeKruyff, L. R. Frankel, and D. T. Umetsu, “Human alveolar macrophages induce functional inactivation in antigen-specific CD4 T cells,” Journal of Allergy and Clinical Immunology, vol. 107, no. 2, pp. 258–264, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Knapp, J. C. Leemans, S. Florquin et al., “Alveolar macrophages have a protective antiinflammatory role during murine pneumococcal pneumonia,” American Journal of Respiratory and Critical Care Medicine, vol. 167, no. 2, pp. 171–179, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. A. M. Guth, W. J. Janssen, C. M. Bosio, E. C. Crouch, P. M. Henson, and S. W. Dow, “Lung environment determines unique phenotype of alveolar macrophages,” American Journal of Physiology, vol. 296, no. 6, pp. L936–L946, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Goldstein, W. Lippert, and D. Warshauer, “Pulmonary alveolar macrophage. Defender against bacterial infection of the lung,” Journal of Clinical Investigation, vol. 54, no. 3, pp. 519–528, 1974. View at Google Scholar · View at Scopus
  13. N. V. Serbina, T. Jia, T. M. Hohl, and E. G. Pamer, “Monocyte-mediated defense against microbial pathogens,” Annual Review of Immunology, vol. 26, pp. 421–452, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Soltys, T. Bonfield, J. Chmiel, and M. Berger, “Functional IL-10 deficiency in the lung of cystic fibrosis (cftr-/-) and IL-10 knockout mice causes increased expression and function of b7 costimulatory molecules on alveolar macrophages,” Journal of Immunology, vol. 168, no. 4, pp. 1903–1910, 2002. View at Google Scholar · View at Scopus
  15. I. Ioannidis, B. McNally, M. Willette et al., “Plasticity and virus specificity of the airway epithelial cell immune response during respiratory virus infection,” Journal of Virology, vol. 86, no. 10, pp. 5422–5436, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Herold, M. Steinmueller, W. Von Wulffen et al., “Lung epithelial apoptosis in influenza virus pneumonia: the role of macrophage-expressed TNF-related apoptosis-inducing ligand,” Journal of Experimental Medicine, vol. 205, no. 13, pp. 3065–3077, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. T. C. Dawson, M. A. Beck, W. A. Kuziel, F. Henderson, and N. Maeda, “Contrasting effects of CCR5 and CCR2 deficiency in the pulmonary inflammatory response to influenza A virus,” American Journal of Pathology, vol. 156, no. 6, pp. 1951–1959, 2000. View at Google Scholar · View at Scopus
  18. W. Peters, J. G. Cyster, M. Mack et al., “CCR2-dependent trafficking of F4/80dim macrophages and CD11cdim/intermediate dendritic cells is crucial for T cell recruitment to lungs infected with Mycobacterium tuberculosis,” Journal of Immunology, vol. 172, no. 12, pp. 7647–7653, 2004. View at Google Scholar · View at Scopus
  19. B. B. Moore, R. Paine III, P. J. Christensen et al., “Protection from pulmonary fibrosis in the absence of CCR2 signaling,” Journal of Immunology, vol. 167, no. 8, pp. 4368–4377, 2001. View at Google Scholar · View at Scopus
  20. D. S. Armstrong, K. Grimwood, J. B. Carlin et al., “Lower airway inflammation in infants and young children with cystic fibrosis,” American Journal of Respiratory and Critical Care Medicine, vol. 156, no. 4, pp. 1197–1204, 1997. View at Google Scholar · View at Scopus
  21. T. Z. Khan, J. S. Wagener, T. Bost, J. Martinez, F. J. Accurso, and D. W. H. Riches, “Early pulmonary inflammation in infants with cystic fibrosis,” American Journal of Respiratory and Critical Care Medicine, vol. 151, no. 4, pp. 1075–1082, 1995. View at Google Scholar · View at Scopus
  22. B. S. Murphy, H. M. Bush, V. Sundareshan et al., “Characterization of macrophage activation states in patients with cystic fibrosis,” Journal of Cystic Fibrosis, vol. 9, no. 5, pp. 314–322, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. T. L. Bonfield, J. R. Panuska, M. W. Konstan et al., “Inflammatory cytokines in cystic fibrosis lungs,” American Journal of Respiratory and Critical Care Medicine, vol. 152, no. 6 I, pp. 2111–2118, 1995. View at Google Scholar · View at Scopus
  24. S. Kotrange, B. Kopp, A. Akhter et al., “Burkholderia cenocepacia O polysaccharide chain contributes to caspase-1-dependent IL-1β production in macrophages,” Journal of Leukocyte Biology, vol. 89, no. 3, pp. 481–488, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. U. Sajjan, S. Keshavjee, and J. Forstner, “Responses of well-differentiated airway epithelial cell cultures from healthy donors and patients with cystic fibrosis to Burkholderia cenocepacia infection,” Infection and Immunity, vol. 72, no. 7, pp. 4188–4199, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. T. J. Cremer, P. Shah, E. Cormet-Boyaka, M. A. Valvano, J. P. Butchar, and S. Tridandapani, “Akt-mediated proinflammatory response of mononuclear phagocytes infected with Burkholderia cenocepacia occurs by a novel GSK3β-dependent, IκB kinase-independent mechanism,” Journal of Immunology, vol. 187, no. 2, pp. 635–643, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Lamothe and M. A. Valvano, “Burkholderia cenocepacia-induced delay of acidification and phagolysosomal fusion in cystic fibrosis transmembrane conductance regulator (CFTR)-defective macrophages,” Microbiology, vol. 154, no. 12, pp. 3825–3834, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. A. De Soyza, C. D. Ellis, C. M. A. Khan, P. A. Corris, and R. Demarco De Hormaeche, “Burkholderia cenocepacia lipopolysaccharide, lipid A, and proinflammatory activity,” American Journal of Respiratory and Critical Care Medicine, vol. 170, no. 1, pp. 70–77, 2004. View at Google Scholar · View at Scopus
  29. R. W. Palfreyman, M. L. Watson, C. Eden, and A. W. Smith, “Induction of biologically active interleukin-8 from lung epithelial cells by Burkholderia (Pseudomonas) cepacia products,” Infection and Immunity, vol. 65, no. 2, pp. 617–622, 1997. View at Google Scholar · View at Scopus
  30. B. T. Kopp, B. A. Abdulrahman, A. A. Khweek et al., “Exaggerated inflammatory responses mediated by Burkholderia cenocepacia in human macrophages derived from Cystic fibrosis patients,” Biochemical and Biophysical Research Communications, vol. 424, no. 2, pp. 221–227, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. T. T. Hien, N. T. Liem, N. T. Dung et al., “Avian influenza A (H5N1) in 10 patients in Vietnam,” New England Journal of Medicine, vol. 350, no. 12, pp. 1179–1188, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Arabi, C. D. Gomersall, Q. A. Ahmed, B. R. Boynton, and Z. A. Memish, “The critically ill avian influenza A (H5N1) patient,” Critical Care Medicine, vol. 35, no. 5, pp. 1397–1403, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Damjanovic, C.-L. Small, M. Jeyananthan, S. McCormick, and Z. Xing, “Immunopathology in influenza virus infection: uncoupling the friend from foe,” Clinical Immunology, vol. 144, no. 1, pp. 57–69, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Narasaraju, H. H. Ng, M. C. Phoon, and V. T. K. Chow, “MCP-1 antibody treatment enhances damage and impedes repair of the alveolar epithelium in influenza pneumonitis,” American Journal of Respiratory Cell and Molecular Biology, vol. 42, no. 6, pp. 732–743, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. R. J. Snelgrove, J. Goulding, A. M. Didierlaurent et al., “A critical function for CD200 in lung immune homeostasis and the severity of influenza infection,” Nature Immunology, vol. 9, no. 9, pp. 1074–1083, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. T. P. Rygiel, E. S. K. Rijkers, T. De Ruiter et al., “Lack of CD200 enhances pathological T cell responses during influenza infection,” Journal of Immunology, vol. 183, no. 3, pp. 1990–1996, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. M. J. Clark, J. Gagnon, A. F. Williams, and A. N. Barclay, “MRC OX-2 antigen: a lymphoid/neuronal membrane glycoprotein with a structure like a single immunoglobulin light chain,” EMBO Journal, vol. 4, no. 1, pp. 113–118, 1985. View at Google Scholar · View at Scopus
  38. A. N. Barclay, M. J. Clark, and G. W. McCaughan, “Neuronal/lymphoid membrane glycoprotein MRC OX-2 is a member of the immunoglobulin superfamily with a light-chain-like structure,” Biochemical Society Symposia, vol. 51, pp. 149–157, 1986. View at Google Scholar · View at Scopus
  39. G. W. McCaughan, M. J. Clark, and A. N. Barclay, “Characterization of the human homolog of the rat MRC OX-2 membrane glycoprotein,” Immunogenetics, vol. 25, no. 5, pp. 329–335, 1987. View at Google Scholar · View at Scopus
  40. M. D. Rosenblum, E. B. Olasz, K. B. Yancey et al., “Expression of CD200 on epithelial cells of the murine hair follicle: a role in tissue-specific immune tolerance?” Journal of Investigative Dermatology, vol. 123, no. 5, pp. 880–887, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Goulding, A. Godlee, S. Vekaria, M. Hilty, R. Snelgrove, and T. Hussell, “Lowering the threshold of lung innate immune cell activation alters susceptibility to secondary bacterial superinfection,” Journal of Infectious Diseases, vol. 204, no. 7, pp. 1086–1094, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. J. F. Brundage, “Interactions between influenza and bacterial respiratory pathogens: implications for pandemic preparedness,” Lancet Infectious Diseases, vol. 6, no. 5, pp. 303–312, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Selman and A. Pardo, “The epithelial/fibroblastic pathway in the pathogenesis of idiopathic pulmonary fibrosis: tying loose ends,” American Journal of Respiratory Cell and Molecular Biology, vol. 29, supplement 3, pp. S93–S97, 2003. View at Google Scholar · View at Scopus
  44. T. A. Wynn, “Integrating mechanisms of pulmonary fibrosis,” Journal of Experimental Medicine, vol. 208, no. 7, pp. 1339–1350, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. A. L. Mora, C. R. Woods, A. Garcia et al., “Lung infection with γ-herpesvirus induces progressive pulmonary fibrosis in Th2-biased mice,” American Journal of Physiology, vol. 289, no. 5, pp. L711–L721, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. Y. W. Tang, J. E. Johnson, P. J. Browning et al., “Herpesvirus DNA is consistently detected in lungs of patients with idiopathic pulmonary fibrosis,” Journal of Clinical Microbiology, vol. 41, no. 6, pp. 2633–2640, 2003. View at Google Scholar · View at Scopus
  47. A. L. Mora, E. Torres-González, M. Rojas et al., “Activation of alveolar macrophages via the alternative pathway in herpesvirus-induced lung fibrosis,” American Journal of Respiratory Cell and Molecular Biology, vol. 35, no. 4, pp. 466–473, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Gordon, “Alternative activation of macrophages,” Nature Reviews Immunology, vol. 3, no. 1, pp. 23–35, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. H. Maarsingh, B. G. J. Dekkers, A. B. Zuidhof et al., “Increased arginase activity contributes to airway remodelling in chronic allergic asthma,” European Respiratory Journal, vol. 38, no. 2, pp. 318–328, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. Y. Martinet, W. N. Rom, and G. R. Grotendorst, “Exaggerated spontaneous release of platelet-derived growth factor by alveolar macrophages from patients with idiopathic pulmonary fibrosis,” New England Journal of Medicine, vol. 317, no. 4, pp. 202–209, 1987. View at Google Scholar · View at Scopus
  51. E. Song, N. Ouyang, M. Hörbelt, B. Antus, M. Wang, and M. S. Exton, “Influence of alternatively and classically activated macrophages on fibrogenic activities of human fibroblasts,” Cellular Immunology, vol. 204, no. 1, pp. 19–28, 2000. View at Publisher · View at Google Scholar · View at Scopus