Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2012, Article ID 236345, 13 pages
http://dx.doi.org/10.1155/2012/236345
Review Article

Eicosanoids and Respiratory Viral Infection: Coordinators of Inflammation and Potential Therapeutic Targets

1Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
2Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48109, USA

Received 10 November 2011; Accepted 12 March 2012

Academic Editor: Lúcia Helena Faccioli

Copyright © 2012 Mary K. McCarthy and Jason B. Weinberg. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. J. Henrickson, S. Hoover, K. S. Kehl, and W. Hua, “National disease burden of respiratory viruses detected in children by polymerase chain reaction,” Pediatric Infectious Disease Journal, vol. 23, no. 1, pp. S11–S18, 2004. View at Google Scholar · View at Scopus
  2. A. T. Pavia, “Viral infections of the lower respiratory tract: old viruses, new viruses, and the role of diagnosis,” Clinical Infectious Diseases, vol. 52, no. 4, supplement, pp. S284–S289, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. S. B. Greenberg, “Viral respiratory infections in elderly patients and patients with chronic obstructive pulmonary disease,” American Journal of Medicine, vol. 112, no. 6, pp. 28S–32S, 2002. View at Google Scholar · View at Scopus
  4. W. G. Nichols, A. J. Peck Campbell, and M. Boeckh, “Respiratory viruses other than influenza virus: impact and therapeutic advances,” Clinical Microbiology Reviews, vol. 21, pp. 274–290, 2008. View at Google Scholar
  5. C. D. Funk, “Prostaglandins and leukotrienes: advances in eicosanoid biology,” Science, vol. 294, no. 5548, pp. 1871–1875, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. N. V. Chandrasekharan, H. Dai, K. L. T. Roos et al., “COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 21, pp. 13926–13931, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Kis, J. A. Snipes, and D. W. Busija, “Acetaminophen and the cyclooxygenase-3 puzzle: sorting out facts, fictions, and uncertainties,” Journal of Pharmacology and Experimental Therapeutics, vol. 315, no. 1, pp. 1–7, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Reid, P. Wielinga, N. Zelcer et al., “The human multidrug resistance protein MRP4 functions as a prostaglandin efflux transporter and is inhibited by nonsteroidal anti inflammatory drugs,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 16, pp. 9244–9249, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Watabe, Y. Sugimoto, A. Honda et al., “Cloning and expression of cDNA for a mouse EP1 subtype of prostaglandin E receptor,” Journal of Biological Chemistry, vol. 268, no. 27, pp. 20175–20178, 1993. View at Google Scholar · View at Scopus
  10. S. Narumiya, Y. Sugimoto, and F. Ushikubi, “Prostanoid receptors: structures, properties, and functions,” Physiological Reviews, vol. 79, no. 4, pp. 1193–1226, 1999. View at Google Scholar · View at Scopus
  11. K. Okunishi and M. Peters-Golden, “Leukotrienes and airway inflammation,” Biochimica et Biophysica Acta, vol. 1810, no. 11, pp. 1096–1102, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. D. F. Robbiani, R. A. Finch, D. Jäger, W. A. Muller, A. C. Sartorelli, and G. J. Randolph, “The leukotriene C4 transporter MRP1 regulates CCL19 (MIP-3β, ELC)-dependent mobilization of dendritic cells to lymph nodes,” Cell, vol. 103, no. 5, pp. 757–768, 2000. View at Google Scholar · View at Scopus
  13. A. J. Jame, P. M. Lackie, A. M. Cazaly et al., “Human bronchial epithelial cells express an active and inducible biosynthetic pathway for leukotrienes B4 and C4,” Clinical and Experimental Allergy, vol. 37, no. 6, pp. 880–892, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. A. J. James, J. F. Penrose, A. M. Cazaly, S. T. Holgate, and A. P. Sampson, “Human bronchial fibroblasts express the 5-lipoxygenase pathway,” Respiratory Research, vol. 7, article 102, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Sala, G. Folco, and R. C. Murphy, “Transcellular biosynthesis of eicosanoids,” Pharmacological Reports, vol. 62, no. 3, pp. 503–510, 2010. View at Google Scholar · View at Scopus
  16. Y. Kanaoka and J. A. Boyce, “Cysteinyl leukotrienes and their receptors: cellular distribution and function in immune and inflammatory responses,” Journal of Immunology, vol. 173, no. 3, pp. 1503–1510, 2004. View at Google Scholar · View at Scopus
  17. V. Capra, M. D. Thompson, A. Sala, D. E. Cole, G. Folco, and G. E. Rovati, “Cysteinyl-leukotrienes and their receptors in asthma and other inflammatory diseases: critical update and emerging trends,” Medicinal Research Reviews, vol. 27, no. 4, pp. 469–527, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. A. M. Tager and A. D. Luster, “BLT1 and BLT2: the leukotriene B4 receptors,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 69, no. 2-3, pp. 123–134, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. K. R. Lynch, G. P. O'Neill, Q. Liu et al., “Characterization of the human cysteinyl leukotriene CysLT1 receptor,” Nature, vol. 399, no. 6738, pp. 789–793, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Yokomizo, T. Izumi, K. Chang, Y. Takuwa, and T. Shimizu, “A G-protein-coupled receptor for leukotriene B4 that mediates chemotaxis,” Nature, vol. 387, no. 6633, pp. 620–624, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. H. M. Sarau, R. S. Ames, J. Chambers et al., “Identification, molecular cloning, expression, and characterization of a cysteinyl leukotriene receptor,” Molecular Pharmacology, vol. 56, no. 3, pp. 657–663, 1999. View at Google Scholar · View at Scopus
  22. K. Pollock and J. Creba, “Leukotriene D4 induced calcium changes in U937 cells may utilize mechanisms additional to inositol phosphate production that are pertussis toxin insensitive but are blocked by phorbol myristate acetate,” Cellular Signalling, vol. 2, no. 6, pp. 563–568, 1990. View at Publisher · View at Google Scholar · View at Scopus
  23. S. T. Crooke, M. Mattern, H. M. Sarau et al., “The signal transduction system of the leukotriene D4 receptor,” Trends in Pharmacological Sciences, vol. 10, no. 3, pp. 103–107, 1989. View at Google Scholar · View at Scopus
  24. C. M. Peres, D. M. Aronoff, C. H. Serezani, N. Flamand, L. H. Faccioli, and M. Peters-Golden, “Specific leukotriene receptors couple to distinct G proteins to effect stimulation of alveolar macrophage host defense functions,” Journal of Immunology, vol. 179, no. 8, pp. 5454–5461, 2007. View at Google Scholar · View at Scopus
  25. A. Pettersson, A. Sabirsh, J. Bristulf et al., “Pro- and anti-inflammatory substances modulate expression of the leukotriene B4 receptor, BLT1, in human monocytes,” Journal of Leukocyte Biology, vol. 77, no. 6, pp. 1018–1025, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Yokomizo, K. Kato, K. Terawaki, T. Izumi, and T. Shimizu, “A second leukotriene B4receptor, BLT2: a new therapeutic target in inflammation and immunological disorders,” Journal of Experimental Medicine, vol. 192, no. 3, pp. 421–431, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. D. N. Watkins, D. J. Peroni, J. C. Lenzo, D. A. Knight, M. J. Garlepp, and P. J. Thompson, “Expression and localization of COX-2 in human airways and cultured airway epithelial cells,” European Respiratory Journal, vol. 13, no. 5, pp. 999–1007, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Ozaki, S. I. Rennard, and R. G. Crystal, “Cyclooxygenase metabolites are compartmentalized in the human lower respiratory tract,” Journal of Applied Physiology, vol. 62, no. 1, pp. 219–222, 1987. View at Google Scholar · View at Scopus
  29. L. M. Schmidt, M. G. Belvisi, K. A. Bode et al., “Bronchial epithelial cell-derived prostaglandin E2 dampens the reactivity of dendritic cells,” Journal of Immunology, vol. 186, no. 4, pp. 2095–2105, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. D. M. Aronoff, C. Canetti, C. H. Serezani, M. Luo, and M. Peters-Golden, “Cutting edge: macrophage inhibition by cyclic AMP (cAMP)—differential roles of protein kinase A and exchange protein directly activated by cAMP-1,” Journal of Immunology, vol. 174, no. 2, pp. 595–599, 2005. View at Google Scholar · View at Scopus
  31. R. A. Armstrong, “Investigation of the inhibitory effects of PGE2 and selective EP agonists on chemotaxis of human neutrophils,” British Journal of Pharmacology, vol. 116, no. 7, pp. 2903–2908, 1995. View at Google Scholar · View at Scopus
  32. R. L. Oropeza-Rendon, V. Speth, and G. Hiller, “Prostaglandin E1 reversibly induces morphological changes in macrophages and inhibits phagocytosis,” Experimental Cell Research, vol. 119, no. 2, pp. 365–371, 1979. View at Google Scholar · View at Scopus
  33. E. Fernandez-Repollet, R. S. Mittler, S. Tiffany, and A. Schwartz, “In vivo effects of prostaglandin E2 and arachidonic acid on phagocytosis of fluorescent methacrylate microbeads by rat peritoneal macrophages,” Journal of Histochemistry and Cytochemistry, vol. 30, no. 5, pp. 466–470, 1982. View at Google Scholar · View at Scopus
  34. J. Davidson, A. Kerr, K. Guy, and D. Rotondo, “Prostaglandin and fatty acid modulation of Escherichia coli O157 phagocytosis by human monocytic cells,” Immunology, vol. 94, no. 2, pp. 228–234, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. B. J. Canning, R. R. Hmieleski, E. W. Spannhake, and G. J. Jakab, “Ozone reduces murine alveolar and peritoneal macrophage phagocytosis: the role of prostanoids,” American Journal of Physiology, vol. 261, no. 4, pp. L277–L282, 1991. View at Google Scholar · View at Scopus
  36. D. M. Aronoff, C. Canetti, and M. Peters-Golden, “Prostaglandin E2 inhibits alveolar macrophage phagocytosis through an E-prostanoid 2 receptor-mediated increase in intracellular cyclic AMP,” Journal of Immunology, vol. 173, no. 1, pp. 559–565, 2004. View at Google Scholar · View at Scopus
  37. C. H. Serezani, J. Chung, M. N. Ballinger, B. B. Moore, D. M. Aronoff, and M. Peters-Golden, “Prostaglandin E2 suppresses bacterial killing in alveolar macrophages by inhibiting NADPH oxidase,” American Journal of Respiratory Cell and Molecular Biology, vol. 37, no. 5, pp. 562–570, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. D. M. Aronoff, J. K. Carstens, G. H. Chen, G. B. Toews, and M. Peters-Golden, “Differences between macrophages and dendritic cells in the cyclic AMP-dependent regulation of lipopolysaccharide-induced cytokine and chemokine synthesis,” Journal of Interferon and Cytokine Research, vol. 26, no. 11, pp. 827–833, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. S. L. Kunkel, M. Spengler, M. A. May, R. Spengler, J. Larrick, and D. Remick, “Prostaglandin E2 regulates macrophage-derived tumor necrosis factor gene expression,” Journal of Biological Chemistry, vol. 263, no. 11, pp. 5380–5384, 1988. View at Google Scholar · View at Scopus
  40. H. Harizi, M. Juzan, V. Pitard, J. F. Moreau, and N. Gualde, “Cyclooxygenase-2-issued prostaglandin E2 enhances the production of endogenous IL-10, which down-regulates dendritic cell functions,” Journal of Immunology, vol. 168, no. 5, pp. 2255–2263, 2002. View at Google Scholar · View at Scopus
  41. M. Betz and B. S. Fox, “Prostaglandin E2 inhibits production of Th1 lymphokines but not of Th2 lymphokines,” Journal of Immunology, vol. 146, no. 1, pp. 108–113, 1991. View at Google Scholar · View at Scopus
  42. F. G. M. Snijdewint, P. Kalinski, E. A. Wierenga, J. D. Bos, and M. L. Kapsenberg, “Prostaglandin E2 differentially modulates cytokine secretion profiles of human T helper lymphocytes,” Journal of Immunology, vol. 150, no. 12, pp. 5321–5329, 1993. View at Google Scholar · View at Scopus
  43. D. Bloom, N. Jabrane-Ferrat, L. Zeng et al., “Prostaglandin E2 enhancement of interferon-γ production by antigen- stimulated type 1 helper T cells,” Cellular Immunology, vol. 194, no. 1, pp. 21–27, 1999. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Yao, D. Sakata, Y. Esaki et al., “Prostaglandin E2-EP4 signaling promotes immune inflammation through TH1 cell differentiation and TH17 cell expansion,” Nature Medicine, vol. 15, no. 6, pp. 633–640, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. R. L. Roper, D. M. Brown, and R. P. Phipps, “Prostaglandin E2 promotes B lymphocyte Ig isotype switching to IgE,” Journal of Immunology, vol. 154, no. 1, pp. 162–170, 1995. View at Google Scholar · View at Scopus
  46. E. R. Fedyk and R. P. Phipps, “Prostaglandin E2 receptors of the EP2 and EP4 subtypes regulate activation and differentiation of mouse B lymphocytes to IgE-secreting cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 20, pp. 10978–10983, 1996. View at Publisher · View at Google Scholar · View at Scopus
  47. R. L. Roper, B. Graf, and R. P. Phipps, “Prostaglandin E2 and cAMP promote B lymphocyte class switching to IgG1,” Immunology Letters, vol. 84, no. 3, pp. 191–198, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. E. P. Ryan, S. J. Pollack, T. I. Murant, S. H. Bernstein, R. E. Felgar, and R. P. Phipps, “Activated human B lymphocytes express cyclooxygenase-2 and cyclooxygenase inhibitors attenuate antibody production,” Journal of Immunology, vol. 174, no. 5, pp. 2619–2626, 2005. View at Google Scholar · View at Scopus
  49. S. Bancos, M. P. Bernard, D. J. Topham, and R. P. Phipps, “Ibuprofen and other widely used non-steroidal anti-inflammatory drugs inhibit antibody production in human cells,” Cellular Immunology, vol. 258, no. 1, pp. 18–28, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. T. Khayrullina, J. H. Yen, H. Jing, and D. Ganea, “In vitro differentiation of dendritic cells in the presence of prostaglandin E2 alters the IL-12/IL-23 balance and promotes differentiation of Thl7 cells,” Journal of Immunology, vol. 181, no. 1, pp. 721–735, 2008. View at Google Scholar · View at Scopus
  51. G. Napolitani, E. V. Acosta-Rodriguez, A. Lanzavecchia, and F. Sallusto, “Prostaglandin E2 enhances Th17 responses via modulation of IL-17 and IFN-γ production by memory CD4+ T cells,” European Journal of Immunology, vol. 39, no. 5, pp. 1301–1312, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. A. F. Sheibanie, I. Tadmori, H. Jing, E. Vassiliou, and D. Ganea, “Prostaglandin E2 induces IL-23 production in bone marrow-derived dendritic cells,” FASEB Journal, vol. 18, no. 11, pp. 1318–1320, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. C. Chizzolini, R. Chicheportiche, M. Alvarez et al., “Prostaglandin E2 synergistically with interleukin-23 favors human Th17 expansion,” Blood, vol. 112, no. 9, pp. 3696–3703, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Schnurr, T. Toy, A. Shin, M. Wagner, J. Cebon, and E. Maraskovsky, “Extracellular nucleotide signaling by P2 receptors inhibits IL-12 and enhances IL-23 expression in human dendritic cells: a novel role for the cAMP pathway,” Blood, vol. 105, no. 4, pp. 1582–1589, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. K. Boniface, K. S. Bak-Jensen, Y. Li et al., “Prostaglandin E2 regulates Th17 cell differentiation and function through cyclic AMP and EP2/EP4 receptor signaling,” Journal of Experimental Medicine, vol. 206, no. 3, pp. 535–548, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. J. M. McCoy, J. R. Wicks, and L. P. Audoly, “The role of prostaglandin E2 receptors in the pathogenesis of rheumatoid arthritis,” Journal of Clinical Investigation, vol. 110, no. 5, pp. 651–658, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Tavakoli, M. J. Cowan, T. Benfield, C. Logun, and J. H. Shelhamer, “Prostaglandin E2-induced interleukin-6 release by a human airway epithelial cell line,” American Journal of Physiology, vol. 280, no. 1, pp. L127–L133, 2001. View at Google Scholar · View at Scopus
  58. D. M. Aronoff, Y. Hao, J. Chung et al., “Misoprostol impairs female reproductive tract innate immunity against Clostridium sordellii,” Journal of Immunology, vol. 180, no. 12, pp. 8222–8230, 2008. View at Google Scholar · View at Scopus
  59. M. C. Carriel-Gomes, J. M. Kratz, M. A. Barracco, E. Bachére, C. R. M. Barardi, and C. M. O. Simões, “In vitro antiviral activity of antimicrobial peptides against herpes simplex virus 1, adenovirus, and rotavirus,” Memorias do Instituto Oswaldo Cruz, vol. 102, no. 4, pp. 469–472, 2007. View at Google Scholar · View at Scopus
  60. E. K. Nguyen, G. R. Nemerow, and J. G. Smithf, “Direct evidence from single-cell analysis that human α-defensins block adenovirus uncoating to neutralize infection,” Journal of Virology, vol. 84, no. 8, pp. 4041–4049, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Peters-Golden, C. Canetti, P. Mancuso, and M. J. Coffey, “Leukotrienes: underappreciated mediators of innate immune responses,” Journal of Immunology, vol. 174, no. 2, pp. 589–594, 2005. View at Google Scholar · View at Scopus
  62. E. Lee, T. Lindo, N. Jackson et al., “Reversal of human neutrophil survival by leukotriene B4 receptor blockade and 5-lipoxygenase and 5-lipoxygenase activating protein inhibitors,” American Journal of Respiratory and Critical Care Medicine, vol. 160, no. 6, pp. 2079–2085, 1999. View at Google Scholar · View at Scopus
  63. A. W. Ford-Hutchinson, M. A. Bray, and M. V. Doig, “Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes,” Nature, vol. 286, no. 5770, pp. 264–265, 1980. View at Google Scholar · View at Scopus
  64. I. Hafstrom, J. Palmblad, and C. L. Malmsten, “Leukotriene B4: a stereospecific stimulator for release of lysosomal enzymes from neutrophils,” FEBS Letters, vol. 130, no. 1, pp. 146–148, 1981. View at Publisher · View at Google Scholar · View at Scopus
  65. C. N. Serhan, A. Radin, J. E. Smolen, H. Korchak, B. Samuelsson, and G. Weissmann, “Leukotriene B4 is a complete secretagogue in human neutrophils: a kinetic analysis,” Biochemical and Biophysical Research Communications, vol. 107, pp. 1006–1012, 1982. View at Google Scholar
  66. G. Lärfars, F. Lantoine, M. A. Devynck, J. Palmblad, and H. Gyllenhammar, “Activation of nitric oxide release and oxidative metabolism by leukotrienes B4, C4, and D4 in human polymorphonuclear leukocytes,” Blood, vol. 93, no. 4, pp. 1399–1405, 1999. View at Google Scholar · View at Scopus
  67. A. M. Tager, S. K. Bromley, B. D. Medoff et al., “Leukotriene B4 receptor BLT1 mediates early effector T cell recruitment,” Nature Immunology, vol. 4, no. 10, pp. 982–990, 2003. View at Publisher · View at Google Scholar · View at Scopus
  68. V. L. Ott, J. C. Cambier, J. Kappler, P. Marrack, and B. J. Swanson, “Mast cell-dependent migration of effector CD8+ T cells through production of leukotriene B4,” Nature Immunology, vol. 4, no. 10, pp. 974–981, 2003. View at Publisher · View at Google Scholar · View at Scopus
  69. M. F. De Souza Costa, R. De Souza-Martins, M. C. De Souza et al., “Leukotriene B4 mediates γδ T lymphocyte migration in response to diverse stimuli,” Journal of Leukocyte Biology, vol. 87, no. 2, pp. 323–332, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. K. Goodarzi, M. Goodarzi, A. M. Tager, A. D. Luster, and U. H. von Andrian, “Leukotriene B4 and BLT1 control cytotoxic effector T cell recruitment to inflamed tissues,” Nature Immunology, vol. 4, no. 10, pp. 965–973, 2003. View at Publisher · View at Google Scholar · View at Scopus
  71. E. H. Shin, H. Y. Lee, and Y. S. Bae, “Leukotriene B4 stimulates human monocyte-derived dendritic cell chemotaxis,” Biochemical and Biophysical Research Communications, vol. 348, no. 2, pp. 606–611, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. A. Del Prete, W. H. Shao, S. Mitola, G. Santoro, S. Sozzani, and B. Haribabu, “Regulation of dendritic cell migration and adaptive immune response by leukotriene B4 receptors: a role for LTB4 in up-regulation of CCR7 expression and function,” Blood, vol. 109, no. 2, pp. 626–631, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. P. Mancuso and M. Peters-Golden, “Modulation of alveolar macrophage phagocytosis by leukotrienes is Fc receptor-mediated and protein kinase C-dependent,” American Journal of Respiratory Cell and Molecular Biology, vol. 23, no. 6, pp. 727–733, 2000. View at Google Scholar · View at Scopus
  74. C. Canetti, B. Hu, J. L. Curtis, and M. Peters-Golden, “Syk activation is a leukotriene B4-regulated event involved in macrophage phagocytosis of IgG-coated targets but not apoptotic cells,” Blood, vol. 102, no. 5, pp. 1877–1883, 2003. View at Publisher · View at Google Scholar · View at Scopus
  75. E. Gaudreault and J. Gosselin, “Leukotriene B4 induces release of antimicrobial peptides in lungs of virally infected mice,” Journal of Immunology, vol. 180, no. 9, pp. 6211–6221, 2008. View at Google Scholar · View at Scopus
  76. E. Gaudreault and J. Gosselin, “Leukotriene B4-mediated release of antimicrobial peptides against cytomegalovirus is BLT1 dependent,” Viral Immunology, vol. 20, no. 3, pp. 407–420, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. L. Flamand, P. Borgeat, R. Lalonde, and J. Gosselin, “Release of anti-HIV mediators after administration of leukotriene B 4 to humans,” Journal of Infectious Diseases, vol. 189, no. 11, pp. 2001–2009, 2004. View at Publisher · View at Google Scholar · View at Scopus
  78. G. Goldman, R. Welbourn, L. Kobzik, C. R. Valeri, D. Shepro, and H. B. Hechtman, “Lavage with leukotriene B4 induces lung generation of tumor necrosis factor-α that in turn mediates neutrophil diapedesis,” Surgery, vol. 113, no. 3, pp. 297–303, 1993. View at Google Scholar · View at Scopus
  79. K. A. Yamaoka, B. Dugas, N. Paul-Eugene, J. M. Mencia-Huerta, P. Braquet, and J. P. Kolb, “Leukotriene B4 enhances IL-4-induced IgE production from normal human lymphocytes,” Cellular Immunology, vol. 156, no. 1, pp. 124–134, 1994. View at Publisher · View at Google Scholar · View at Scopus
  80. K. A. Yamaoka, H. E. Claesson, and A. Rosen, “Leukotriene B4 enhances activation, proliferation, and differentiation of human B lymphocytes,” Journal of Immunology, vol. 143, no. 6, pp. 1996–2000, 1989. View at Google Scholar · View at Scopus
  81. B. Dugas, N. Paul-Eugene, J. Cairns et al., “Leukotriene B4 potentiates the expression and release of FcεRII/CD23, and proliferation and differentiation of human B lymphocytes induced by IL-4,” Journal of Immunology, vol. 145, no. 10, pp. 3406–3411, 1990. View at Google Scholar · View at Scopus
  82. T. W. Behrens, L. G. Lum, E. A. Lianos, and J. S. Goodwin, “Lipoxygenase inhibitors enhance the proliferation of human B cells,” Journal of Immunology, vol. 143, no. 7, pp. 2285–2294, 1989. View at Google Scholar · View at Scopus
  83. M. J. Hébert, T. Takano, H. Holthöfer, and H. R. Brady, “Sequential morphologic events during apoptosis of human neutrophils: modulation by lipoxygenase-derived eicosanoids,” Journal of Immunology, vol. 157, no. 7, pp. 3105–3115, 1996. View at Google Scholar · View at Scopus
  84. E. Lee, T. Robertson, J. Smith, and S. Kilfeather, “Leukotriene receptor antagonists and synthesis inhibitors reverse survival in eosinophils of asthmatic individuals,” American Journal of Respiratory and Critical Care Medicine, vol. 161, no. 6, pp. 1881–1886, 2000. View at Google Scholar · View at Scopus
  85. H. H. H. W. Schmidt, R. Seifert, and E. Bohme, “Formation and release of nitric oxide from human neutrophils and HL-60 cells induced by a chemotactic peptide, platelet activating factor and leukotriene B4,” FEBS Letters, vol. 244, no. 2, pp. 357–360, 1989. View at Publisher · View at Google Scholar · View at Scopus
  86. K. Parameswaran, H. Liang, A. Fanat, R. Watson, D. P. Snider, and P. M. O'Byrne, “Role for cysteinyl leukotrienes in allergen-induced change in circulating dendritic cell number in asthma,” Journal of Allergy and Clinical Immunology, vol. 114, no. 1, pp. 73–79, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. J. Lamoureux, J. Stankova, and M. Rola-Pleszczynski, “Leukotriene D4 enhances immunoglobulin production in CD40-activated human B lymphocytes,” Journal of Allergy and Clinical Immunology, vol. 117, no. 4, pp. 924–930, 2006. View at Publisher · View at Google Scholar · View at Scopus
  88. D. C. Kim, F. I. Hsu, N. A. Barrett et al., “Cysteinyl leukotrienes regulate Th2 cell-dependent pulmonary inflammation,” Journal of Immunology, vol. 176, no. 7, pp. 4440–4448, 2006. View at Google Scholar · View at Scopus
  89. S. T. Holgate, M. Peters-Golden, R. A. Panettieri et al., “Roles of cysteinyl leukotrienes in airway inflammation, smooth muscle function, and remodeling,” Journal of Allergy and Clinical Immunology, vol. 111, no. 1, pp. S18–S36, 2003. View at Publisher · View at Google Scholar · View at Scopus
  90. S. E. Dahlén, P. Hedqvist, S. Hammarström, and B. Samuelsson, “Leukotrienes are potent constrictors of human bronchi,” Nature, vol. 288, no. 5790, pp. 484–486, 1980. View at Google Scholar · View at Scopus
  91. P. Montuschi and M. L. Peters-Golden, “Leukotriene modifiers for asthma treatment,” Clinical and Experimental Allergy, vol. 40, no. 12, pp. 1732–1741, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. S. E. Dahlén, “Treatment of asthma with antileukotrienes: first line or last resort therapy?” European Journal of Pharmacology, vol. 533, no. 1–3, pp. 40–56, 2006. View at Publisher · View at Google Scholar · View at Scopus
  93. Y. Ogawa and W. J. Calhoun, “The role of leukotrienes in airway inflammation,” Journal of Allergy and Clinical Immunology, vol. 118, no. 4, pp. 789–798, 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. W. W. Thompson, D. K. Shay, E. Weintraub et al., “Influenza-associated hospitalizations in the United States,” Journal of the American Medical Association, vol. 292, no. 11, pp. 1333–1340, 2004. View at Publisher · View at Google Scholar · View at Scopus
  95. S. M. Y. Lee, C. Y. Cheung, J. M. Nicholls et al., “Hyperinduction of cyclooxygenase-2-mediated proinflammatory cascade: a mechanism for the pathogenesis of avian influenza H5N1 infection,” Journal of Infectious Diseases, vol. 198, no. 4, pp. 525–535, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. P. C. Y. Woo, E. T. K. Tung, K. H. Chan, C. C. Y. Lau, S. K. P. Lau, and K. Y. Yuen, “Cytokine profiles induced by the novel swine-origin influenza A/H1N1 virus: implications for treatment strategies,” Journal of Infectious Diseases, vol. 201, no. 3, pp. 346–353, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. I. Darwish, S. Mubareka, and W. C. Liles, “Immunomodulatory therapy for severe influenza,” Expert Review of Anti-Infective Therapy, vol. 9, no. 7, pp. 807–822, 2011. View at Publisher · View at Google Scholar · View at Scopus
  98. M. A. Carey, J. A. Bradbury, Y. D. Rebolloso, J. P. Graves, D. C. Zeldin, and D. R. Germolec, “Pharmacologic inhibition of COX-1 and COX-2 in influenza a viral infection in mice,” PLoS One, vol. 5, no. 7, Article ID e11610, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. M. A. Carey, J. A. Bradbury, J. M. Seubert, R. Langenbach, D. C. Zeldin, and D. R. Germolec, “Contrasting effects of cyclooxygenase-1 (COX-1) and COX-2 deficiency on the host response to influenza A viral infection,” Journal of Immunology, vol. 175, no. 10, pp. 6878–6884, 2005. View at Google Scholar · View at Scopus
  100. R. J. Hodges, R. G. Jenkins, C. P. D. Wheeler-Jones et al., “Severity of lung injury in cyclooxygenase-2-deficient mice is dependent on reduced prostaglandin E2 production,” American Journal of Pathology, vol. 165, no. 5, pp. 1663–1676, 2004. View at Google Scholar · View at Scopus
  101. H. Allgayer, “Review article: mechanisms of action of mesalazine in preventing colorectal carcinoma in inflammatory bowel disease,” Alimentary Pharmacology & Therapeutics, vol. 18, supplement 2, pp. 10–14, 2003. View at Google Scholar
  102. B. J. Zheng, K. W. Chan, Y. P. Lin et al., “Delayed antiviral plus immunomodulator treatment still reduces mortality in mice infected by high inoculum of influenza A/H5N1 virus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 23, pp. 8091–8096, 2008. View at Publisher · View at Google Scholar · View at Scopus
  103. S. N. Lauder, P. R. Taylor, S. R. Clark et al., “Paracetamol reduces influenza-induced immunopathology in a mouse model of infection without compromising virus clearance or the generation of protective immunity,” Thorax, vol. 66, no. 5, pp. 368–374, 2011. View at Publisher · View at Google Scholar · View at Scopus
  104. B. Hinz, O. Cheremina, and K. Brune, “Acetaminophen (paracetamol) is a selective cyclooxygenase-2 inhibitor in man,” FASEB Journal, vol. 22, no. 2, pp. 383–390, 2008. View at Publisher · View at Google Scholar · View at Scopus
  105. B. Rocca and G. A. FitzGerald, “Cyclooxygenases and prostaglandins: shaping up the immune response,” International Immunopharmacology, vol. 2, no. 5, pp. 603–630, 2002. View at Publisher · View at Google Scholar · View at Scopus
  106. C. Li, A. Bankhead, A. J. Eisfeld et al., “Host regulatory network response to infection with highly pathogenic H5N1 avian influenza virus,” Journal of virology, vol. 85, no. 21, pp. 10955–10967, 2011. View at Google Scholar
  107. D. A. Gentile, P. Fireman, and D. P. Skoner, “Elevations of local leukotriene C4 levels during viral upper respiratory tract infections,” Annals of Allergy, Asthma and Immunology, vol. 91, no. 3, pp. 270–274, 2003. View at Google Scholar · View at Scopus
  108. T. Hennet, H. J. Ziltener, K. Frei, and E. Peterhans, “A kinetic study of immune mediators in the lungs of mice infected with influenza A virus,” Journal of Immunology, vol. 149, no. 3, pp. 932–939, 1992. View at Google Scholar · View at Scopus
  109. H. Widegren, M. Andersson, P. Borgeat, L. Flamand, S. Johnston, and L. Greiff, “LTB4 increases nasal neutrophil activity and conditions neutrophils to exert antiviral effects,” Respiratory Medicine, vol. 105, no. 7, pp. 997–1006, 2011. View at Publisher · View at Google Scholar · View at Scopus
  110. A. J. Duffield-Lillico, J. O. Boyle, K. Z. Xi et al., “Levels of prostaglandin E metabolite and leukotriene E4 are increased in the urine of smokers: evidence that celecoxib shunts arachidonic acid into the 5-lipoxygenase pathway,” Cancer Prevention Research, vol. 2, no. 4, pp. 322–329, 2009. View at Publisher · View at Google Scholar · View at Scopus
  111. E. J. Schenkelaars and I. L. Bonta, “Cyclooxygenase inhibitors promote the leukotriene C4 induced release of beta-glucuronidase from rat peritoneal macrophages: prostaglandin E2 suppresses,” International Journal of Immunopharmacology, vol. 8, pp. 305–311, 1986. View at Google Scholar
  112. M. S. Lee, R. E. Walker, and P. M. Mendelman, “Medical burden of respiratory syncytial virus and parainfluenza virus type 3 infection among US children. Implications for design of vaccine trials,” Human Vaccines, vol. 1, no. 1, pp. 6–11, 2005. View at Google Scholar · View at Scopus
  113. C. L. Collins and A. J. Pollard, “Respiratory syncytial virus infections in children and adults,” Journal of Infection, vol. 45, no. 1, pp. 10–17, 2002. View at Publisher · View at Google Scholar · View at Scopus
  114. A. R. Falsey, P. A. Hennessey, M. A. Formica, C. Cox, and E. E. Walsh, “Respiratory syncytial virus infection in elderly and high-risk adults,” New England Journal of Medicine, vol. 352, no. 17, pp. 1749–1759, 2005. View at Publisher · View at Google Scholar · View at Scopus
  115. A. R. Falsey and E. E. Walsh, “Respiratory syncytial virus infection in adults,” Clinical Microbiology Reviews, vol. 13, no. 3, pp. 371–384, 2000. View at Publisher · View at Google Scholar · View at Scopus
  116. T. Liu, W. Zaman, B. S. Kaphalia, G. A. S. Ansari, R. P. Garofalo, and A. Casola, “RSV-induced prostaglandin E2 production occurs via cPLA2 activation: role in viral replication,” Virology, vol. 343, no. 1, pp. 12–24, 2005. View at Publisher · View at Google Scholar · View at Scopus
  117. J. Y. Richardson, M. G. Ottolini, L. Pletneva et al., “Respiratory syncytial virus (RSV) infection induces cyclooxygenase 2: a potential target for RSV therapy,” Journal of Immunology, vol. 174, no. 7, pp. 4356–4364, 2005. View at Google Scholar · View at Scopus
  118. Z. A. Radi, D. K. Meyerholz, and M. R. Ackermann, “Pulmonary cyclooxygenase-1 (COX-1) and COX-2 cellular expression and distribution after respiratory syncytial virus and parainfluenza virus infection,” Viral Immunology, vol. 23, no. 1, pp. 43–48, 2010. View at Publisher · View at Google Scholar · View at Scopus
  119. Y. Sznajer, J. Y. Westcott, S. E. Wenzel, B. Mazer, M. Tucci, and B. Joseph Toledano, “Airway eicosanoids in acute severe respiratory syncytial virus bronchiolitis,” Journal of Pediatrics, vol. 145, no. 1, pp. 115–118, 2004. View at Publisher · View at Google Scholar · View at Scopus
  120. J. Han, Y. Jia, K. Takeda et al., “Montelukast during primary infection prevents airway hyperresponsiveness and inflammation after reinfection with respiratory syncytial virus,” American Journal of Respiratory and Critical Care Medicine, vol. 182, no. 4, pp. 455–463, 2010. View at Publisher · View at Google Scholar · View at Scopus
  121. J. J. Fullmer, A. M. Khan, O. Elidemir, C. Chiappetta, J. M. Stark, and G. N. Colasurdo, “Role of cysteinyl leukotrienes in airway inflammation and responsiveness following RSV infection in BALB/c mice,” Pediatric Allergy and Immunology, vol. 16, no. 7, pp. 593–601, 2005. View at Publisher · View at Google Scholar · View at Scopus
  122. R. C. Welliver, K. H. Hintz, M. Glori, and R. C. Welliver, “Zileuton reduces respiratory illness and lung inflammation, during respiratory syncytial virus infection, in mice,” Journal of Infectious Diseases, vol. 187, no. 11, pp. 1773–1779, 2003. View at Publisher · View at Google Scholar · View at Scopus
  123. K. K. Chang, Y. K. Ji, H. H. Tae, K. K. Do, I. K. Beyong, and Y. K. Young, “Increased levels tdof BAL cysteinyl leukotrienes in acute RSV bronchiolitis,” Acta Paediatrica, International Journal of Paediatrics, vol. 95, no. 4, pp. 479–485, 2006. View at Publisher · View at Google Scholar · View at Scopus
  124. G. Piedimonte, G. Renzetti, A. Auais et al., “Leukotriene synthesis during respiratory syncytial virus bronchiolitis: influence of age and atopy,” Pediatric Pulmonology, vol. 40, no. 4, pp. 285–291, 2005. View at Publisher · View at Google Scholar · View at Scopus
  125. L. D. Dalt, S. Callegaro, S. Carraro, B. Andreola, M. Corradi, and E. Baraldi, “Nasal lavage leukotrienes in infants with RSV bronchiolitis,” Pediatric Allergy and Immunology, vol. 18, no. 2, pp. 100–104, 2007. View at Publisher · View at Google Scholar · View at Scopus
  126. B. Volovitz, R. C. Welliver, G. De Castro, D. A. Krystofik, and P. L. Ogra, “The release of leukotrienes in the respiratory tract during infection with respiratory syncytial virus: role in obstructive airway disease,” Pediatric Research, vol. 24, no. 4, pp. 504–507, 1988. View at Google Scholar · View at Scopus
  127. S. M. Van Schaik, D. A. Tristram, I. S. Nagpal, K. M. Hintz, R. C. Welliver, and R. C. Welliver, “Increased production of IFN-γ and cysteinyl leukotrienes in virus- induced wheezing,” Journal of Allergy and Clinical Immunology, vol. 103, no. 4, pp. 630–636, 1999. View at Publisher · View at Google Scholar · View at Scopus
  128. G. A. Prince, A. Mathews, S. J. Curtis, and D. D. Porter, “Treatment of respiratory syncytial virus bronchiolitis and pneumonia in a cotton rat model with systemically administered monoclonal antibody (palivizumab) and glucocorticosteroid,” Journal of Infectious Diseases, vol. 182, no. 5, pp. 1326–1330, 2000. View at Publisher · View at Google Scholar · View at Scopus
  129. C. A. Bonville, H. F. Rosenberg, and J. B. Domachowske, “Ribavirin and cysteinyl leukotriene-1 receptor blockade as treatment for severe bronchiolitis,” Antiviral Research, vol. 69, no. 2, pp. 53–59, 2006. View at Publisher · View at Google Scholar · View at Scopus
  130. K. Wedde-Beer, C. Hu, M. M. Rodriguez, and G. Piedimonte, “Leukotrienes mediate neurogenic inflammation in lungs of young rats infected with respiratory syncytial virus,” American Journal of Physiology, vol. 282, no. 5, pp. L1143–L1150, 2002. View at Google Scholar · View at Scopus
  131. H. Bisgaard, “A randomized trial of montelukast in respiratory syncytial virus postbronchiolitis,” American Journal of Respiratory and Critical Care Medicine, vol. 167, no. 3, pp. 379–383, 2003. View at Publisher · View at Google Scholar · View at Scopus
  132. H. Bisgaard, A. Flores-Nunez, A. Goh et al., “Study of montelukast for the treatment of respiratory symptoms of post-respiratory syncytial virus bronchiolitis in children,” American Journal of Respiratory and Critical Care Medicine, vol. 178, no. 8, pp. 854–860, 2008. View at Publisher · View at Google Scholar · View at Scopus
  133. M. Proesmans, K. Sauer, E. Govaere, M. Raes, G. De Bilderling, and K. De Boeck, “Montelukast does not prevent reactive airway disease in young children hospitalized for RSV bronchiolitis,” Acta Paediatrica, International Journal of Paediatrics, vol. 98, no. 11, pp. 1830–1834, 2009. View at Publisher · View at Google Scholar · View at Scopus
  134. M. Wright and G. Piedimonte, “Respiratory syncytial virus prevention and therapy: past, present, and future,” Pediatric Pulmonology, vol. 46, no. 4, pp. 324–347, 2011. View at Publisher · View at Google Scholar · View at Scopus
  135. M. L. Seymour, N. Gilby, P. G. Bardin et al., “Rhinovirus infection increases 5-lipoxygenase and cyclooxygenase-2 in bronchial biopsy specimens from nonatopic subjects,” Journal of Infectious Diseases, vol. 185, no. 4, pp. 540–544, 2002. View at Publisher · View at Google Scholar · View at Scopus
  136. C. A. Culver and S. M. Laster, “Adenovirus type 5 exerts multiple effects on the expression and activity of cytosolic phospholipase A2, cyclooxygenase-2, and prostaglandin synthesis,” Journal of Immunology, vol. 179, no. 6, pp. 4170–4179, 2007. View at Google Scholar · View at Scopus
  137. L. J. Crofford, K. T. McDonagh, S. Guo et al., “Adenovirus binding to cultured synoviocytes triggers signaling through MAPK pathways and induces expression of cyclooxygenase-2,” Journal of Gene Medicine, vol. 7, no. 3, pp. 288–296, 2005. View at Publisher · View at Google Scholar · View at Scopus
  138. J. B. Weinberg, G. S. Stempfle, J. E. Wilkinson, J. G. Younger, and K. R. Spindler, “Acute respiratory infection with mouse adenovirus type 1,” Virology, vol. 340, no. 2, pp. 245–254, 2005. View at Publisher · View at Google Scholar · View at Scopus
  139. D. Knipe, P. Howley, D. Griffin et al., Fields Virology, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 5th edition, 2007.
  140. H. Qiu, K. Strååt, A. Rahbar, M. Wan, C. Söderberg-Nauclér, and J. Z. Haeggström, “Human CMV infection induces 5-lipoxygenase expression and leukotriene B4 production in vascular smooth muscle cells,” Journal of Experimental Medicine, vol. 205, no. 1, pp. 19–24, 2008. View at Publisher · View at Google Scholar · View at Scopus
  141. H. Zhu, J. P. Cong, D. Yu, W. A. Bresnahan, and T. E. Shenk, “Inhibition of cyclooxygenase 2 blocks human cytomegalovirus replication,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 6, pp. 3932–3937, 2002. View at Publisher · View at Google Scholar · View at Scopus
  142. J. Schröer and T. Shenk, “Inhibition of cyclooxygenase activity blocks cell-to-cell spread of human cytomegalovirus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 49, pp. 19468–19473, 2008. View at Publisher · View at Google Scholar · View at Scopus
  143. J. Gosselin, P. Borgeat, and L. Flamand, “Leukotriene B4 protects latently infected mice against murine cytomegalovirus reactivation following allogeneic transplantation,” Journal of Immunology, vol. 174, no. 3, pp. 1587–1593, 2005. View at Google Scholar · View at Scopus
  144. M. N. Ballinger, D. M. Aronoff, T. R. McMillan et al., “Critical role of prostaglandin E2 overproduction in impaired pulmonary host response following bone marrow transplantation,” Journal of Immunology, vol. 177, no. 8, pp. 5499–5508, 2006. View at Google Scholar · View at Scopus
  145. C. I. Ojielo, K. Cooke, P. Mancuso et al., “Defective phagocytosis and clearance of Pseudomonas aeruginosa in the lung following bone marrow transplantation,” Journal of Immunology, vol. 171, no. 8, pp. 4416–4424, 2003. View at Google Scholar · View at Scopus
  146. C. Chaimoff, T. Malachi, and I. Halbrecht, “Prostaglandin E2 and cyclic nucleotides in plasma and urine of colonic cancer patients,” Journal of Cancer Research and Clinical Oncology, vol. 110, no. 2, pp. 153–156, 1985. View at Google Scholar · View at Scopus
  147. V. Fraifeld, J. Kaplanski, T. Kukulansky, and A. Globerson, “Increased prostaglandin E2 production by concanavalin A-stimulated splenocytes of old mice,” Gerontology, vol. 41, no. 3, pp. 129–133, 1995. View at Google Scholar · View at Scopus
  148. I. Ramis, J. Rosello-Catafau, G. Gomez, J. M. Zabay, E. Fernandez Cruz, and E. Gelpi, “Cyclooxygenase and lipoxygenase arachidonic acid metabolism by monocytes from human immune deficiency virus-infected drug users,” Journal of Chromatography, vol. 557, pp. 507–513, 1991. View at Google Scholar
  149. G. M. Anstead, Q. Zhang, and P. C. Melby, “Malnutrition promotes prostaglandin over leukotriene production and dysregulates eicosanoid-cytokine crosstalk in activated resident macrophages,” Prostaglandins, Leukotrienes and Essential Fatty Acids, vol. 81, no. 1, pp. 41–51, 2009. View at Google Scholar
  150. H. P. Redmond, J. Shou, C. J. Kelly et al., “Immunosuppressive mechanisms in protein-calorie malnutrition,” Surgery, vol. 110, no. 2, pp. 311–317, 1991. View at Google Scholar · View at Scopus
  151. S. J. Cayeux, P. C. L. Beverley, R. Schulz, and B. Dorken, “Elevated plasma prostaglandin E2 levels found in 14 patients undergoing autologous bone marrow or stem cell transplantation,” Bone Marrow Transplantation, vol. 12, no. 6, pp. 603–608, 1993. View at Google Scholar · View at Scopus
  152. M. M. H. El-Sharabasy and M. M. El-Naggar, “Prostaglandin E2 in renal transplant recipients,” International Urology and Nephrology, vol. 24, no. 4, pp. 447–451, 1992. View at Google Scholar · View at Scopus
  153. N. M. H. Graham, C. J. Burrell, R. M. Douglas, P. Debelle, and L. Davies, “Adverse effects of aspirin, acetaminophen, and ibuprofen on immune function, viral shedding, and clinical status in rhinovirus-infected volunteers,” Journal of Infectious Diseases, vol. 162, no. 6, pp. 1277–1282, 1990. View at Google Scholar · View at Scopus
  154. R. Prymula, C. A. Siegrist, R. Chlibek et al., “Effect of prophylactic paracetamol administration at time of vaccination on febrile reactions and antibody responses in children: two open-label, randomised controlled trials,” The Lancet, vol. 374, no. 9698, pp. 1339–1350, 2009. View at Publisher · View at Google Scholar · View at Scopus