Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2012, Article ID 690643, 14 pages
http://dx.doi.org/10.1155/2012/690643
Review Article

Optimizing Dendritic Cell-Based Immunotherapy: Tackling the Complexity of Different Arms of the Immune System

1Laboratory of Pharmacology, Department of Translational Pathophysiological Research, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, 2610 Antwerp, Belgium
2Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, 2610 Antwerp, Belgium

Received 23 December 2011; Accepted 17 June 2012

Academic Editor: Thirumala-Devi Kanneganti

Copyright © 2012 Ilse Van Brussel et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. M. Steinman and Z. A. Cohn, “Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution,” The Journal of Experimental Medicine, vol. 137, no. 5, pp. 1142–1162, 1973. View at Google Scholar
  2. J. Banchereau and R. M. Steinman, “Dendritic cells and the control of immunity,” Nature, vol. 392, no. 6673, pp. 245–252, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Banchereau, F. Briere, C. Caux et al., “Immunobiology of dendritic cells,” Annual Review of Immunology, vol. 18, pp. 767–811, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Granucci, I. Zanoni, and P. Ricciardi-Castagnoli, “Central role of dendritic cells in the regulation and deregulation of immune responses,” Cellular and Molecular Life Sciences, vol. 65, no. 11, pp. 1683–1697, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. R. M. Steinman, “Dendritic cells: versatile controllers of the immune system,” Nature Medicine, vol. 13, no. 10, pp. 1155–1159, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. C. G. Figdor, I. J. M. de Vries, W. J. Lesterhuis, and C. J. M. Melief, “Dendritic cell immunotherapy: mapping the way,” Nature Medicine, vol. 10, no. 5, pp. 475–480, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. R. M. Steinman and J. Banchereau, “Taking dendritic cells into medicine,” Nature, vol. 449, no. 7161, pp. 419–426, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Bodey, B. Bodey Jr., S. E. Siegel, and H. E. Kaiser, “Failure of cancer vaccines: the significant limitations of this approach to immunotherapy,” Anticancer Research, vol. 20, no. 4, pp. 2665–2676, 2000. View at Google Scholar · View at Scopus
  9. D. M. Andrews, E. Maraskovsky, and M. J. Smyth, “Cancer vaccines for established cancer: how to make them better?” Immunological Reviews, vol. 222, no. 1, pp. 242–255, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Schuler, “Dendritic cells in cancer immunotherapy,” European Journal of Immunology, vol. 40, no. 8, pp. 2123–2130, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. T. H. Mogensen, “Pathogen recognition and inflammatory signaling in innate immune defenses,” Clinical Microbiology Reviews, vol. 22, no. 2, pp. 240–273, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Kumagai, O. Takeuchi, and S. Akira, “Pathogen recognition by innate receptors,” Journal of Infection and Chemotherapy, vol. 14, no. 2, pp. 86–92, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. E. A. van Vré, I. van Brussel, J. M. Bosmans, C. J. Vrints, and H. Bult, “Dendritic cells in human atherosclerosis: from circulation to atherosclerotic plaques,” Mediators of Inflammation, vol. 2011, Article ID 941396, 13 pages, 2011. View at Publisher · View at Google Scholar
  14. M. Lechmann, E. Zinser, A. Golka, and A. Steinkasserer, “Role of CD83 in the immunomodulation of dendritic cells,” International Archives of Allergy and Immunology, vol. 129, no. 2, pp. 113–118, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Sallusto and A. Lanzavecchia, “The instructive role of dendritic cells on T-cell responses,” Arthritis Research, vol. 4, supplement 3, pp. S127–S132, 2002. View at Google Scholar
  16. M. Cella, D. Jarrossay, F. Faccheth et al., “Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon,” Nature Medicine, vol. 5, no. 8, pp. 919–923, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. F. P. Siegal, N. Kadowaki, M. Shodell et al., “The nature of the principal type 1 interferon-producing cells in human blood,” Science, vol. 284, no. 5421, pp. 1835–1837, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. K. P. A. MacDonald, D. J. Munster, G. J. Clark, A. Dzionek, J. Schmitz, and D. N. J. Hart, “Characterization of human blood dendritic cell subsets,” Blood, vol. 100, no. 13, pp. 4512–4520, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. X. Ju, G. Clark, and D. N. Hart, “Review of human DC subtypes,” Methods in Molecular Biology, vol. 595, pp. 3–20, 2010. View at Publisher · View at Google Scholar
  20. N. Kadowaki, S. Ho, S. Antonenko et al., “Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens,” Journal of Experimental Medicine, vol. 194, no. 6, pp. 863–869, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. V. Kronin, C. J. Fitzmaurice, I. Caminschi, K. Shortman, D. C. Jackson, and L. E. Brown, “Differential effect of CD8+ and CD8- dendritic cells in the stimulation of secondary CD4+ T cells,” International Immunology, vol. 13, no. 4, pp. 465–473, 2001. View at Google Scholar · View at Scopus
  22. A. Krug, A. Towarowski, S. Britsch " et al., “Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12,” European Journal of Immunology, vol. 31, no. 10, pp. 3026–3037, 2001. View at Publisher · View at Google Scholar
  23. S. L. Jongbloed, A. J. Kassianos, K. J. McDonald et al., “Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens,” Journal of Experimental Medicine, vol. 207, no. 6, pp. 1247–1260, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. L. F. Poulin, M. Salio, E. Griessinger et al., “Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8α+ dendritic cells,” Journal of Experimental Medicine, vol. 207, no. 6, pp. 1261–1271, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Crozat, R. Guiton, V. Contreras et al., “The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8α+ dendritic cells,” Journal of Experimental Medicine, vol. 207, no. 6, pp. 1283–1292, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Bachem, S. Güttler, E. Hartung et al., “Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells,” Journal of Experimental Medicine, vol. 207, no. 6, pp. 1273–1281, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Dzionek, A. Fuchs, P. Schmidt et al., “BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood,” Journal of Immunology, vol. 165, no. 11, pp. 6037–6046, 2000. View at Google Scholar · View at Scopus
  28. R. S. Allan, C. M. Smith, G. T. Belz et al., “Epidermal viral immunity induced by CD8α+ dendritic cells but not by langerhans cells,” Science, vol. 301, no. 5641, pp. 1925–1928, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. G. T. Belz, C. M. Smith, D. Eichner et al., “Cutting edge: conventional CD8α+ dendritic cells are generally involved in priming CTL immunity to viruses,” Journal of Immunology, vol. 172, no. 4, pp. 1996–2000, 2004. View at Google Scholar · View at Scopus
  30. M. V. Lukens, D. Kruijsen, F. E. J. Coenjaerts, J. L. L. Kimpen, and G. M. van Bleek, “Respiratory syncytial virus-induced activation and migration of respiratory dendritic cells and subsequent antigen presentation in the lung-draining lymph node,” Journal of Virology, vol. 83, no. 14, pp. 7235–7243, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Cools, P. Ponsaerts, V. F. I. van Tendeloo, and Z. N. Berneman, “Balancing between immunity and tolerance: an interplay between dendritic cells, regulatory T cells, and effector T cells,” Journal of Leukocyte Biology, vol. 82, no. 6, pp. 1365–1374, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. N. Cools, A. Petrizzo, E. Smits et al., “Dendritic cells in the pathogenesis and treatment of human diseases: a Janus Bifrons?” Immunotherapy, vol. 3, no. 10, pp. 1203–1222, 2011. View at Publisher · View at Google Scholar
  33. P. Kaliński, C. M. U. Hilkens, E. A. Wierenga, and M. L. Kapsenberg, “T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal,” Immunology Today, vol. 20, no. 12, pp. 561–567, 1999. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Arimoto-Miyamoto, N. Kadowaki, T. Kitawaki, S. Iwata, C. Morimoto, and T. Uchiyama, “Optimal stimulation for CD70 induction on human monocyte-derived dendritic cells and the importance of CD70 in naive CD4+ T-cell differentiation,” Immunology, vol. 130, no. 1, pp. 137–149, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. T. F. Rowley and A. Al-Shamkhani, “Stimulation by soluble CD70 promotes strong primary and secondary CD8+ cytotoxic T cell responses in vivo,” Journal of Immunology, vol. 172, no. 10, pp. 6039–6046, 2004. View at Google Scholar · View at Scopus
  36. K. A. Frauwirth and C. B. Thompson, “Activation and inhibition of lymphocytes by costimulation,” Journal of Clinical Investigation, vol. 109, no. 3, pp. 295–299, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. A. H. Sharpe and G. J. Freeman, “The B7-CD28 superfamily,” Nature Reviews Immunology, vol. 2, no. 2, pp. 116–126, 2002. View at Google Scholar · View at Scopus
  38. M. Croft, “Costimulation of T cells by OX40, 4-1BB, and CD27,” Cytokine and Growth Factor Reviews, vol. 14, no. 3-4, pp. 265–273, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. T. H. Watts and M. A. DeBenedette, “T cell co-stimulatory molecules other than CD28,” Current Opinion in Immunology, vol. 11, no. 3, pp. 286–293, 1999. View at Publisher · View at Google Scholar · View at Scopus
  40. M. L. Alegre, K. A. Frauwirth, and C. B. Thompson, “T-cell regulation by CD28 and CTLA-4,” Nature Reviews Immunology, vol. 1, no. 3, pp. 220–228, 2001. View at Google Scholar · View at Scopus
  41. M. Collins, V. Ling, and B. M. Carreno, “The B7 family of immune-regulatory ligands,” Genome Biology, vol. 6, no. 6, article 223, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. B. M. Carreno and M. Collins, “The B7 family of ligands and its receptors: new pathways for costimulation and inhibition of immune responses,” Annual Review of Immunology, vol. 20, pp. 29–53, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Croft, “Co-stimulatory members of the TNFR family: keys to effective T-cell immunity?” Nature Reviews Immunology, vol. 3, no. 8, pp. 609–620, 2003. View at Google Scholar · View at Scopus
  44. K. Tesselaar, Y. Xiao, R. Arens et al., “Expression of the murine CD27 ligand CD70 in vitro and in vivo,” Journal of Immunology, vol. 170, no. 1, pp. 33–40, 2003. View at Google Scholar · View at Scopus
  45. V. Y. Taraban, T. F. Rowley, and A. Al-Shamkhani, “Cutting edge: a critical role for CD70 in CD8 T cell priming by CD40-licensed APCs,” Journal of Immunology, vol. 173, no. 11, pp. 6542–6546, 2004. View at Google Scholar · View at Scopus
  46. D. V. Dolfi and P. D. Katsikis, “CD28 and CD27 costimulation of CD8+ T cells: a story of survival,” Advances in Experimental Medicine and Biology, vol. 590, pp. 149–170, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Yamada, K. Shinozaki, and K. Agematsu, “Involvement of CD27/CD70 interactions in antigen-specific cytotoxic T-lymphocyte (CTL) activity by perforin-mediated cytotoxicity,” Clinical and Experimental Immunology, vol. 130, no. 3, pp. 424–430, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. H. Soares, H. Waechter, N. Glaichenhaus et al., “A subset of dendritic cells induces CD4+ T cells to produce IFN-γ by an IL-12-independent but CD70-dependent mechanism in vivo,” Journal of Experimental Medicine, vol. 204, no. 5, pp. 1095–1106, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. G. Trinchieri, S. Pflanz, and R. A. Kastelein, “The IL-12 family of heterodimeric cytokines: new players in the regulation of T cell responses,” Immunity, vol. 19, no. 5, pp. 641–644, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. H. J. Cho, K. Takabayashi, P. M. Cheng et al., “Immunostimulatory DNA-based vaccines reduce cytotoxic lymphocyte activity by a T-helper cell-independent mechanism,” Nature Biotechnology, vol. 18, no. 5, pp. 509–514, 2000. View at Publisher · View at Google Scholar · View at Scopus
  51. T. Hensler, C. D. Heidecke, H. Hecker et al., “Increased susceptibility to postoperative sepsis in patients with impaired monocyte IL-12 production,” Journal of Immunology, vol. 161, no. 5, pp. 2655–2659, 1998. View at Google Scholar · View at Scopus
  52. G. Trinchieri and P. Scott, “Interleukin-12: basic principles and clinical applications,” Current Topics in Microbiology and Immunology, vol. 238, pp. 57–78, 1999. View at Google Scholar · View at Scopus
  53. E. E. Voest, B. M. Kenyon, M. S. O'Reilly, G. Truitt, R. J. D'Amato, and J. Folkman, “Inhibition of angiogenesis in vivo by interleukin 12,” Journal of the National Cancer Institute, vol. 87, no. 8, pp. 581–586, 1995. View at Google Scholar · View at Scopus
  54. L. Romani, P. Puccetti, and F. Bistoni, “Interleukin-12 in infectious diseases,” Clinical Microbiology Reviews, vol. 10, no. 4, pp. 611–636, 1997. View at Google Scholar · View at Scopus
  55. T. van der Poll and S. J. H. van Deventer, “Cytokines and anticytokines in the pathogenesis of sepsis,” Infectious Disease Clinics of North America, vol. 13, no. 2, pp. 413–426, 1999. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Zobywalski, M. Javorovic, B. Frankenberger et al., “Generation of clinical grade dendritic cells with capacity to produce biologically active IL-12p70,” Journal of Translational Medicine, vol. 5, article 18, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. E. Vivier, E. Tomasello, M. Baratin, T. Walzer, and S. Ugolini, “Functions of natural killer cells,” Nature Immunology, vol. 9, no. 5, pp. 503–510, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. L. Zitvogel, M. Terme, C. Borg, and G. Trinchieri, “Dendritic cell-NK cell cross-talk: regulation and physiopathology,” Current Topics in Microbiology and Immunology, vol. 298, pp. 157–174, 2005. View at Google Scholar · View at Scopus
  59. P. Kalinski, A. Giermasz, Y. Nakamura et al., “Helper role of NK cells during the induction of anticancer responses by dendritic cells,” Molecular Immunology, vol. 42, no. 4, pp. 535–539, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. P. Kalinski, R. B. Mailliard, A. Giermasz et al., “Natural killer-dendritic cell cross-talk in cancer immunotherapy,” Expert Opinion on Biological Therapy, vol. 5, no. 10, pp. 1303–1315, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. J. Chehimi, C. Paganin, I. Frank, S. Chouaib, S. Starr, and G. Trinchieri, “Interleukin-12 in the pathogenesis and therapy of HIV disease,” Research in Immunology, vol. 146, no. 7-8, pp. 605–614, 1995. View at Publisher · View at Google Scholar · View at Scopus
  62. H. P. Vollmers and S. Brändlein, “Natural antibodies and cancer,” New Biotechnology, vol. 25, no. 5, pp. 294–298, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. Z. Mou, Y. He, and Y. Wu, “Immunoproteomics to identify tumor-associated antigens eliciting humoral response,” Cancer Letters, vol. 278, no. 2, pp. 123–129, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. B. Dubois, C. Massacrier, B. Vanbervliet et al., “Critical role of IL-12 in dendritic cell-induced differentiation of naive B lymphocytes,” Journal of Immunology, vol. 161, no. 5, pp. 2223–2231, 1998. View at Google Scholar · View at Scopus
  65. N. Schmitt, R. Morita, L. Bourdery et al., “Human dendritic cells induce the differentiation of interleukin-21-producing T follicular helper-like cells through interleukin-12,” Immunity, vol. 31, no. 1, pp. 158–169, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. J. Banchereau, E. Klechevsky, N. Schmitt, R. Morita, K. Palucka, and H. Ueno, “Harnessing human dendritic cell subsets to design novel vaccines,” Annals of the New York Academy of Sciences, vol. 1174, pp. 24–32, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. L. A. Hirao, L. Wu, A. S. Khan et al., “Combined effects of IL-12 and electroporation enhances the potency of DNA vaccination in macaques,” Vaccine, vol. 26, no. 25, pp. 3112–3120, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. E. B. Schadeck, M. Sidhu, M. A. Egan et al., “A dose sparing effect by plasmid encoded IL-12 adjuvant on a SIVgag-plasmid DNA vaccine in rhesus macaques,” Vaccine, vol. 24, no. 21, pp. 4677–4687, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. P. H. van der Meide, F. Villinger, A. A. Ansari et al., “Stimulation of both humoral and cellular immune responses to HIV-1 gp120 by interleukin-12 in Rhesus macaques,” Vaccine, vol. 20, no. 17-18, pp. 2296–2302, 2002. View at Publisher · View at Google Scholar · View at Scopus
  70. P. J. Tacken, I. J. M. de Vries, R. Torensma, and C. G. Figdor, “Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting,” Nature Reviews Immunology, vol. 7, no. 10, pp. 790–802, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. W. W. J. Unger and Y. van Kooyk, “'Dressed for success' C-type lectin receptors for the delivery of glyco-vaccines to dendritic cells,” Current Opinion in Immunology, vol. 23, no. 1, pp. 131–137, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. P. Ponsaerts, V. F. I. van Tendeloo, and Z. N. Berneman, “Cancer immunotherapy using RNA-loaded dendritic cells,” Clinical and Experimental Immunology, vol. 134, no. 3, pp. 378–384, 2003. View at Publisher · View at Google Scholar · View at Scopus
  73. J. E. Boudreau, A. Bonehill, K. Thielemans, and Y. Wan, “Engineering dendritic cells to enhance cancer immunotherapy,” Molecular Therapy, vol. 19, no. 5, pp. 841–853, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. M. R. Shurin, M. Gregory, J. C. Morris, and A. M. Malyguine, “Genetically modified dendritic cells in cancer immunotherapy: a better tomorrow?” Expert Opinion on Biological Therapy, vol. 10, no. 11, pp. 1539–1553, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. D. Cathelin, A. Nicolas, A. Bouchot et al., “Dendritic cell-tumor cell hybrids and immunotherapy: what's next?” Cytotherapy, vol. 13, no. 7, pp. 774–785, 2011. View at Publisher · View at Google Scholar
  76. S. Koido, E. Hara, S. Homma, T. Ohkusa, J. Gong, and H. Tajiri, “Cancer immunotherapy by fusions of dendritic cells and tumor cells,” Immunotherapy, vol. 1, no. 1, pp. 49–62, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. N. C. Connolly, T. L. Whiteside, C. Wilson, V. Kondragunta, C. R. Rinaldo, and S. A. Riddler, “Therapeutic immunization with human immunodeficiency virus type 1 (HIV-1) peptide-loaded dendritic cells is safe and induces immunogenicity in HIV-1-infected individuals,” Clinical and Vaccine Immunology, vol. 15, no. 2, pp. 284–292, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. J. D. Brody and E. G. Engleman, “DC-based cancer vaccines: lessons from clinical trials,” Cytotherapy, vol. 6, no. 2, pp. 122–127, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. V. F. I. van Tendeloo, P. Ponsaerts, F. Lardon et al., “Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells,” Blood, vol. 98, no. 1, pp. 49–56, 2001. View at Publisher · View at Google Scholar · View at Scopus
  80. D. Boczkowski, S. K. Nair, D. Snyder, and E. Gilboa, “Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo,” Journal of Experimental Medicine, vol. 184, no. 2, pp. 465–472, 1996. View at Google Scholar · View at Scopus
  81. D. G. Kavanagh, D. E. Kaufmann, S. Sunderji et al., “Expansion of HIV-specific CD4+ and CD8+ T cells by dendritic cells transfected with mRNA encoding cytoplasm- or lysosome-targeted Nef,” Blood, vol. 107, no. 5, pp. 1963–1969, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. N. M. Melhem, X. D. Liu, D. Boczkowski, E. Gilboa, and S. M. Barratt-Boyes, “Robust CD4+ and CD8+ T cell responses to SIV using mRNA-transfected DC expressing autologous viral Ag,” European Journal of Immunology, vol. 37, no. 8, pp. 2164–2173, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. S. Sæbøe-Larssen, E. Fossberg, and G. Gaudernack, “mRNA-based electrotransfection of human dendritic cells and induction of cytotoxic T lymphocyte responses against the telomerase catalytic subunit (hTERT),” Journal of Immunological Methods, vol. 259, no. 1-2, pp. 191–203, 2002. View at Publisher · View at Google Scholar · View at Scopus
  84. I. Strobel, S. Berchtold, A. Götze, U. Schulze, G. Schuler, and A. Steinkasserer, “Human dendritic cells transfected with either RNA or DNA encoding influenza matrix protein M1 differ in their ability to stimulate cytotoxic T lymphocytes,” Gene Therapy, vol. 7, no. 23, pp. 2028–2035, 2000. View at Publisher · View at Google Scholar · View at Scopus
  85. A. van Driessche, P. Ponsaerts, D. R. van Bockstaele, V. F. I. van Tendeloo, and Z. N. Berneman, “Messenger RNA electroporation: an efficient tool in immunotherapy and stem cell research,” Folia Histochemica et Cytobiologica, vol. 43, no. 4, pp. 213–216, 2005. View at Google Scholar · View at Scopus
  86. E. R. A. van Gulck, P. Ponsaerts, L. Heyndrickx et al., “Efficient stimulation of HIV-1-specific T cells using dendritic cells electroporated with mRNA encoding autologous HIV-1 Gag and Env proteins,” Blood, vol. 107, no. 5, pp. 1818–1827, 2006. View at Publisher · View at Google Scholar · View at Scopus
  87. E. R. van Gulck, G. Vanham, L. Heyndrickx et al., “Efficient in vitro expansion of human immunodeficiency virus (HIV)-specific T-cell responses by gag mRNA-electroporated dendritic cells from treated and untreated HIV type 1-infected individuals,” Journal of Virology, vol. 82, no. 7, pp. 3561–3573, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. D. Boczkowski, S. K. Nair, J. H. Nam, H. K. Lyerly, and E. Gilboa, “Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells,” Cancer Research, vol. 60, no. 4, pp. 1028–1034, 2000. View at Google Scholar · View at Scopus
  89. V. L. Reichardt, P. Brossart, and L. Kanz, “Dendritic cells in vaccination therapies of human malignant disease,” Blood Reviews, vol. 18, no. 4, pp. 235–243, 2004. View at Publisher · View at Google Scholar · View at Scopus
  90. M. A. Morse, S. Nair, M. Fernandez-Casal et al., “Preoperative mobilization of circulating dendritic cells by Flt3 ligand administration to patients with metastatic colon cancer,” Journal of Clinical Oncology, vol. 18, no. 23, pp. 3883–3893, 2000. View at Google Scholar · View at Scopus
  91. E. Maraskovsky, E. Daro, E. Roux et al., “In vivo generation of human dendritic cell subsets by Flt3 ligand,” Blood, vol. 96, no. 3, pp. 878–884, 2000. View at Google Scholar · View at Scopus
  92. R. D. Brown, B. Pope, A. Murray et al., “Dendritic cells from patients with myeloma are numerically normal but functionally defective as they fail to up-regulate CD80 (B7-1) expression after huCD40LT stimulation because of inhibition by transforming growth factor-β1 and interleukin-10,” Blood, vol. 98, no. 10, pp. 2992–2998, 2001. View at Publisher · View at Google Scholar · View at Scopus
  93. M. Ratta, F. Fagnoni, A. Curti et al., “Dendritic cells are functionally defective in multiple myeloma: the role of interleukin-6,” Blood, vol. 100, no. 1, pp. 230–237, 2002. View at Publisher · View at Google Scholar · View at Scopus
  94. C. Caux, C. Dezutter-Dambuyant, D. Schmit, and J. Banchereau, “GM-CSF and TNF-α cooperate in the generation of dendritic Langerhans cells,” Nature, vol. 360, no. 6401, pp. 258–261, 1992. View at Publisher · View at Google Scholar · View at Scopus
  95. F. Lardon, H. W. Snoeck, Z. N. Berneman et al., “Generation of dendritic cells from bone marrow progenitors using GM-CSF, TNF-α, and additional cytokines: antagonistic effects of IL-4 and IFN-γ and selective involvement of TNF-α receptor-1.,” Immunology, vol. 91, no. 4, pp. 553–559, 1997. View at Google Scholar · View at Scopus
  96. J. Banchereau, A. K. Palucka, M. Dhodapkar et al., “Immune and clinical responses in patients with metastatic melanoma to CD34+ progenitor-derived dendritic cell vaccine,” Cancer Research, vol. 61, no. 17, pp. 6451–6458, 2001. View at Google Scholar · View at Scopus
  97. S. Titzer, O. Christensen, O. Manzke et al., “Vaccination of multiple myeloma patients with idiotype-pulsed dendritic cells: immunological and clinical aspects,” British Journal of Haematology, vol. 108, no. 4, pp. 805–816, 2000. View at Publisher · View at Google Scholar · View at Scopus
  98. N. Romani, D. Reider, M. Heuer et al., “Generation of mature dendritic cells from human blood An improved method with special regard to clinical applicability,” Journal of Immunological Methods, vol. 196, no. 2, pp. 137–151, 1996. View at Publisher · View at Google Scholar · View at Scopus
  99. N. Tkachenko, K. Wojas, J. Tabarkiewicz, and J. Rolinski, “Generation of dendritic cells from human peripheral blood monocytes—comparison of different culture media,” Folia Histochemica et Cytobiologica, vol. 43, no. 1, pp. 25–30, 2005. View at Google Scholar · View at Scopus
  100. F. Sallusto and A. Lanzavecchia, “Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor α,” Journal of Experimental Medicine, vol. 179, no. 4, pp. 1109–1118, 1994. View at Google Scholar · View at Scopus
  101. L. J. Zhou and T. F. Tedder, “CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 6, pp. 2588–2592, 1996. View at Publisher · View at Google Scholar · View at Scopus
  102. S. M. Santini, C. Lapenta, M. Logozzi et al., “Type I interferon as a powerful adjuvant for monocyte-derived dendritic cell development and activity in vitro and in Hu-PBL-SCID mice,” Journal of Experimental Medicine, vol. 191, no. 10, pp. 1777–1788, 2000. View at Publisher · View at Google Scholar · View at Scopus
  103. S. Della Bella, S. Nicola, A. Riva, M. Biasin, M. Clerici, and M. L. Villa, “Functional repertoire of dendritic cells generated in granulocyte macrophage-colony stimulating factor and interferon-α,” Journal of Leukocyte Biology, vol. 75, no. 1, pp. 106–116, 2004. View at Publisher · View at Google Scholar · View at Scopus
  104. M. Korthals, N. Safaian, R. Kronenwett et al., “Monocyte derived dendritic cells generated by IFN-α acquire mature dendritic and natural killer cell properties as shown by gene expression analysis,” Journal of Translational Medicine, vol. 5, article 46, 2007. View at Publisher · View at Google Scholar · View at Scopus
  105. S. Iwamoto, S. I. Iwai, K. Tsujiyama et al., “TNF-α drives human CD14+ monocytes to differentiate into CD70+ dendritic cells evoking Th1 and Th17 responses,” Journal of Immunology, vol. 179, no. 3, pp. 1449–1457, 2007. View at Google Scholar · View at Scopus
  106. P. Chomarat, C. Dantin, L. Bennett, J. Banchereau, and A. K. Palucka, “TNF skews monocyte differentiation from macrophages to dendritic cells,” Journal of Immunology, vol. 171, no. 5, pp. 2262–2269, 2003. View at Google Scholar · View at Scopus
  107. M. Mohamadzadeh, F. Berard, G. Essert et al., “Interleukin 15 skews monocyte differentiation into dendritic cells with features of langerhans cells,” Journal of Experimental Medicine, vol. 194, no. 7, pp. 1013–1019, 2001. View at Publisher · View at Google Scholar · View at Scopus
  108. C. E. Samuel, “Antiviral actions of interferons,” Clinical Microbiology Reviews, vol. 14, no. 4, pp. 778–809, 2001. View at Publisher · View at Google Scholar · View at Scopus
  109. D. Boczkowski and S. Nair, “RNA as performance-enhancers for dendritic cells,” Expert Opinion on Biological Therapy, vol. 10, no. 4, pp. 563–574, 2010. View at Publisher · View at Google Scholar · View at Scopus
  110. K. U. Saikh, A. S. Khan, T. Kissner, and R. G. Ulrich, “IL-15-induced conversion of monocytes to mature dendritic cells,” Clinical and Experimental Immunology, vol. 126, no. 3, pp. 447–455, 2001. View at Publisher · View at Google Scholar · View at Scopus
  111. S. Anguille, E. L. J. M. Smits, N. Cools, H. Goossens, Z. N. Berneman, and V. F. I. van Tendeloo, “Short-term cultured, interleukin-15 differentiated dendritic cells have potent immunostimulatory properties,” Journal of Translational Medicine, vol. 7, article 109, 2009. View at Publisher · View at Google Scholar · View at Scopus
  112. M. Menges, S. Rößner, C. Voigtländer et al., “Repetitive injections of dendritic cells matured with tumor necrosis factor α induce antigen-specific protection of mice from autoimmunity,” Journal of Experimental Medicine, vol. 195, no. 1, pp. 15–21, 2002. View at Publisher · View at Google Scholar · View at Scopus
  113. D. McIlroy and M. Gregoire, “Optimizing dendritic cell-based anticancer immunotherapy: maturation state does have clinical impact,” Cancer Immunology, Immunotherapy, vol. 52, no. 10, pp. 583–591, 2003. View at Publisher · View at Google Scholar · View at Scopus
  114. I. J. M. de Vries, W. J. Lesterhuis, N. M. Scharenborg et al., “Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients,” Clinical Cancer Research, vol. 9, no. 14, pp. 5091–5100, 2003. View at Google Scholar · View at Scopus
  115. M. V. Dhodapkar, R. M. Steinman, J. Krasovsky, C. Munz, and N. Bhardwaj, “Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells,” Journal of Experimental Medicine, vol. 193, no. 2, pp. 233–238, 2001. View at Publisher · View at Google Scholar · View at Scopus
  116. H. Jonuleit, U. Kühn, G. Müller et al., “Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions,” European Journal of Immunology, vol. 27, no. 12, pp. 3135–3142, 1997. View at Publisher · View at Google Scholar · View at Scopus
  117. M. A. Morse, L. J. Zhou, T. F. Tedder, H. Kim Lyerly, and C. Smith, “Generation of dendritic cells in vitro from peripheral blood mononuclear cells with granulocyte-macrophage-colony-stimulating factor, interleukin-4, and tumor necrosis factor-α for use in cancer immunotherapy,” Annals of Surgery, vol. 226, no. 1, pp. 6–16, 1997. View at Publisher · View at Google Scholar · View at Scopus
  118. T. Luft, M. Jefford, P. Luetjens et al., “Functionally distinct dendritic cell (DC) populations induced by physiologic stimuli: prostaglandin E2 regulates the migratory capacity of specific DC subsets,” Blood, vol. 100, no. 4, pp. 1362–1372, 2002. View at Publisher · View at Google Scholar · View at Scopus
  119. A. Snijders, P. Kalinski, C. M. U. Hilkens, and M. L. Kapsenberg, “High-level IL-12 production by human dendritic cells requires two signals,” International Immunology, vol. 10, no. 11, pp. 1593–1598, 1998. View at Publisher · View at Google Scholar · View at Scopus
  120. C. Paustian, R. Caspell, T. Johnson et al., “Effect of multiple activation stimuli on the generation of Th1-polarizing dendritic cells,” Human Immunology, vol. 72, no. 1, pp. 24–31, 2011. View at Publisher · View at Google Scholar · View at Scopus
  121. R. B. Mailliard, A. Wankowicz-Kalinska, Q. Cai et al., “α-type-1 polarized dendritic cells: a novel immunization tool with optimized CTL-inducing activity,” Cancer Research, vol. 64, no. 17, pp. 5934–5937, 2004. View at Publisher · View at Google Scholar · View at Scopus
  122. A. M. Dohnal, V. Witt, H. Hügel, W. Holter, H. Gadner, and T. Felzmann, “Phase I study of tumor Ag-loaded IL-12 secreting semi-mature DC for the treatment of pediatric cancer,” Cytotherapy, vol. 9, no. 8, pp. 755–770, 2007. View at Publisher · View at Google Scholar · View at Scopus
  123. M. Lehner, A. Stilper, P. Morhart, and W. Holter, “Plasticity of dendritic cell function in response to prostaglandin E 2 (PGE2) and interferon-γ (IFN-γ),” Journal of Leukocyte Biology, vol. 83, no. 4, pp. 883–893, 2008. View at Publisher · View at Google Scholar · View at Scopus
  124. A. C. I. Boullart, E. H. J. G. Aarntzen, P. Verdijk et al., “Maturation of monocyte-derived dendritic cells with Toll-like receptor 3 and 7/8 ligands combined with prostaglandin E2 results in high interleukin-12 production and cell migration,” Cancer Immunology, Immunotherapy, vol. 57, no. 11, pp. 1589–1597, 2008. View at Publisher · View at Google Scholar · View at Scopus
  125. P. J. Sanchez, J. A. McWilliams, C. Haluszczak, H. Yagita, and R. M. Kedl, “Combined TLR/CD40 stimulation mediates potent cellular immunity by regulating dendritic cell expression of CD70 in vivo,” Journal of Immunology, vol. 178, no. 3, pp. 1564–1572, 2007. View at Google Scholar · View at Scopus
  126. S. Iwamoto, M. Ishida, K. Takahashi, K. Takeda, and A. Miyazaki, “Lipopolysaccharide stimulation converts vigorously washed dendritic cells (DCs) to nonexhausted DCs expressing CD70 and evoking long-lasting type 1 T cell responses,” Journal of Leukocyte Biology, vol. 78, no. 2, pp. 383–392, 2005. View at Publisher · View at Google Scholar · View at Scopus
  127. H. J. Bontkes, D. Kramer, J. J. Ruizendaal et al., “Dendritic cells transfected with interleukin-12 and tumor-associated antigen messenger RNA induce high avidity cytotoxic T cells,” Gene Therapy, vol. 14, no. 4, pp. 366–375, 2007. View at Publisher · View at Google Scholar · View at Scopus
  128. H. J. Bontkes, D. Kramer, J. J. Ruizendaal, C. J. L. M. Meijer, and E. Hooijberg, “Tumor associated antigen and interleukin-12 mRNA transfected dendritic cells enhance effector function of natural killer cells and antigen specific T-cells,” Clinical Immunology, vol. 127, no. 3, pp. 375–384, 2008. View at Publisher · View at Google Scholar · View at Scopus
  129. Y. Liu, X. Zhang, W. Zhang et al., “Adenovirus-mediated CD40 ligand gene-engineered dendritic cells elicit enhanced CD8+ cytotoxic T-cell activation and antitumor immunity,” Cancer Gene Therapy, vol. 9, no. 2, pp. 202–208, 2002. View at Publisher · View at Google Scholar · View at Scopus
  130. B. A. Hanks, J. Jiang, R. A. K. Singh et al., “Re-engineered CD40 receptor enables potent pharmacological activation of dendritic-cell cancer vaccines in vivo,” Nature Medicine, vol. 11, no. 2, pp. 130–137, 2005. View at Publisher · View at Google Scholar · View at Scopus
  131. Y. X. Chen, K. Man, S. L. Guang et al., “A crucial role for dendritic cell (DC) IL-10 in inhibiting successful DC-based immunotherapy: superior antitumor immunity against hepatocellular carcinoma evoked by DC devoid of IL-101,” Journal of Immunology, vol. 179, no. 9, pp. 6009–6015, 2007. View at Google Scholar · View at Scopus
  132. G. Liu, H. Ng, Y. Akasaki et al., “Small interference RNA modulation of IL-10 in human monocyte-derived dendritic cells enhances the Th1 response,” European Journal of Immunology, vol. 34, no. 6, pp. 1680–1687, 2004. View at Publisher · View at Google Scholar · View at Scopus
  133. M. Wobser, H. Voigt, R. Houben et al., “Dendritic cell based antitumor vaccination: impact of functional indoleamine 2,3-dioxygenase expression,” Cancer Immunology, Immunotherapy, vol. 56, no. 7, pp. 1017–1024, 2007. View at Publisher · View at Google Scholar · View at Scopus
  134. L. Shen, K. Evel-Kabler, R. Strube, and S. Y. Chen, “Silencing of SOCS1 enhances antigen presentation by dendritic cells and antigen-specific anti-tumor immunity,” Nature Biotechnology, vol. 22, no. 12, pp. 1546–1553, 2004. View at Publisher · View at Google Scholar · View at Scopus
  135. K. Evel-Kabler, X. T. Song, M. Aldrich, X. F. Huang, and S. Y. Chen, “SOCS1 restricts dendritic cells' ability to break self tolerance and induce antitumor immunity by regulating IL-12 production and signaling,” Journal of Clinical Investigation, vol. 116, no. 1, pp. 90–100, 2006. View at Publisher · View at Google Scholar · View at Scopus
  136. J. Y. Kao, Y. Gong, C. M. Chen, Q. D. Zheng, and J. J. Chen, “Tumor-derived TGF-β reduces the efficacy of dendritic cell/tumor fusion vaccine,” Journal of Immunology, vol. 170, no. 7, pp. 3806–3811, 2003. View at Google Scholar · View at Scopus
  137. C. C. Caldwell, H. Kojima, D. Lukashev et al., “Differential effects of physiologically relevant hypoxic conditions on T lymphocyte development and effector functions,” Journal of Immunology, vol. 167, no. 11, pp. 6140–6149, 2001. View at Google Scholar · View at Scopus
  138. D. Futalan, C. T. Huang, I. G. Schmidt-Wolf et al., “Effect of oxygen levels on the physiology of dendritic cells: implications for adoptive cell therapy,” Molecular Medicine, vol. 17, no. 9-10, pp. 910–916, 2011. View at Google Scholar
  139. P. Vaupel, F. Kallinowski, and P. Okunieff, “Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review,” Cancer Research, vol. 49, no. 23, pp. 6449–6465, 1989. View at Google Scholar · View at Scopus
  140. M. Yang, C. Ma, S. Liu et al., “Hypoxia skews dendritic cells to a T helper type 2-stimulating phenotype and promotes tumour cell migration by dendritic cell-derived osteopontin,” Immunology, vol. 128, no. 1, pp. e237–e249, 2009. View at Publisher · View at Google Scholar · View at Scopus
  141. Q. Wang, C. Liu, F. Zhu et al., “Reoxygenation of hypoxia-differentiated dentritic cells induces Th1 and Th17 cell differentiation,” Molecular Immunology, vol. 47, no. 4, pp. 922–931, 2010. View at Publisher · View at Google Scholar · View at Scopus
  142. C. Napoletano, D. Pinto, F. Bellati et al., “A comparative analysis of serum and serum-free media for generation of clinical grade DCs,” Journal of Immunotherapy, vol. 30, no. 5, pp. 567–576, 2007. View at Publisher · View at Google Scholar · View at Scopus
  143. M. Lehner, P. Morhart, A. Stilper, and W. Holter, “Functional characterization of monocyte-derived dendritic cells generated under serumfree culture conditions,” Immunology Letters, vol. 99, no. 2, pp. 209–216, 2005. View at Publisher · View at Google Scholar · View at Scopus
  144. I. J. M. de Vries, A. A. O. Eggert, N. M. Scharenborg et al., “Phenotypical and functional characterization of clinical grade dendritic cells,” Journal of Immunotherapy, vol. 25, no. 5, pp. 429–438, 2002. View at Publisher · View at Google Scholar · View at Scopus
  145. K. Duperrier, A. Eljaafari, C. Dezutter-Dambuyant et al., “Distinct subsets of dendritic cells resembling dermal DCs can be generated in vitro from monocytes, in the presence of different serum supplements,” Journal of Immunological Methods, vol. 238, no. 1-2, pp. 119–131, 2000. View at Publisher · View at Google Scholar · View at Scopus
  146. J. C. Peng, R. Thomas, and L. K. Nielsen, “Generation and maturation of dendritic cells for clinical application under serum-free conditions,” Journal of Immunotherapy, vol. 28, no. 6, pp. 599–609, 2005. View at Google Scholar · View at Scopus
  147. M. Lechmann, S. Berchtold, A. Steinkasserer, and J. Hauber, “CD83 on dendritic cells: more than just a marker for maturation,” Trends in Immunology, vol. 23, no. 6, pp. 273–275, 2002. View at Publisher · View at Google Scholar · View at Scopus
  148. L. Engell-Noerregaard, T. H. Hansen, M. H. Andersen, P. Thor Straten, and I. M. Svane, “Review of clinical studies on dendritic cell-based vaccination of patients with malignant melanoma: assessment of correlation between clinical response and vaccine parameters,” Cancer Immunology, Immunotherapy, vol. 58, no. 1, pp. 1–14, 2009. View at Publisher · View at Google Scholar · View at Scopus
  149. V. Murthy, A. Moiyadi, R. Sawant, and R. Sarin, “Clinical considerations in developing dendritic cell vaccine based immunotherapy protocols in cancer,” Current Molecular Medicine, vol. 9, no. 6, pp. 725–731, 2009. View at Publisher · View at Google Scholar · View at Scopus
  150. J. Copier, M. Bodman-Smith, and A. Dalgleish, “Current status and future applications of cellular therapies for cancer,” Immunotherapy, vol. 3, no. 4, pp. 507–516, 2011. View at Publisher · View at Google Scholar · View at Scopus
  151. J. Copier, A. G. Dalgleish, C. M. Britten et al., “Improving the efficacy of cancer immunotherapy,” European Journal of Cancer, vol. 45, no. 8, pp. 1424–1431, 2009. View at Publisher · View at Google Scholar · View at Scopus
  152. F. García, N. Climent, L. Assoumou et al., “A therapeutic dendritic cell-based vaccine for HIV-1 infection,” Journal of Infectious Diseases, vol. 203, no. 4, pp. 473–478, 2011. View at Publisher · View at Google Scholar · View at Scopus
  153. F. García, M. Lejeune, N. Climent et al., “Therapeutic immunization with dendritic cells loaded with heat-inactivated autologous HIV-1 in patients with chronic HIV-1 infection,” Journal of Infectious Diseases, vol. 191, no. 10, pp. 1680–1685, 2005. View at Publisher · View at Google Scholar · View at Scopus
  154. W. Lu, L. C. Arraes, W. T. Ferreira, and J. M. Andrieu, “Therapeutic dendritic-cell vaccine for chronic HIV-1 infection,” Nature Medicine, vol. 10, no. 12, pp. 1359–1365, 2004. View at Publisher · View at Google Scholar · View at Scopus
  155. A. S. Giermasz, J. A. Urban, Y. Nakamura et al., “Type-1 polarized dendritic cells primed for high IL-12 production show enhanced activity as cancer vaccines,” Cancer Immunology, Immunotherapy, vol. 58, no. 8, pp. 1329–1336, 2009. View at Publisher · View at Google Scholar · View at Scopus
  156. J. J. Lee, K. A. Foon, R. B. Mailliard, R. Muthuswamy, and P. Kalinski, “Type 1-polarized dendritic cells loaded with autologous tumor are a potent immunogen against chronic lymphocytic leukemia,” Journal of Leukocyte Biology, vol. 84, no. 1, pp. 319–325, 2008. View at Publisher · View at Google Scholar · View at Scopus
  157. P. Kalinski, J. Urban, R. Narang, E. Berk, E. Wieckowski, and R. Muthuswamy, “Dendritic cell-based therapeutic cancer vaccines: what we have and what we need,” Future Oncology, vol. 5, no. 3, pp. 379–390, 2009. View at Publisher · View at Google Scholar · View at Scopus
  158. B. J. Czerniecki, G. K. Koski, U. Koldovsky et al., “Targeting HER-2/neu in early breast cancer development using dendritic cells with staged interleukin-12 burst secretion,” Cancer Research, vol. 67, no. 4, pp. 1842–1852, 2007. View at Publisher · View at Google Scholar · View at Scopus
  159. M. W. Traxlmayr, D. Wesch, A. M. Dohnal et al., “Immune suppression by γδ t-cells as a potential regulatory mechanism after cancer vaccination with IL-12 secreting dendritic cells,” Journal of Immunotherapy, vol. 33, no. 1, pp. 40–52, 2010. View at Publisher · View at Google Scholar · View at Scopus
  160. A. M. van Nuffel, D. Benteyn, S. Wilgenhof et al., “Intravenous and intradermal TriMix-dendritic cell therapy results in a broad T-cell response and durable tumor response in a chemorefractory stage IV-M1c melanoma patient,” Cancer Immunology, Immunotherapy, vol. 61, no. 7, pp. 1033–1043, 2012. View at Publisher · View at Google Scholar
  161. S. Wilgenhof, A. M. T. van Nuffel, J. Corthals et al., “Therapeutic vaccination with an autologous mRNA electroporated dendritic cell vaccine in patients with advanced melanoma,” Journal of Immunotherapy, vol. 34, no. 5, pp. 448–456, 2011. View at Publisher · View at Google Scholar · View at Scopus
  162. A. Bonehill, A. M. T. van Nuffel, J. Corthals et al., “Single-step antigen loading and activation of dendritic cells by mRNA electroporation for the purpose of therapeutic vaccination in melanoma patients,” Clinical Cancer Research, vol. 15, no. 10, pp. 3366–3375, 2009. View at Publisher · View at Google Scholar · View at Scopus
  163. Q. Liu, C. Zhang, A. Sun, Y. Zheng, L. Wang, and X. Cao, “Tumor-educated CD11bhighIalow regulatory dendritic cells suppress T cell response through arginase I,” Journal of Immunology, vol. 182, no. 10, pp. 6207–6216, 2009. View at Publisher · View at Google Scholar · View at Scopus
  164. E. Gottfried, M. Kreutz, and A. Mackensen, “Tumor-induced modulation of dendritic cell function,” Cytokine and Growth Factor Reviews, vol. 19, no. 1, pp. 65–77, 2008. View at Publisher · View at Google Scholar · View at Scopus
  165. C. Buelens, F. Willems, A. Delvaux et al., “Interleukin-10 differentially regulates B7-1 (CD80) and B7-2 (CD86) expression on human peripheral blood dendritic cells,” European Journal of Immunology, vol. 25, no. 9, pp. 2668–2672, 1995. View at Publisher · View at Google Scholar · View at Scopus
  166. A. H. Enk, V. L. Angeloni, M. C. Udey, and S. I. Katz, “Inhibition of Langerhans cell antigen-presenting function by IL-10: a role for IL-10 in induction of tolerance,” Journal of Immunology, vol. 151, no. 5, pp. 2390–2398, 1993. View at Google Scholar · View at Scopus
  167. A. L. Cunningham, H. Donaghy, A. N. Harman, M. Kim, and S. G. Turville, “Manipulation of dendritic cell function by viruses,” Current Opinion in Microbiology, vol. 13, no. 4, pp. 524–529, 2010. View at Publisher · View at Google Scholar · View at Scopus
  168. B. Liu, A. M. Woltman, H. L. A. Janssen, and A. Boonstra, “Modulation of dendritic cell function by persistent viruses,” Journal of Leukocyte Biology, vol. 85, no. 2, pp. 205–214, 2009. View at Publisher · View at Google Scholar · View at Scopus
  169. K. Beck, U. Meyer-König, M. Weidmann, C. Nern, and F. T. Hufert, “Human cytomegalovirus impairs dendritic cell function: a novel mechanism of human cytomegalovirus immune escape,” European Journal of Immunology, vol. 33, no. 6, pp. 1528–1538, 2003. View at Publisher · View at Google Scholar · View at Scopus
  170. A. le Bon, N. Etchart, C. Rossmann et al., “Cross-priming of CD8+ T cells stimulated by virus-induced type I interferon,” Nature Immunology, vol. 4, no. 10, pp. 1009–1015, 2003. View at Publisher · View at Google Scholar · View at Scopus
  171. P. Dubsky, H. Saito, M. Leogier et al., “IL-15-induced human DC efficiently prime melanomaspecific naive CD8+ T cells to differentiate into CTL,” European Journal of Immunology, vol. 37, no. 6, pp. 1678–1690, 2007. View at Publisher · View at Google Scholar · View at Scopus
  172. E. Klechevsky, R. Morita, M. Liu et al., “Functional specializations of human epidermal langerhans cells and CD14+ dermal dendritic cells,” Immunity, vol. 29, no. 3, pp. 497–510, 2008. View at Publisher · View at Google Scholar · View at Scopus
  173. N. L. Letvin, “Correlates of immune protection and the development of a human immunodeficiency virus vaccine,” Immunity, vol. 27, no. 3, pp. 366–369, 2007. View at Publisher · View at Google Scholar · View at Scopus
  174. K. Palucka, H. Ueno, G. Zurawski, J. Fay, and J. Banchereau, “Building on dendritic cell subsets to improve cancer vaccines,” Current Opinion in Immunology, vol. 22, no. 2, pp. 258–263, 2010. View at Publisher · View at Google Scholar · View at Scopus
  175. M. O'Keeffe, H. Hochrein, D. Vremec et al., “Effects of administration of progenipoietin 1, Flt-3 ligand, granulocyte colony-stimulating factor, and pegylated granulocyte-macrophage colony-stimulating factor on dendritic cell subsets in mice,” Blood, vol. 99, no. 6, pp. 2122–2130, 2002. View at Publisher · View at Google Scholar · View at Scopus
  176. S. H. Naik, A. I. Proietto, N. S. Wilson et al., “Cutting edge: generation of splenic CD8+ and CD8- dendritic cell equivalents in Fms-like tyrosine kinase 3 ligand bone marrow cultures,” Journal of Immunology, vol. 174, no. 11, pp. 6592–6597, 2005. View at Google Scholar · View at Scopus
  177. K. Brasel, T. de Smedt, J. L. Smith, and C. R. Maliszewski, “Generation of murine dendritic cells from flt3-ligand-supplemented bone marrow cultures,” Blood, vol. 96, no. 9, pp. 3029–3039, 2000. View at Google Scholar · View at Scopus