Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2012, Article ID 926968, 9 pages
http://dx.doi.org/10.1155/2012/926968
Review Article

PGI2 as a Regulator of Inflammatory Diseases

Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, T-1218 MCN, Nashville, TN 37232-2650, USA

Received 8 March 2012; Accepted 24 May 2012

Academic Editor: Nicolas Flamand

Copyright © 2012 Stacy L. Dorris and R. S. Peebles Jr. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Needleman, S. Moncada, S. Bunting, J. R. Vane, M. Hamberg, and B. Samuelsson, “Identification of an enzyme in platelet microsomes which generates thromboxane A2 from prostaglandin endoperoxides,” Nature, vol. 261, no. 5561, pp. 558–560, 1976. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Camacho, C. Rodríguez, J. Salazar et al., “Retinoic acid induces PGI synthase expression in human endothelial cells,” Journal of Lipid Research, vol. 49, no. 8, pp. 1707–1714, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Gurgul-Convey and S. Lenzen, “Protection against cytokine toxicity through endoplasmic reticulum and mitochondrial stress prevention by prostacyclin synthase overexpression in insulin-producing cells,” The Journal of Biological Chemistry, vol. 285, no. 15, pp. 11121–11128, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. Z. Jaffar, K. S. Wan, and K. Roberts, “A key role for prostaglandin I2 in limiting lung mucosal Th2, but not Th1, responses to inhaled allergen,” Journal of Immunology, vol. 169, no. 10, pp. 5997–6004, 2002. View at Google Scholar · View at Scopus
  5. M. Camacho, C. Rodríguez, A. Guadall et al., “Hypoxia upregulates PGI-synthase and increases PGI2 release in human vascular cells exposed to inflammatory stimuli,” Journal of Lipid Research, vol. 52, no. 4, pp. 720–731, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Matsuoka and S. Narumiya, “The roles of prostanoids in infection and sickness behaviors,” Journal of Infection and Chemotherapy, vol. 14, no. 4, pp. 270–278, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Yin, L. Cheng, R. Langenbach, and C. Ju, “Prostaglandin I2 and E2 mediate the protective effects of cyclooxygenase-2 in a mouse model of immune-mediated liver injury,” Hepatology, vol. 45, no. 1, pp. 159–169, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. K. M. Egan, J. A. Lawson, S. Fries et al., “COX-2-derived prostacyclin confers atheroprotection on female mice,” Science, vol. 306, no. 5703, pp. 1954–1957, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Hui, E. Ricciotti, I. Crichton et al., “Targeted deletions of cyclooxygenase-2 and atherogenesis in mice,” Circulation, vol. 121, no. 24, pp. 2654–2660, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. V. L. King, D. B. Trivedi, J. M. Gitlin, and C. D. Loftin, “Selective cyclooxygenase-2 inhibition with celecoxib decreases angiotensin II-induced abdominal aortic aneurysm formation in mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 5, pp. 1137–1143, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. M. H. Zou and V. Ullrich, “Peroxynitrite formed by simultaneous generation of nitric oxide and superoxide selectively inhibits bovine aortic prostacyclin synthase,” The FEBS Letters, vol. 382, no. 1-2, pp. 101–104, 1996. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Zou, C. Martin, and V. Ullrich, “Tyrosine nitration as a mechanism of selective inactivation of prostacyclin synthase by peroxynitrite,” Biological Chemistry, vol. 378, no. 7, pp. 707–713, 1997. View at Google Scholar · View at Scopus
  13. M. I. Wade, N. F. Voelkel, and F. A. Fitzpatrick, “‘Suicide’ inactivation of prostaglandin I2 synthase: characterization of mechanism-based inactivation with isolated enzyme and endothelial cells,” Archives of Biochemistry and Biophysics, vol. 321, no. 2, pp. 453–458, 1995. View at Publisher · View at Google Scholar · View at Scopus
  14. H. El-Haroun, D. L. Clarke, K. Deacon et al., “IL-1β, BK, and TGF-β1 attenuate PGI 2-mediated cAMP formation in human pulmonary artery smooth muscle cells by multiple mechanisms involving p38 MAP kinase and PKA,” American Journal of Physiology, vol. 294, no. 3, pp. L553–L562, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Mohite, A. Chillar, S. P. So, V. Cervantes, and K. H. Ruan, “Novel mechanism of the vascular protector prostacyclin: regulating microRNA expression,” Biochemistry, vol. 50, no. 10, pp. 1691–1699, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. R. J. Soberman and P. Christmas, “Revisiting prostacyclin: new directions in pulmonary fibrosis and inflammation,” American Journal of Physiology, vol. 291, no. 2, pp. L142–L143, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. A. K. Lovgren, L. A. Jania, J. M. Hartney et al., “COX-2-derived prostacyclin protects against bleomycin-induced pulmonary fibrosis,” American Journal of Physiology, vol. 291, no. 2, pp. L144–L156, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. S. K. Dahlen, G. Hansson, P. Hedqvist, T. Bjorck, E. Granstrom, and B. Dahlen, “Allergen challenge of lung tissue from asthmatic elicits bronchial contraction that correlates with the release of leukotrienes C4, D4, and E4,” Proceedings of the National Academy of Sciences of the United States of America, vol. 80, no. 6, pp. 1712–1716, 1983. View at Google Scholar · View at Scopus
  19. E. S. Schulman, H. H. Newball, L. M. Demers, F. A. Fitzpatrick, and N. F. Adkinson Jr., “Anaphylactic release of thromboxane A2, Prostaglandin D2, and prostacyclin from human lung parenchyma,” American Review of Respiratory Disease, vol. 124, no. 4, pp. 402–406, 1981. View at Google Scholar · View at Scopus
  20. Y. Takahashi, S. Tokuoka, T. Masuda et al., “Augmentation of allergic inflammation in prostanoid IP receptor deficient mice,” British Journal of Pharmacology, vol. 137, no. 3, pp. 315–322, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Nagao, H. Tanaka, M. Komai, T. Masuda, S. Narumiya, and H. Nagai, “Role of prostaglandin I2 in airway remodeling induced by repeated allergen challenge in mice,” American Journal of Respiratory Cell and Molecular Biology, vol. 29, no. 3, pp. 314–320, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. Z. Jaffar, M. E. Ferrini, M. C. Buford, G. A. FitzGerald, and K. Roberts, “Prostaglandin I2-IP signaling blocks allergic pulmonary inflammation by preventing recruitment of CD4+ Th2 cells into the airways in a mouse model of asthma,” Journal of Immunology, vol. 179, no. 9, pp. 6193–6203, 2007. View at Google Scholar · View at Scopus
  23. M. Wang, P. R. Cooper, M. Jiang et al., “Deletion of microsomal prostaglandin E synthase-1 does not alter ozone-induced airway hyper-responsiveness,” Journal of Pharmacology and Experimental Therapeutics, vol. 334, no. 1, pp. 63–68, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Idzko, H. Hammad, M. van Nimwegen et al., “Inhaled iloprost suppresses the cardinal features of asthma via inhibition of airway dendritic cell function,” Journal of Clinical Investigation, vol. 117, no. 2, pp. 464–472, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. L. D. Madison, J. M. Scarlett, P. Levasseur et al., “Prostacyclin signaling regulates circulating ghrelin during acute inflammation,” Journal of Endocrinology, vol. 196, no. 2, pp. 263–273, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Vane and R. E. Corin, “Prostacyclin: a vascular mediator,” European Journal of Vascular and Endovascular Surgery, vol. 26, no. 6, pp. 571–578, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Lehmann, J. P. König, J. Dettmann, J. Birnbaum, and W. J. Kox, “Effects of iloprost, a stable prostacyclin analog, on intestinal leukocyte adherence and microvascular blood flow in rat experimental endotoxemia,” Critical Care Medicine, vol. 29, no. 7, pp. 1412–1416, 2001. View at Google Scholar · View at Scopus
  28. S. P. Nana-Sinkam, D. L. Jong, S. Sotto-Santiago et al., “Prostacyclin prevents pulmonary endothelial cell apoptosis induced by cigarette smoke,” American Journal of Respiratory and Critical Care Medicine, vol. 175, no. 7, pp. 676–685, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Zhu, Y. Liu, W. Zhou et al., “A prostacyclin analogue, iloprost, protects from bleomycin-induced pulmonary fibrosis in mice,” Respiratory Research, vol. 11, article 34, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. W. Zhou, D. R. Dowell, M. W. Geraci et al., “PGI synthase overexpression protects against bleomycin-induced mortality and is associated with increased Nqo 1 expression,” American Journal of Physiology, vol. 301, no. 4, pp. L615–L622, 2011. View at Publisher · View at Google Scholar
  31. K. Hashimoto, B. S. Graham, M. W. Geraci et al., “Signaling through the prostaglandin I2 receptor IP protects against respiratory syncytial virus-induced illness,” Journal of Virology, vol. 78, no. 19, pp. 10303–10309, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Hashimoto, K. Ishibashi, T. Gebretsadik et al., “Functional polymorphism of the promoter region of the prostacyclin synthase gene and severity of RSV infection in hospitalized children,” Journal of Medical Virology, vol. 80, no. 11, pp. 2015–2022, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. A. M. Pulichino, S. Rowland, T. Wu et al., “Prostacyclin antagonism reduces pain and inflammation in rodent models of hyperalgesia and chronic arthritis,” Journal of Pharmacology and Experimental Therapeutics, vol. 319, no. 3, pp. 1043–1050, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Honda, E. Segi-Nishida, Y. Miyachi, and S. Narumiya, “Prostacyclin-IP signaling and prostaglandin E2-EP2/EP4 signaling both mediate joint inflammation in mouse collagen-induced arthritis,” Journal of Experimental Medicine, vol. 203, no. 2, pp. 325–335, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. D. M. Aronoff, C. M. Peres, C. H. Serezani et al., “Synthetic prostacyclin analogs differentially regulate macrophage function via distinct analog-receptor binding specificities,” Journal of Immunology, vol. 178, no. 3, pp. 1628–1634, 2007. View at Google Scholar · View at Scopus
  36. C. H. Hung, Y. T. Chu, J. L. Suen et al., “Regulation of cytokine expression in human plasmacytoid dendritic cells by prostaglandin I2 analogues,” European Respiratory Journal, vol. 33, no. 2, pp. 405–410, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. V. Konya, E. M. Sturm, P. Schratl et al., “Endothelium-derived prostaglandin I2 controls the migration of eosinophils,” Journal of Allergy and Clinical Immunology, vol. 125, no. 5, pp. 1105–1113, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. I. Y. Lee, E. M. Ko, S. H. Kim, D. I. Jeoung, and J. Choe, “Human follicular dendritic cells express prostacyclin synthase: a novel mechanism to control T cell numbers in the germinal center,” Journal of Immunology, vol. 175, no. 3, pp. 1658–1664, 2005. View at Google Scholar · View at Scopus
  39. T. Müller, T. Dürk, B. Blumenthal et al., “Iloprost has potent anti-inflammatory properties on human monocyte-derived dendritic cells,” Clinical and Experimental Allergy, vol. 40, no. 8, pp. 1214–1221, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. D. Strassheim, S. R. Riddle, D. L. Burke, M. W. Geraci, and K. R. Stenmark, “Prostacyclin inhibits IFN-γ-stimulated cytokine expression by reduced recruitment of CBP/p300 to STAT1 in a SOCS-1-independent manner,” Journal of Immunology, vol. 183, no. 11, pp. 6981–6988, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. W. Zhou, T. S. Blackwell, K. Goleniewska et al., “Prostaglandin I2 analogs inhibit Th1 and Th2 effector cytokine production by CD4 T cells,” Journal of Leukocyte Biology, vol. 81, no. 3, pp. 809–817, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. W. Zhou, K. Hashimoto, K. Goleniewska et al., “Prostaglandin I2 analogs inhibit proinflammatory cytokine production and T cell stimulatory function of dendritic cells,” Journal of Immunology, vol. 178, no. 2, pp. 702–710, 2007. View at Google Scholar · View at Scopus
  43. C. H. Kuo, Y. C. Ko, S. N. Yang et al., “Effects of PGI2 analogues on Th1- and Th2-related chemokines in monocytes via epigenetic regulation,” Journal of Molecular Medicine, vol. 89, no. 1, pp. 29–41, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Nakajima, T. Honda, D. Sakata et al., “Prostaglandin I2-IP signaling promotes Th1 differentiation in a mouse model of contact hypersensitivity,” Journal of Immunology, vol. 184, no. 10, pp. 5595–5603, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Kim, C. S. Park, C. H. Park, D. I. Jeoung, Y. M. Kim, and J. Choe, “Beraprost enhances the APC function of B cells by upregulating CD86 expression levels,” Journal of Immunology, vol. 186, no. 7, pp. 3866–3873, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. D. D. Ivy, “Prostacyclin in the intensive care setting,” Pediatric Critical Care Medicine, vol. 11, no. 2, pp. S41–S45, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Murakami, N. Nagaya, T. Itoh et al., “Prostacyclin agonist with thromboxane synthase inhibitory activity (ONO-1301) attenuates bleomycin-induced pulmonary fibrosis in mice,” American Journal of Physiology, vol. 290, no. 1, pp. L59–L65, 2006. View at Publisher · View at Google Scholar · View at Scopus