Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2013 (2013), Article ID 152786, 12 pages
http://dx.doi.org/10.1155/2013/152786
Review Article

LOX-1, OxLDL, and Atherosclerosis

1Center for the Study of Atherosclerosis, E. Bassini Hospital, 20092 Cinisello Balsamo, Italy
2IRCCS Multimedica, 20162 Milan, Italy
3Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
4Centre for Diabetes, The Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University, London E1 2AT, UK

Received 30 April 2013; Accepted 16 June 2013

Academic Editor: Asım Orem

Copyright © 2013 Angela Pirillo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Libby, “Inflammation in atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 32, no. 9, pp. 2045–2051, 2012. View at Publisher · View at Google Scholar
  2. G. K. Hansson, A. K. Robertson, and C. Soderberg-Naucler, “Inflammation and atherosclerosis,” Annual Review of Pathology, vol. 1, pp. 297–329, 2006. View at Publisher · View at Google Scholar
  3. I. Levitan, S. Volkov, and P. V. Subbaiah, “Oxidized LDL: diversity, patterns of recognition, and pathophysiology,” Antioxidants and Redox Signaling, vol. 13, no. 1, pp. 39–75, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Dunn, R. S. Vohra, J. E. Murphy, S. Homer-Vanniasinkam, J. H. Walker, and S. Ponnambalam, “The lectin-like oxidized low-density-lipoprotein receptor: a pro-inflammatory factor in vascular disease,” Biochemical Journal, vol. 409, no. 2, pp. 349–355, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Sawamura, N. Kume, T. Aoyama et al., “An endothelial receptor for oxidized low-density lipoprotein,” Nature, vol. 386, no. 6620, pp. 73–77, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Draude, N. Hrboticky, and R. L. Lorenz, “The expression of the lectin-like oxidized low-density lipoprotein receptor (LOX-1) on human vascular smooth muscle cells and monocytes and its down-regulation by lovastatin,” Biochemical Pharmacology, vol. 57, no. 4, pp. 383–386, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. J. L. Mehta, J. Chen, P. L. Hermonat, F. Romeo, and G. Novelli, “Lectin-like, oxidized low-density lipoprotein receptor-1 (LOX-1): a critical player in the development of atherosclerosis and related disorders,” Cardiovascular Research, vol. 69, no. 1, pp. 36–45, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Xu, S. Ogura, J. Chen, P. J. Little, J. Moss, and P. Liu, “LOX-1 in atherosclerosis: biological functions and pharmacological modifiers,” Cellular and Molecular Life Sciences, 2012. View at Publisher · View at Google Scholar
  9. A. Pirillo, A. Reduzzi, N. Ferri, H. Kuhn, A. Corsini, and A. L. Catapano, “Upregulation of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) by 15-lipoxygenase-modified LDL in endothelial cells,” Atherosclerosis, vol. 214, no. 2, pp. 331–337, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Pirillo, P. Uboldi, N. Ferri, A. Corsini, H. Kuhn, and A. L. Catapano, “Upregulation of lectin-like oxidized low density lipoprotein receptor 1 (LOX-1) expression in human endothelial cells by modified high density lipoproteins,” Biochemical and Biophysical Research Communications, vol. 428, no. 2, pp. 230–233, 2012. View at Publisher · View at Google Scholar
  11. H. Kataoka, N. Kume, S. Miyamoto et al., “Expression of lectinlike oxidized low-density lipoprotein receptor-1 in human atherosclerotic lesions,” Circulation, vol. 99, no. 24, pp. 3110–3117, 1999. View at Google Scholar · View at Scopus
  12. J. L. Mehta, N. Sanada, C. P. Hu et al., “Deletion of LOX-1 reduces atherogenesis in LDLR knockout mice fed high cholesterol diet,” Circulation Research, vol. 100, no. 11, pp. 1634–1642, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Inoue, Y. Arai, H. Kurihara, T. Kita, and T. Sawamura, “Overexpression of lectin-like oxidized low-density lipoprotein receptor-1 induces intramyocardial vasculopathy in apolipoprotein E-null mice,” Circulation Research, vol. 97, no. 2, pp. 176–184, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. M. W. Twigg, K. Freestone, S. Homer-Vanniasinkam, and S. Ponnambalam, “The LOX-1 scavenger receptor and its implications in the treatment of vascular disease,” Cardiology Research and Practice, vol. 2012, Article ID 632408, 6 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Matarazzo, M. C. Quitadamo, R. Mango, S. Ciccone, G. Novelli, and S. Biocca, “Cholesterol-lowering drugs inhibit lectin-like oxidized low-density lipoprotein-1 receptor function by membrane raft disruption,” Molecular Pharmacology, vol. 82, no. 2, pp. 246–254, 2012. View at Publisher · View at Google Scholar
  16. J. L. Mehta and D. Y. Li, “Identification and autoregulation of receptor for ox-LDL in cultured human coronary artery endothelial cells,” Biochemical and Biophysical Research Communications, vol. 248, no. 3, pp. 511–514, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Li and J. L. Mehta, “Upregulation of endothelial receptor for oxidized LDL (LOX-1) by oxidized LDL and implications in apoptosis of coronary artery endothelial cells: evidence from use of antisense LOX-1 mRNA and chemical inhibitors,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 4, pp. 1116–1122, 2000. View at Google Scholar · View at Scopus
  18. D. Li and J. L. Mehta, “Antisense to LOX-1 inhibits oxidized LDL-mediated upregulation of monocyte chemoattractant protein-1 and monocyte adhesion to human coronary artery endothelial cells,” Circulation, vol. 101, no. 25, pp. 2889–2895, 2000. View at Google Scholar · View at Scopus
  19. M. D. Mattaliano, C. Huard, W. Cao et al., “LOX-1-dependent transcriptional regulation in response to oxidized LDL treatment of human aortic endothelial cells,” American Journal of Physiology, vol. 296, no. 6, pp. C1329–C1337, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Li, H. Chen, F. Romeo, T. Sawamura, T. Saldeen, and J. L. Mehta, “Statins modulate oxidized low-density lipoprotein-mediated adhesion molecule expression in human coronary artery endothelial cells: role of LOX-1,” Journal of Pharmacology and Experimental Therapeutics, vol. 302, no. 2, pp. 601–605, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Zhu, M. Xia, M. Hou et al., “Ox-LDL plays dual effect in modulating expression of inflammatory molecles through LOX-1 pathway in human umbilical vein endothelial cells,” Frontiers in Bioscience, vol. 10, no. 2, pp. 2585–2594, 2005. View at Google Scholar · View at Scopus
  22. T. Lawrence, “The nuclear factor NF-kappaB pathway in inflammation,” Cold Spring Harbor Perspectives in Biology, vol. 1, no. 6, Article ID a001651, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Cominacini, A. Fratta Pasini, U. Garbin et al., “Oxidized low density lipoprotein (ox-LDL) binding to ox-LDL receptor-1 in endothelial cells induces the activation of NF-κB through an increased production of intracellular reactive oxygen species,” Journal of Biological Chemistry, vol. 275, no. 17, pp. 12633–12638, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Lievens, W. J. Eijgelaar, E. A. L. Biessen, M. J. A. P. Daemen, and E. Lutgens, “The multi-functionality of CD40L and its receptor CD40 in atherosclerosis,” Thrombosis and Haemostasis, vol. 102, no. 2, pp. 206–214, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Li, L. Liu, H. Chen, T. Sawamura, and J. L. Mehta, “LOX-1, an oxidized LDL endothelial receptor, induces CD40/CD40L signaling in human coronary artery endothelial cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 5, pp. 816–821, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. U. Förstermann and W. C. Sessa, “Nitric oxide synthases: regulation and function,” European Heart Journal, vol. 33, no. 7, pp. 829–837, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Blair, P. W. Shaul, I. S. Yuhanna, P. A. Conrad, and E. J. Smart, “Oxidized low density lipoprotein displaces endothelial nitric-oxide synthase (eNOS) from plasmalemmal caveolae and impairs eNOS activation,” Journal of Biological Chemistry, vol. 274, no. 45, pp. 32512–32519, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Cominacini, A. Rigoni, A. F. Pasini et al., “The binding of oxidized low density lipoprotein (ox-LDL) to ox-LDL receptor-1 reduces the intracellular concentration of nitric oxide in endothelial cells through an increased production of superoxide,” Journal of Biological Chemistry, vol. 276, no. 17, pp. 13750–13755, 2001. View at Google Scholar · View at Scopus
  29. S. Ryoo, C. A. Lemmon, K. G. Soucy et al., “Oxidized low-density lipoprotein-dependent endothelial arginase II activation contributes to impaired nitric oxide signaling,” Circulation Research, vol. 99, no. 9, pp. 951–960, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Ryoo, A. Bhunia, F. Chang, A. Shoukas, D. E. Berkowitz, and L. H. Romer, “OxLDL-dependent activation of arginase II is dependent on the LOX-1 receptor and downstream RhoA signaling,” Atherosclerosis, vol. 214, no. 2, pp. 279–287, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. X. Xu, X. Gao, B. J. Potter, J.-M. Cao, and C. Zhang, “Anti-LOX-1 rescues endothelial function in coronary arterioles in atherosclerotic ApoE knockout mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 4, pp. 871–877, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Pernow, A. Shemyakin, and F. Böhm, “New perspectives on endothelin-1 in atherosclerosis and diabetes mellitus,” Life Sciences, vol. 91, no. 13-14, pp. 507–516, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Sakurai, L. Cominacini, U. Garbin et al., “Induction of endothelin-1 production in endothelial cells via co-operative action between CD40 and lectin-like oxidized LDL receptor (LOX-1),” Journal of Cardiovascular Pharmacology, vol. 44, supplement 1, pp. S173–S180, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. F. Montecucco, A. Pende, and F. Mach, “The renin-angiotensin system modulates inflammatory processes in atherosclerosis: evidence from basic research and clinical studies,” Mediators of Inflammation, vol. 2009, Article ID 752406, 13 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Morawietz, U. Rueckschloss, B. Niemann et al., “Angiotensin II induces LOX-1, the human endothelial receptor for oxidized low-density lipoprotein,” Circulation, vol. 100, no. 9, pp. 899–902, 1999. View at Google Scholar · View at Scopus
  36. D. Li, R. M. Singh, L. Liu et al., “Oxidized-LDL through LOX-1 increases the expression of angiotensin converting enzyme in human coronary artery endothelial cells,” Cardiovascular Research, vol. 57, no. 1, pp. 238–243, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. R. Salvayre, N. Auge, H. Benoist, and A. Negre-Salvayre, “Oxidized low-density lipoprotein-induced apoptosis,” Biochimica et Biophysica Acta, vol. 1585, no. 2-3, pp. 213–221, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Chen, J. L. Mehta, N. Haider, X. Zhang, J. Narula, and D. Li, “Role of caspases in Ox-LDL-induced apoptotic cascade in human coronary artery endothelial cells,” Circulation Research, vol. 94, no. 3, pp. 370–376, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Imanishi, T. Hano, T. Sawamura, S. Takarada, and I. Nishio, “Oxidized low density lipoprotein potentiation of Fas-induced apoptosis through lectin-like oxidized-low density lipoprotein receptor-1 in human umbilical vascular endothelial cells,” Circulation Journal, vol. 66, no. 11, pp. 1060–1064, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. X.-P. Chen, K.-L. Xun, Q. Wu, T.-T. Zhang, J.-S. Shi, and G.-H. Du, “Oxidized low density lipoprotein receptor-1 mediates oxidized low density lipoprotein-induced apoptosis in human umbilical vein endothelial cells: role of reactive oxygen species,” Vascular Pharmacology, vol. 47, no. 1, pp. 1–9, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. U. Rueckschloss, J. Galle, J. Holtz, H.-R. Zerkowski, and H. Morawietz, “Induction of NAD(P)H oxidase by oxidized low-density lipoprotein in human endothelial cells: antioxidative potential of hydroxymethylglutaryl coenzyme A reductase inhibitor therapy,” Circulation, vol. 104, no. 15, pp. 1767–1772, 2001. View at Google Scholar · View at Scopus
  42. H.-C. Ou, T.-Y. Song, Y.-C. Yeh et al., “EGCG protects against oxidized LDL-induced endothelial dysfunction by inhibiting LOX-1-mediated signaling,” Journal of Applied Physiology, vol. 108, no. 6, pp. 1745–1756, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. Shi, F. Cosentino, G. G. Camici et al., “Oxidized low-density lipoprotein activates p66shc via lectin-like oxidized low-density lipoprotein receptor-1, protein kinase c-β, and c-jun n-terminal kinase kinase in human endothelial cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 9, pp. 2090–2097, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. T. Thum and J. Borlak, “LOX-1 receptor blockade abrogates oxLDL-induced oxidative DNA damage and prevents activation of the transcriptional repressor Oct-1 in human coronary arterial endothelium,” Journal of Biological Chemistry, vol. 283, no. 28, pp. 19456–19464, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Chen, Y. Liu, H. Liu, P. L. Hermonat, and J. L. Mehta, “Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) transcriptional regulation by Oct-1 in human endothelial cells: implications for atherosclerosis,” Biochemical Journal, vol. 393, part 1, pp. 255–265, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. P. Liu, M. Sun, and S. Sader, “Matrix metalloproteinases in cardiovascular disease,” The Canadian Journal of Cardiology, vol. 22, supplement B, pp. 25B–30B, 2006. View at Google Scholar
  47. D. Li, L. Liu, H. Chen, T. Sawamura, S. Ranganathan, and J. L. Mehta, “LOX-1 mediates oxidized low-density lipoprotein-induced expression of matrix metalloproteinases in human coronary artery endothelial cells,” Circulation, vol. 107, no. 4, pp. 612–617, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. L. Li and G. Renier, “The oral anti-diabetic agent, gliclazide, inhibits oxidized LDL-mediated LOX-1 expression, metalloproteinase-9 secretion and apoptosis in human aortic endothelial cells,” Atherosclerosis, vol. 204, no. 1, pp. 40–46, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Dandapat, C. Hu, L. Sun, and J. L. Mehta, “Small concentrations of OXLDL induce capillary tube formation from endothelial cells via LOX-1-dependent redox-sensitive pathway,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 11, pp. 2435–2442, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. I. Diebold, D. Kraicun, S. Bonello, and A. Görlach, “The ‘PAI-1 paradox’ in vascular remodelling,” Thrombosis and Haemostasis, vol. 100, no. 6, pp. 984–991, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. G. V. Sangle, R. Zhao, and G. X. Shen, “Transmembrane signaling pathway mediates oxidized low-density lipoprotein-induced expression of plasminogen activator inhibitor-1 in vascular endothelial cells,” American Journal of Physiology, vol. 295, no. 5, pp. E1243–E1254, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. B. Hu, D. Li, T. Sawamura, and J. L. Mehta, “Oxidized LDL through LOX-1 modulates LDL-receptor expression in human coronary artery endothelial cells,” Biochemical and Biophysical Research Communications, vol. 307, no. 4, pp. 1008–1012, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. F. Du, J. Zhou, R. Gong et al., “Endothelial progenitor cells in atherosclerosis,” Frontiers in Bioscience, vol. 17, no. 6, pp. 2327–2349, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. T. Imanishi, T. Hano, T. Sawamura, and I. Nishio, “Oxidized low-density lipoprotein induces endothelial progenitor cell senescence, leading to cellular dysfunction,” Clinical and Experimental Pharmacology and Physiology, vol. 31, no. 7, pp. 407–413, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. T. Imanishi, T. Hano, Y. Matsuo, and I. Nishio, “Oxidized low-density lipoprotein inhibits vascular endothelial growth factor-induced endothelial progenitor cell differentiation,” Clinical and Experimental Pharmacology and Physiology, vol. 30, no. 9, pp. 665–670, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. X. Wang, J. Chen, Q. Tao, J. Zhu, and Y. Shang, “Effects of ox-LDL on number and activity of circulating endothelial progenitor cells,” Drug and Chemical Toxicology, vol. 27, no. 3, pp. 243–255, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. X. M. Feng, B. Zhou, Z. Chen et al., “Oxidized low density lipoprotein impairs endothelial progenitor cells by regulation of endothelial nitric oxide synthase,” Journal of Lipid Research, vol. 47, no. 6, pp. 1227–1237, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. Y. Sun and X. Chen, “Ox-LDL-induced LOX-1 expression in vascular smooth muscle cells: role of reactive oxygen species,” Fundamental and Clinical Pharmacology, vol. 25, no. 5, pp. 572–579, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. R. Limor, M. Kaplan, T. Sawamura et al., “Angiotensin II increases the expression of lectin-like oxidized low-density lipoprotein receptor-1 in human vascular smooth muscle cells via a lipoxygenase-dependent pathway,” American Journal of Hypertension, vol. 18, no. 3, pp. 299–307, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. K.-C. Chen, I.-C. Hsieh, E. Hsi et al., “Negative feedback regulation between microRNA let-7g and the oxLDL receptor LOX-1,” Journal of Cell Science, vol. 124, no. 23, pp. 4115–4124, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. H. Eto, M. Miyata, N. Kume et al., “Expression of lectin-like oxidized LDL receptor-1 in smooth muscle cells after vascular injury,” Biochemical and Biophysical Research Communications, vol. 341, no. 2, pp. 591–598, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. H. Kataoka, N. Kume, S. Miyamoto et al., “Oxidized LDL modulates Bax/Bcl-2 through the lectinlike Ox-LDL receptor-1 in vascular smooth muscle cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, no. 6, pp. 955–960, 2001. View at Google Scholar · View at Scopus
  63. T. Aoyama, M. Chen, H. Fujiwara, T. Masaki, and T. Sawamura, “LOX-1 mediates lysophosphatidylcholine-induced oxidized LDL uptake in smooth muscle cells,” FEBS Letters, vol. 467, no. 2-3, pp. 217–220, 2000. View at Publisher · View at Google Scholar · View at Scopus
  64. N. M. Caplice, T. J. Bunch, P. G. Stalboerger et al., “Smooth muscle cells in human coronary atherosclerosis can originate from cells administered at marrow transplantation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 8, pp. 4754–4759, 2003. View at Publisher · View at Google Scholar · View at Scopus
  65. J. Yu, Y. Li, M. Li, Z. Qu, and Q. Ruan, “Oxidized low density lipoprotein-induced transdifferentiation of bone marrow-derived smooth muscle-like cells into foam-like cells in vitro,” International Journal of Experimental Pathology, vol. 91, no. 1, pp. 24–33, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. H. Yoshida, N. Kondratenko, S. Green, D. Steinberg, and O. Quehenberger, “Identification of the lectin-like receptor for oxidized low-density lipoprotein in human macrophages and its potential role as a scavenger receptor,” Biochemical Journal, vol. 334, part 1, pp. 9–13, 1998. View at Google Scholar · View at Scopus
  67. D. F. Schaeffer, M. Riazy, K. S. Parhar et al., “LOX-1 augments oxLDL uptake by lysoPC-stimulated murine macrophages but is not required for oxLDL clearance from plasma,” Journal of Lipid Research, vol. 50, no. 8, pp. 1676–1684, 2009. View at Publisher · View at Google Scholar
  68. L. Perrin-Cocon, F. Coutant, S. Agaugué, S. Deforges, P. André, and V. Lotteau, “Oxidized low-density lipoprotein promotes mature dendritic cell transition from differentiating monocyte,” Journal of Immunology, vol. 167, no. 7, pp. 3785–3891, 2001. View at Google Scholar · View at Scopus
  69. T. Nickel, S. Pfeiler, C. Summo et al., “oxLDL downregulates the dendritic cell homing factors CCR7 and CCL21,” Mediators of Inflammation, vol. 2012, Article ID 320953, 10 pages, 2012. View at Publisher · View at Google Scholar
  70. T. Nickel, D. Schmauss, H. Hanssen et al., “oxLDL uptake by dendritic cells induces upregulation of scavenger-receptors, maturation and differentiation,” Atherosclerosis, vol. 205, no. 2, pp. 442–450, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Chen, M. Kakutani, T. Naruko et al., “Activation-dependent surface expression of LOX-1 in human platelets,” Biochemical and Biophysical Research Communications, vol. 282, no. 1, pp. 153–158, 2001. View at Publisher · View at Google Scholar · View at Scopus
  72. K. Daub, P. Seizer, K. Stellos et al., “Oxidized LDL-activated platelets induce vascular inflammation,” Seminars in Thrombosis and Hemostasis, vol. 36, no. 2, pp. 146–156, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Kakutani, T. Masaki, and T. Sawamura, “A platelet-endothelium interaction mediated by lectin-like oxidized low-density lipoprotein receptor-1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 1, pp. 360–364, 2000. View at Google Scholar · View at Scopus
  74. L. Cominacini, A. Fratta Pasini, U. Garbin et al., “The platelet-endothelium interaction mediated by lectin-like oxidized low-density lipoprotein receptor-1 reduces the intracellular concentration of nitric oxide in endothelial cells,” Journal of the American College of Cardiology, vol. 41, no. 3, pp. 499–507, 2003. View at Publisher · View at Google Scholar · View at Scopus
  75. Y. Kuge, N. Kume, S. Ishino et al., “Prominent lectin-like oxidized low density lipoprotein (LDL) receptor-1 (LOX-1) expression in atherosclerotic lesions is associated with tissue factor expression and apoptosis in hypercholesterolemic rabbits,” Biological and Pharmaceutical Bulletin, vol. 31, no. 8, pp. 1475–1482, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. S. Ishino, T. Mukai, Y. Kuge et al., “Targeting of lectinlike oxidized low-density lipoprotein receptor 1 (LOX-1) with99mTc-labeled anti-LOX-1 antibody: potential agent for imaging of vulnerable plaque,” Journal of Nuclear Medicine, vol. 49, no. 10, pp. 1677–1685, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. X. Wang, M. I. Phillips, and J. L. Mehta, “LOX-1 and angiotensin receptors, and their interplay,” Cardiovascular Drugs and Therapy, vol. 25, no. 5, pp. 401–417, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. M. Nagase, S. Hirose, and T. Fujita, “Unique repetitive sequence and unexpected regulation of expression of rat endothelial receptor for oxidized low-density lipoprotein (LOX-1),” Biochemical Journal, vol. 330, no. 3, pp. 1417–1422, 1998. View at Google Scholar · View at Scopus
  79. K. Ando and T. Fujita, “Role of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in the development of hypertensive organ damage,” Clinical and Experimental Nephrology, vol. 8, no. 3, pp. 178–182, 2004. View at Publisher · View at Google Scholar · View at Scopus
  80. M. Nagase, K. Ando, T. Nagase, S. Kaname, T. Sawamura, and T. Fujita, “Redox-sensitive regulation of LOX-1 gene expression in vascular endothelium,” Biochemical and Biophysical Research Communications, vol. 281, no. 3, pp. 720–725, 2001. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Chen, M. Nagase, T. Fujita, S. Narumiya, T. Masaki, and T. Sawamura, “Diabetes enhances lectin-like oxidized LDL receptor-1 (LOX-1) expression in the vascular endothelium: possible role of LOX-1 ligand and AGE,” Biochemical and Biophysical Research Communications, vol. 287, no. 4, pp. 962–968, 2001. View at Publisher · View at Google Scholar · View at Scopus
  82. D. Li, V. Williams, L. Liu et al., “Expression of lectin-like oxidized low-density lipoprotein receptors during ischemia-reperfusion and its role in determination of apoptosis and left ventricular dysfunction,” Journal of the American College of Cardiology, vol. 41, no. 6, pp. 1048–1055, 2003. View at Publisher · View at Google Scholar · View at Scopus
  83. C. Hu, A. Dandapat, J. Chen et al., “LOX-1 deletion alters signals of myocardial remodeling immediately after ischemia-reperfusion,” Cardiovascular Research, vol. 76, no. 2, pp. 292–302, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. C. Hu, J. Chen, A. Dandapat et al., “LOX-1 abrogation reduces myocardial ischemia-reperfusion injury in mice,” Journal of Molecular and Cellular Cardiology, vol. 44, no. 1, pp. 76–83, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. R. Mango, I. M. Predazzi, F. Romeo, and G. Novelli, “LOX-1/LOXIN: the Yin/Yang of atheroscleorosis,” Cardiovascular Drugs and Therapy, vol. 25, no. 5, pp. 489–494, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. R. Mango, S. Biocca, F. del Vecchio et al., “In vivo and in vitro studies support that a new splicing isoform of OLR1 gene is protective against acute myocardial infarction,” Circulation Research, vol. 97, no. 2, pp. 152–158, 2005. View at Publisher · View at Google Scholar · View at Scopus
  87. S. Biocca, I. Filesi, R. Mango et al., “The splice variant LOXIN inhibits LOX-1 receptor function through hetero-oligomerization,” Journal of Molecular and Cellular Cardiology, vol. 44, no. 3, pp. 561–570, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. S. Biocca, M. Falconi, I. Filesi et al., “Functional analysis and molecular dynamics simulation of LOX-1 K167N polymorphism reveal alteration of receptor activity,” PLoS One, vol. 4, no. 2, article e4648, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. R. Mango, F. Clementi, P. Borgiani et al., “Association of single nucleotide polymorphisms in the oxidised LDL receptor 1 (OLR1) gene in patients with acute myocardial infarction,” Journal of Medical Genetics, vol. 40, no. 12, pp. 933–936, 2003. View at Google Scholar · View at Scopus
  90. R. Ohmori, Y. Momiyama, M. Nagano et al., “An oxidized low-density lipoprotein receptor gene variant is inversely associated with the severity of coronary artery disease,” Clinical Cardiology, vol. 27, no. 11, pp. 641–644, 2004. View at Google Scholar · View at Scopus
  91. M. Tatsuguchi, M. Furutani, J.-I. Hinagata et al., “Oxidized LDL receptor gene (OLR1) is associated with the risk of myocardial infarction,” Biochemical and Biophysical Research Communications, vol. 303, no. 1, pp. 247–250, 2003. View at Publisher · View at Google Scholar · View at Scopus
  92. Ö. Kurnaz, H. Y. Aydoǧan, C. S. Isbir, A. Tekeli, and T. Isbir, “Is LOX-1 K167N polymorphism protective for coronary artery disease?” In Vivo, vol. 23, no. 6, pp. 969–973, 2009. View at Google Scholar · View at Scopus
  93. G. D. Norata, K. Garlaschelli, L. Grigore et al., “Effects of PCSK9 variants on common carotid artery intima media thickness and relation to ApoE alleles,” Atherosclerosis, vol. 208, no. 1, pp. 177–182, 2010. View at Publisher · View at Google Scholar · View at Scopus
  94. G. D. Norata, S. Raselli, L. Grigore et al., “Small dense LDL and VLDL predict common carotid artery IMT and elicit an inflammatory response in peripheral blood mononuclear and endothelial cells,” Atherosclerosis, vol. 206, no. 2, pp. 556–562, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. I. M. Predazzi, G. D. Norata, L. Vecchione et al., “Association between OLR1 K167N SNP and intima media thickness of the common carotid artery in the general population,” PLoS One, vol. 7, no. 2, Article ID e31086, 2012. View at Publisher · View at Google Scholar · View at Scopus
  96. L. Wang, D. Yanuck, A. Beecham et al., “A candidate gene study revealed sex-specific association between the OLR1 gene and carotid plaque,” Stroke, vol. 42, no. 3, pp. 588–592, 2011. View at Publisher · View at Google Scholar · View at Scopus
  97. F. Amati, L. Diano, L. Vecchione et al., “LOX-1 inhibition in ApoE KO mice using a schizophyllan-based antisense oligonucleotide therapy,” Molecular Therapy. Nucleic Acids, vol. 1, no. 12, article e58, 2012. View at Google Scholar