Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2013, Article ID 648268, 18 pages
http://dx.doi.org/10.1155/2013/648268
Review Article

Neurovascular Unit in Chronic Pain

1Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Section of Anatomy and Histology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
2Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
3IRCCS Centro Neurolesi “Bonino-Pulejo”, 98124 Messina, Italy
4Department of Life and Environmental Physics, “Horia Hulubei” National Institute for Physics and Nuclear Engineering, 077125 Bucharest-Magurele, Romania

Received 14 March 2013; Accepted 8 May 2013

Academic Editor: Gila Moalem-Taylor

Copyright © 2013 Beatrice Mihaela Radu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. www.iasp-pain.org.
  2. C. Ramirez-Maestre and R. Esteve, “Disposition and adjustment to chronic pain,” Current Pain and Headache Reports, vol. 17, article 312, 2013. View at Google Scholar
  3. Institute of Medicine (US) Committee on Advancing Pain Research, Relieving Pain in America: A Blueprint for Transforming Prevention, Care, Education, and Research, National Academies Press, 2011.
  4. H. Breivik, B. Collett, V. Ventafridda, R. Cohen, and D. Gallacher, “Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment,” European Journal of Pain, vol. 10, no. 4, pp. 287–333, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. R. M. Leadley, N. Armstrong, Y. C. Lee, A. Allen, and J. Kleijnen, “Chronic diseases in the European Union: the prevalence and health cost implications of chronic pain,” Journal of Pain and Palliative Care Pharmacotherapy, vol. 26, no. 4, pp. 310–325, 2012. View at Google Scholar
  6. N. J. Abbott, L. Rönnbäck, and E. Hansson, “Astrocyte-endothelial interactions at the blood-brain barrier,” Nature Reviews Neuroscience, vol. 7, no. 1, pp. 41–53, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. B. T. Hawkins and T. P. Davis, “The blood-brain barrier/neurovascular unit in health and disease,” Pharmacological Reviews, vol. 57, no. 2, pp. 173–185, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Strazielle and J. F. Ghersi-Egea, “Physiology of blood-brain interfaces in relation to brain disposition of small compounds and macromolecules,” Molecular Pharmaceutics, vol. 10, no. 5, pp. 1473–1491, 2013. View at Publisher · View at Google Scholar
  9. T. A. Brooks, B. T. Hawkins, J. D. Huber, R. D. Egleton, and T. P. Davis, “Chronic inflammatory pain leads to increased blood-brain barrier permeability and tight junction protein alterations,” American Journal of Physiology, vol. 289, no. 2, pp. H738–H743, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Beggs, X. J. Liu, C. Kwan, and M. W. Salter, “Peripheral nerve injury and TRPV1-expressing primary afferent C-fibers cause opening of the blood-brain barrier,” Molecular Pain, vol. 6, article 74, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Echeverry, X. Q. Shi, S. Rivest, and J. Zhang, “Peripheral nerve injury alters blood-spinal cord barrier functional and molecular integrity through a selective inflammatory pathway,” Journal of Neuroscience, vol. 31, no. 30, pp. 10819–10828, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Tenorio, A. Kulkarni, and B. J. Kerr, “Resident glial cell activation in response to perispinal inflammation leads to acute changes in nociceptive sensitivity: implications for the generation of neuropathic pain,” Pain, vol. 154, no. 1, pp. 71–81, 2013. View at Google Scholar
  13. S. Morita and S. Miyata, “Different vascular permeability between the sensory and secretory circumventricular organs of adult mouse brain,” Cell and Tissue Research, vol. 349, no. 2, pp. 589–603, 2012. View at Google Scholar
  14. S. Nag and D. J. Begley, “Blood-brain barrier, exchange of metabolites and gases,” in Pathology and Genetics. Cerebrovascular Diseases, H. Kalimo, Ed., pp. 22–29, ISN Neuropath Press, Basel, Switzerland, 2005. View at Google Scholar
  15. V. Bartanusz, D. Jezova, B. Alajajian, and M. Digicaylioglu, “The blood-spinal cord barrier: morphology and clinical implications,” Annals of Neurology, vol. 70, no. 2, pp. 194–206, 2011. View at Google Scholar
  16. H. S. Sharma, “Pathophysiology of blood-spinal cord barrier in traumatic injury and repair,” Current Pharmaceutical Design, vol. 11, no. 11, pp. 1353–1389, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. P. M. Daniel, D. K. C. Lam, and O. E. Pratt, “Changes in the effectiveness of the blood-brain and blood-spinal cord barriers in experimental allergic encephalomyelitis. Possible relevance to multiple sclerosis,” Journal of the Neurological Sciences, vol. 52, no. 2-3, pp. 211–219, 1981. View at Google Scholar · View at Scopus
  18. L. D. Prockop, K. A. Naidu, J. E. Binard, and J. Ransohoff, “Selective permeability of [3H]-D-mannitol and [14C]-carboxyl-inulin across the blood-brain barrier and blood-spinal cord barrier in the rabbit,” The Journal of Spinal Cord Medicine, vol. 18, no. 4, pp. 221–226, 1995. View at Google Scholar · View at Scopus
  19. W. Pan, W. A. Banks, and A. J. Kastin, “Permeability of the blood-brain and blood-spinal cord barriers to interferons,” Journal of Neuroimmunology, vol. 76, no. 1-2, pp. 105–111, 1997. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Ge and J. S. Pachter, “Isolation and culture of microvascular endothelial cells from murine spinal cord,” Journal of Neuroimmunology, vol. 177, no. 1-2, pp. 209–214, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. P. S. Tsai, J. P. Kaufhold, P. Blinder et al., “Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels,” Journal of Neuroscience, vol. 29, no. 46, pp. 14553–14570, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. N. J. Abbott, A. A. K. Patabendige, D. E. M. Dolman, S. R. Yusof, and D. J. Begley, “Structure and function of the blood-brain barrier,” Neurobiology of Disease, vol. 37, no. 1, pp. 13–25, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. I. Wilhelm, C. Fazakas, and I. A. Krizbai, “In vitro models of the blood-brain barrier,” Acta Neurobiologiae Experimentalis, vol. 71, no. 1, pp. 113–128, 2011. View at Google Scholar · View at Scopus
  24. W. Löscher and H. Potschka, “Blood-brain barrier active efflux transporters: ATP-binding cassette gene family,” NeuroRx, vol. 2, no. 1, pp. 86–98, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. W. Löscher and H. Potschka, “Drug resistance in brain diseases and the role of drug efflux transporters,” Nature Reviews Neuroscience, vol. 6, no. 8, pp. 591–602, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. M. J. Seelbach, T. A. Brooks, R. D. Egleton, and T. P. Davis, “Peripheral inflammatory hyperalgesia modulates morphine delivery to the brain: a role for P-glycoprotein,” Journal of Neurochemistry, vol. 102, no. 5, pp. 1677–1690, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. P. T. Ronaldson and T. P. Davis, “Targeting blood-brain barrier changes during inflammatory pain: an opportunity for optimizing CNS drug delivery,” Therapeutic Delivery, vol. 2, no. 8, pp. 1015–1041, 2011. View at Google Scholar
  28. N. Tournier, X. Decleves, B. Saubamea, J. M. Scherrmann, and S. Cisternino, “Opioid transport by ATP-binding cassette transporters at the blood-brain barrier: implications for neuropsychopharmacology,” Current Pharmaceutical Design, vol. 17, no. 26, pp. 2829–2842, 2011. View at Google Scholar
  29. E. M. Cornford, S. Hyman, M. E. Cornford, E. M. Landaw, and A. V. Delgado-Escueta, “Interictal seizure resections show two configurations of endothelial Glut1 glucose transporter in the human blood-brain barrier,” Journal of Cerebral Blood Flow and Metabolism, vol. 18, no. 1, pp. 26–42, 1998. View at Google Scholar · View at Scopus
  30. H. Wolburg, S. Noell, A. Mack, K. Wolburg-Buchholz, and P. Fallier-Becker, “Brain endothelial cells and the glio-vascular complex,” Cell and Tissue Research, vol. 335, no. 1, pp. 75–96, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Wolburg and A. Lippoldt, “Tight junctions of the blood-brain barrier: development, composition and regulation,” Vascular Pharmacology, vol. 38, no. 6, pp. 323–337, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Mariano, H. Sasaki, D. Brites, and M. A. Brito, “A look at tricellulin and its role in tight junction formation and maintenance,” European Journal of Cell Biology, vol. 90, no. 10, pp. 787–796, 2011. View at Google Scholar
  33. C. L. Willis, “Glia-induced reversible disruption of blood-brain barrier integrity and neuropathological response of the neurovascular unit,” Toxicologic pathology, vol. 39, no. 1, pp. 172–185, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Dean, Y. Hamon, and G. Chimini, “The human ATP-binding cassette (ABC) transporter superfamily,” Journal of Lipid Research, vol. 42, no. 7, pp. 1007–1017, 2001. View at Google Scholar · View at Scopus
  35. C. R. Campos, C. Schroter, X. Wang, and D. S. Miller, “ABC transporter function and regulation at the blood-spinal cord barrier,” Journal of Cerebral Blood Flow & Metabolism, vol. 32, no. 8, pp. 1559–1566, 2012. View at Google Scholar
  36. P. T. Ronaldson, J. D. Finch, K. M. DeMarco, C. E. Quigley, and T. P. Davis, “Inflammatory pain signals an increase in functional expression of organic anion transporting polypeptide 1a4 at the blood-brain barrier,” Journal of Pharmacology and Experimental Therapeutics, vol. 336, no. 3, pp. 827–839, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. G. McCaffrey, W. D. Staatz, L. Sanchez-Covarrubias et al., “P-glycoprotein trafficking at the blood-brain barrier altered by peripheral inflammatory hyperalgesia,” Journal of Neurochemistry, vol. 122, no. 5, pp. 962–975, 2012. View at Google Scholar
  38. C. Dagenais, C. L. Graff, and G. M. Pollack, “Variable modulation of opioid brain uptake by P-glycoprotein in mice,” Biochemical Pharmacology, vol. 67, no. 2, pp. 269–276, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. J. S. Lagas, C. M. M. Van Der Kruijssen, K. Van De Wetering, J. H. Beijnen, and A. H. Schinkel, “Transport of diclofenac by breast cancer resistance protein (ABCG2) and stimulation of multidrug resistance protein 2 (ABCC2)-mediated drug transport by diclofenac and benzbromarone,” Drug Metabolism and Disposition, vol. 37, no. 1, pp. 129–136, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. T. A. Cartwright, C. R. Campos, R. E. Cannon, and D. S. Miller, “Mrp1 is essential for sphingolipid signaling to p-glycoprotein in mouse blood-brain and blood-spinal cord barriers,” Journal of Cerebral Blood Flow & Metabolism, vol. 33, no. 3, pp. 381–388, 2013. View at Google Scholar
  41. P. J. Goadsby, “Trigeminal autonomic cephalalgias,” Continuum, vol. 18, no. 4, pp. 883–895, 2012. View at Google Scholar
  42. D. J. A. De Groot, M. Van Der Deen, T. K. P. Le, A. Regeling, S. De Jong, and E. G. E. De Vries, “Indomethacin induces apoptosis via a MRP1-dependent mechanism in doxorubicin-resistant small-cell lung cancer cells overexpressing MRP1,” British Journal of Cancer, vol. 97, no. 8, pp. 1077–1083, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. G. Reid, P. Wielinga, N. Zelcer et al., “The human multidrug resistance protein MRP4 functions as a prostaglandin efflux transporter and is inhibited by nonsteroidal anti inflammatory drugs,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 16, pp. 9244–9249, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. N. Zelcer, K. Van De Wetering, M. Hillebrand et al., “Mice lacking multidrug resistance protein 3 show altered morphine pharmacokinetics and morphine-6-glucuronide antinociception,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 20, pp. 7274–7279, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. Z. P. Lin, Y. L. Zhu, D. R. Johnson et al., “Disruption of cAMP and prostaglandin E2 transport by multidrug resistance protein 4 deficiency alters cAMP-mediated signaling and nociceptive response,” Molecular Pharmacology, vol. 73, no. 1, pp. 243–251, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. K. Beck, K. Hayashi, B. Nishiguchi, O. Le Saux, M. Hayashi, and C. D. Boyd, “The distribution of Abcc6 in normal mouse tissues suggests multiple functions for this ABC transporter,” Journal of Histochemistry and Cytochemistry, vol. 51, no. 7, pp. 887–902, 2003. View at Google Scholar · View at Scopus
  47. E. A. Van Vliet, S. Redeker, E. Aronica, P. M. Edelbroek, and J. A. Gorter, “Expression of multidrug transporters MRP1, MRP2, and BCRP shortly after status epilepticus, during the latent period, and in chronic epileptic rats,” Epilepsia, vol. 46, no. 10, pp. 1569–1580, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Pekcec, B. Unkrüer, V. Stein et al., “Over-expression of P-glycoprotein in the canine brain following spontaneous status epilepticus,” Epilepsy Research, vol. 83, no. 2-3, pp. 144–151, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. A. L. Bartels, “Blood-brain barrier P-glycoprotein function in neurodegenerative disease,” Current Pharmaceutical Design, vol. 17, no. 26, pp. 2771–2777, 2011. View at Google Scholar
  50. M. Von Wedel-Parlow, P. Wölte, and H. J. Galla, “Regulation of major efflux transporters under inflammatory conditions at the blood-brain barrier in vitro,” Journal of Neurochemistry, vol. 111, no. 1, pp. 111–118, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. L. R. Watkins and S. F. Maier, “Immune regulation of central nervous system functions: from sickness responses to pathological pain,” Journal of Internal Medicine, vol. 257, no. 2, pp. 139–155, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. B. C. Hains and S. G. Waxman, “Activated microglia contribute to the maintenance of chronic pain after spinal cord injury,” Journal of Neuroscience, vol. 26, no. 16, pp. 4308–4317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. H. L. Lee, K. M. Lee, S. J. Son, S. H. Hwang, and H. J. Cho, “Temporal expression of cytokines and their receptors mRNAs in a neuropathic pain model,” NeuroReport, vol. 15, no. 18, pp. 2807–2811, 2004. View at Google Scholar · View at Scopus
  54. V. Raghavendra, F. Y. Tanga, and J. A. DeLeo, “Complete Freunds adjuvant-induced peripheral inflammation evokes glial activation and proinflammatory cytokine expression in the CNS,” European Journal of Neuroscience, vol. 20, no. 2, pp. 467–473, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. S. B. McMahon, W. B. J. Cafferty, and F. Marchand, “Immune and glial cell factors as pain mediators and modulators,” Experimental Neurology, vol. 192, no. 2, pp. 444–462, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. W. Guo, H. Wang, M. Watanabe et al., “Glial-cytokine-neuronal interactions underlying the mechanisms of persistent pain,” Journal of Neuroscience, vol. 27, no. 22, pp. 6006–6018, 2007. View at Google Scholar
  57. D. Srinivasan, J. H. Yen, D. J. Joseph, and W. Friedman, “Cell type-specific interleukin-1beta signaling in the CNS,” Journal of Neuroscience, vol. 24, no. 29, pp. 6482–6488, 2004. View at Google Scholar
  58. E. Hansson, “Could chronic pain and spread of pain sensation be induced and maintained by glial activation?” Acta Physiologica, vol. 187, no. 1-2, pp. 321–327, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Ledeboer, E. M. Sloane, E. D. Milligan et al., “Minocycline attenuates mechanical allodynia and proinflammatory cytokine expression in rat models of pain facilitation,” Pain, vol. 115, no. 1-2, pp. 71–83, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. S. A. Owolabi and C. Y. Saab, “Fractalkine and minocycline alter neuronal activity in the spinal cord dorsal horn,” FEBS Letters, vol. 580, no. 18, pp. 4306–4310, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. J. Mika, M. Osikowicz, W. Makuch, and B. Przewlocka, “Minocycline and pentoxifylline attenuate allodynia and hyperalgesia and potentiate the effects of morphine in rat and mouse models of neuropathic pain,” European Journal of Pharmacology, vol. 560, no. 2-3, pp. 142–149, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. M. L. Chen, H. Cao, Y. X. Chu et al., “Role of P2X7 receptor-mediated IL-18/IL-18R signaling in morphine tolerance: multiple glial-neuronal dialogues in the rat spinal cord,” Journal of Pain, vol. 13, no. 10, pp. 945–958, 2012. View at Google Scholar
  63. S. Imai, D. Ikegami, A. Yamashita et al., “Epigenetic transcriptional activation of monocyte chemotactic protein 3 contributes to long-lasting neuropathic pain,” Brain, vol. 136, part 3, pp. 828–843, 2013. View at Google Scholar
  64. J. A. DeLeo, F. Y. Tanga, and V. L. Tawfik, “Neuroimmune activation and neuroinflammation in chronic pain and opioid tolerance/hyperalgesia,” Neuroscientist, vol. 10, no. 1, pp. 40–52, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. N. Kuzumaki, M. Narita, M. Narita et al., “Chronic pain-induced astrocyte activation in the cingulate cortex with no change in neural or glial differentiation from neural stem cells in mice,” Neuroscience Letters, vol. 415, no. 1, pp. 22–27, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. K. Miyoshi, K. Obata, T. Kondo, H. Okamura, and K. Noguchi, “Interleukin-18-mediated microglia/astrocyte interaction in the spinal cord enhances neuropathic pain processing after nerve injury,” Journal of Neuroscience, vol. 28, no. 48, pp. 12775–12787, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. F. Cerbai, D. Lana, D. Nosi et al., “The neuron-astrocyte-microglia triad in normal brain ageing and in a model of neuroinflammation in the rat hippocampus,” PLoS One, vol. 7, article e45250, 2012. View at Google Scholar
  68. B. H. Liwnicz, J. L. Leach, H. S. Yeh, M. Privitera, and D. W. Roberts, “Pericyte degeneration and thickening of basement membranes of cerebral microvessels in complex partial seizures: electron microscopic study of surgically removed tissue,” Neurosurgery, vol. 26, no. 3, pp. 409–420, 1990. View at Google Scholar · View at Scopus
  69. M. Hellstrom, H. Gerhardt, M. Kalen et al., “Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis,” The Journal of Cell Biology, vol. 153, no. 3, pp. 543–553, 2001. View at Google Scholar
  70. E. Hansson, A. Westerlund, U. Björklund, and T. Olsson, “μ-Opioid agonists inhibit the enhanced intracellular Ca2+ responses in inflammatory activated astrocytes co-cultured with brain endothelial cells,” Neuroscience, vol. 155, no. 4, pp. 1237–1249, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. V. K. Hung, S. M. Chen, L. W. Tai, A. Y. Chen, S. K. Chung, and C. W. Cheung, “Over-expression of endothelin-1 in astrocytes, but not endothelial cells, ameliorates inflammatory pain response after formalin injection,” Life Sciences, vol. 91, no. 13-14, pp. 618–622, 2012. View at Google Scholar
  72. E. A. Winkler, J. D. Sengillo, R. D. Bell, J. Wang, and B. V. Zlokovic, “Blood-spinal cord barrier pericyte reductions contribute to increased capillary permeability,” Journal of Cerebral Blood Flow & Metabolism, vol. 32, no. 10, pp. 1841–1852, 2012. View at Google Scholar
  73. A. Armulik, G. Genove, M. Mae et al., “Pericytes regulate the blood-brain barrier,” Nature, vol. 468, no. 7323, pp. 557–561, 2010. View at Google Scholar
  74. V. Berezowski, C. Landry, M. P. Dehouck, R. Cecchelli, and L. Fenart, “Contribution of glial cells and pericytes to the mRNA profiles of P-glycoprotein and multidrug resistance-associated proteins in an in vitro model of the blood-brain barrier,” Brain Research, vol. 1018, no. 1, pp. 1–9, 2004. View at Publisher · View at Google Scholar · View at Scopus
  75. A. Armulik, A. Abramsson, and C. Betsholtz, “Endothelial/pericyte interactions,” Circulation Research, vol. 97, no. 6, pp. 512–523, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. P. Dore-Duffy, C. Owen, R. Balabanov, S. Murphy, T. Beaumont, and J. A. Rafols, “Pericyte migration from the vascular wall in response to traumatic brain injury,” Microvascular Research, vol. 60, no. 1, pp. 55–69, 2000. View at Publisher · View at Google Scholar · View at Scopus
  77. E. Gonul, B. Duz, S. Kahraman, H. Kayali, A. Kubar, and E. Timurkaynak, “Early pericyte response to brain hypoxia in cats: an ultrastructural study,” Microvascular Research, vol. 64, no. 1, pp. 116–119, 2002. View at Publisher · View at Google Scholar · View at Scopus
  78. S. Liu, D. Agalliu, C. Yu, and M. Fisher, “The role of pericytes in blood-brain barrier function and stroke,” Current Pharmaceutical Design, vol. 18, no. 25, pp. 3653–3662, 2012. View at Google Scholar
  79. K. Luk, S. Boatman, K. N. Johnson et al., “Influence of morphine on pericyte-endothelial interaction: implications for antiangiogenic therapy,” Journal of Oncology, vol. 2012, Article ID 458385, 10 pages, 2012. View at Publisher · View at Google Scholar
  80. H. S. Sharma and A. Sharma, “Breakdown of the blood-brain barrier in stress alters cognitive dysfunction and induces brain pathology: new perspectivesfor neuroprotective strategies,” in Brain Protection in Schizophrenia, Mood and Cognitive Disorders, M. S. Ritsner, Ed., pp. 243–304, Springer, Dordrecht, The Netherlands, 2010. View at Google Scholar
  81. H. S. Sharma and A. Sharma, “Blood-brain and spinal cord barriers in stress,” in Blood-Spinal Cord and Brain Barriers in Health and Disease, H. S. Sharma and J. Westman, Eds., pp. 231–298, Elsevier Academic Press, San Diego, Calif, USA, 2004. View at Google Scholar
  82. H. S. Sharma, “Blood-central nervous system barriers. A gateway to neurodegeneration, neuroprotection and neuroregeneration,” in Handbook of Neurochemistry and Molecular Neurobiology, A. Lajtha, N. Naren Banik, and S. K. Ray, Eds., pp. 363–457, Elsevier Academic Press, San Diego, Calif, USA, 2009. View at Google Scholar
  83. T. Gordh, H. Chu, and H. S. Sharma, “Spinal nerve lesion alters blood-spinal cord barrier function and activates astrocytes in the rat,” Pain, vol. 124, no. 1-2, pp. 211–221, 2006. View at Publisher · View at Google Scholar · View at Scopus
  84. J. Scholz and C. J. Woolf, “The neuropathic pain triad: neurons, immune cells and glia,” Nature Neuroscience, vol. 10, no. 11, pp. 1361–1368, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. M. Costigan, J. Scholz, and C. J. Woolf, “Neuropathic pain: a maladaptive response of the nervous system to damage,” Annual Review of Neuroscience, vol. 32, pp. 1–32, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. M. Costigan, A. Moss, A. Latremoliere et al., “T-cell infiltration and signaling in the adult dorsal spinal cord is a major contributor to neuropathic pain-like hypersensitivity,” Journal of Neuroscience, vol. 29, no. 46, pp. 14415–14422, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. M. C. O. Rodrigues, D. G. Hernandez-Ontiveros, M. K. Louis et al., “Neurovascular aspects of amyotrophic lateral sclerosis,” New Perspectives of Central Nervous System Injury and Neuroprotection, vol. 102, pp. 91–106, 2012. View at Google Scholar
  88. C. J. Garrison, P. M. Dougherty, K. C. Kajander, and S. M. Carlton, “Staining of glial fibrillary acidic protein (GFAP) in lumbar spinal cord increases following a sciatic nerve constriction injury,” Brain Research, vol. 565, no. 1, pp. 1–7, 1991. View at Publisher · View at Google Scholar · View at Scopus
  89. S. T. Meller, C. Dykstra, D. Grzybycki, S. Murphy, and G. F. Gebhart, “The possible role of glia in nociceptive processing and hyperalgesia in the spinal cord of the rat,” Neuropharmacology, vol. 33, no. 11, pp. 1471–1478, 1994. View at Publisher · View at Google Scholar · View at Scopus
  90. M. Tsuda, Y. Shigemoto-Mogami, S. Koizumi et al., “P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury,” Nature, vol. 424, no. 6950, pp. 778–783, 2003. View at Publisher · View at Google Scholar · View at Scopus
  91. F. Y. Tanga, N. Nutile-McMenemy, and J. A. DeLeo, “The CNS role of Toll-like receptor 4 in innate neuroimmunity and painful neuropathy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 16, pp. 5856–5861, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. J. D. Huber, V. S. Hau, L. Borg, C. R. Campos, R. D. Egleton, and T. P. Davis, “Blood-brain barrier tight junctions are altered during a 72-h exposure to λ-carrageenan-induced inflammatory pain,” American Journal of Physiology - Heart and Circulatory Physiology, vol. 283, no. 4, pp. H1531–H1537, 2002. View at Google Scholar · View at Scopus
  93. J. D. Huber, K. A. Witt, S. Hom, R. D. Egleton, K. S. Mark, and T. P. Davis, “Inflammatory pain alters blood-brain barrier permeability and tight junctional protein expression,” American Journal of Physiology - Heart and Circulatory Physiology, vol. 280, no. 3, pp. H1241–H1248, 2001. View at Google Scholar · View at Scopus
  94. T. A. Brooks, S. M. Ocheltree, M. J. Seelbach et al., “Biphasic cytoarchitecture and functional changes in the BBB induced by chronic inflammatory pain,” Brain Research, vol. 1120, no. 1, pp. 172–182, 2006. View at Publisher · View at Google Scholar · View at Scopus
  95. G. McCaffrey, M. J. Seelbach, W. D. Staatz et al., “Occludin oligomeric assembly at tight junctions of the blood-brain barrier is disrupted by peripheral inflammatory hyperalgesia,” Journal of Neurochemistry, vol. 106, no. 6, pp. 2395–2409, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. P. T. Ronaldson, K. M. Demarco, L. Sanchez-Covarrubias, C. M. Solinsky, and T. P. Davis, “Transforming growth factor-Β signaling alters substrate permeability and tight junction protein expression at the blood-brain barrier during inflammatory pain,” Journal of Cerebral Blood Flow and Metabolism, vol. 29, no. 6, pp. 1084–1098, 2009. View at Publisher · View at Google Scholar · View at Scopus
  97. J. J. Lochhead, G. McCaffrey, L. Sanchez-Covarrubias et al., “Tempol modulates changes in xenobiotic permeability and occludin oligomeric assemblies at the blood-brain barrier during inflammatory pain,” American Journal of Physiology, vol. 302, no. 3, pp. H582–H593, 2012. View at Google Scholar
  98. T. A. Brooks, N. Nametz, R. Charles, and T. P. Davis, “Diclofenac attenuates the regional effect of λ-Carrageenan on blood-brain barrier function and cytoarchitecture,” Journal of Pharmacology and Experimental Therapeutics, vol. 325, no. 2, pp. 665–673, 2008. View at Publisher · View at Google Scholar · View at Scopus
  99. T. N. Nagaraja, K. A. Keenan, J. D. Fenstermacher, and R. A. Knight, “Acute leakage patterns of fluorescent plasma flow markers after transient focal cerebral ischemia suggest large openings in blood-brain barrier,” Microcirculation, vol. 15, no. 1, pp. 1–14, 2008. View at Publisher · View at Google Scholar · View at Scopus
  100. P. Lu, C. Gonzales, Y. Chen et al., “CNS penetration of small molecules following local inflammation, widespread systemic inflammation or direct injury to the nervous system,” Life Sciences, vol. 85, no. 11-12, pp. 450–456, 2009. View at Publisher · View at Google Scholar · View at Scopus
  101. P. F. Fabene, M. G. Navarro, M. Martinello et al., “A role for leukocyte-endothelial adhesion mechanisms in epilepsy,” Nature Medicine, vol. 14, no. 12, pp. 1377–1383, 2008. View at Google Scholar
  102. R. Labianca, P. Sarzi-Puttini, S. M. Zuccaro, P. Cherubino, R. Vellucci, and D. Fornasari, “Adverse effects associated with non-opioid and opioid treatment in patients with chronic pain,” Clinical Drug Investigation, vol. 32, pp. 53–63, 2012. View at Google Scholar
  103. T. Koch and V. Hollt, “Role of receptor internalization in opioid tolerance and dependence,” Pharmacology & Therapeutics, vol. 117, no. 2, pp. 199–206, 2008. View at Google Scholar
  104. C. Muscoli, T. Doyle, C. Dagostino et al., “Counter-regulation of opioid analgesia by glial-derived bioactive sphingolipids,” Journal of Neuroscience, vol. 30, no. 46, pp. 15400–15408, 2010. View at Publisher · View at Google Scholar · View at Scopus
  105. S. Gottschalk, C. L. Cummins, D. Leibfritz, U. Christians, L. Z. Benet, and N. J. Serkova, “Age and sex differences in the effects of the immunosuppressants cyclosporine, sirolimus and everolimus on rat brain metabolism,” NeuroToxicology, vol. 32, no. 1, pp. 50–57, 2011. View at Publisher · View at Google Scholar · View at Scopus
  106. S. Zheng, Y. Tasnif, M. F. Hebert et al., “CYP3A5 gene variation influences cyclosporine a metabolite formation and renal cyclosporine disposition,” Transplantation, vol. 95, no. 6, pp. 821–827, 2013. View at Google Scholar
  107. H. Vanegas, E. Vazquez, and V. Tortorici, “NSAIDS, opioids, cannabinoids and the control of pain by the central nervous system,” Pharmaceuticals, vol. 3, no. 5, pp. 1335–1347, 2010. View at Publisher · View at Google Scholar · View at Scopus
  108. N. Tsiklauri, V. Viatchenko-Karpinski, N. Voitenko, and M. G. Tsagareli, “Non-opioid tolerance in juvenile and adult rats,” European Journal of Pharmacology, vol. 629, no. 1–3, pp. 68–72, 2010. View at Publisher · View at Google Scholar · View at Scopus
  109. E. Candelario-Jalil, S. Taheri, Y. Yang et al., “Cyclooxygenase inhibition limits blood-brain barrier disruption following intracerebral injection of tumor necrosis factor-α in the rat,” Journal of Pharmacology and Experimental Therapeutics, vol. 323, no. 2, pp. 488–498, 2007. View at Publisher · View at Google Scholar · View at Scopus
  110. S. D. Nandedkar, “Assessment of spinal cord pathology following trauma using early changes in the spinal cord evoked potentials: a pharmacological and morphological study in the rat,” Muscle and Nerve, vol. 25, supplement 11, pp. S83–S91, 2002. View at Google Scholar · View at Scopus
  111. R. Ottman, R. B. Lipton, A. B. Ettinger et al., “Comorbidities of epilepsy: results from the Epilepsy Comorbidities and Health (EPIC) survey,” Epilepsia, vol. 52, no. 2, pp. 308–315, 2011. View at Publisher · View at Google Scholar · View at Scopus
  112. R. Kobau, H. Zahran, D. J. Thurman et al., “Epilepsy surveillance among adults—19 States, Behavioral Risk Factor Surveillance System, 2005,” Morbidity and Mortality Weekly Report Surveillance Summaries, vol. 57, no. 6, pp. 1–20, 2008. View at Google Scholar · View at Scopus
  113. P. Parisi, P. Striano, A. Verrotti, M. P. Villa, and V. Belcastro, “What have we learned about ictal epileptic headache? A review of well-documented cases,” Seizure, vol. 22, no. 4, pp. 253–258, 2013. View at Google Scholar
  114. I. Toldo, E. Perissinotto, F. Menegazzo et al., “Comorbidity between headache and epilepsy in a pediatric headache center,” The Journal of Headache and Pain, vol. 11, no. 3, pp. 235–240, 2010. View at Publisher · View at Google Scholar · View at Scopus
  115. M. Ito, N. Adachi, F. Nakamura et al., “Multi-center study on post-ictal headache in patients with localization-related epilepsy,” Psychiatry and Clinical Neurosciences, vol. 57, no. 4, pp. 385–389, 2003. View at Publisher · View at Google Scholar · View at Scopus
  116. M. A. Rogawski, “Migraine and epilepsy—shared mechanisms within the family of episodic disorders,” in Jasper's Basic Mechanisms of the Epilepsies, J. L. Noebels, M. Avoli, M. A. Rogawski, R. W. Olsen, and A. V. Delgado-Escueta, Eds., pp. 930–944, Oxford University Press, 2012. View at Google Scholar
  117. P. F. Fabene, P. Marzola, A. Sbarbati, and M. Bentivoglio, “Magnetic resonance imaging of changes elicited by status epilepticus in the rat brain: diffusion-weighted and T2-weighted images, regional blood volume maps, and direct correlation with tissue and cell damage,” NeuroImage, vol. 18, no. 2, pp. 375–389, 2003. View at Publisher · View at Google Scholar · View at Scopus
  118. E. Seiffert, J. P. Dreier, S. Ivens et al., “Lasting blood-brain barrier disruption induces epileptic focus in the rat somatosensory cortex,” Journal of Neuroscience, vol. 24, no. 36, pp. 7829–7836, 2004. View at Publisher · View at Google Scholar · View at Scopus
  119. E. Oby and D. Janigro, “The blood-brain barrier and epilepsy,” Epilepsia, vol. 47, no. 11, pp. 1761–1774, 2006. View at Publisher · View at Google Scholar · View at Scopus
  120. S. Ivens, D. Kaufer, L. P. Flores et al., “TGF-β receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis,” Brain, vol. 130, no. 2, pp. 535–547, 2007. View at Publisher · View at Google Scholar · View at Scopus
  121. E. A. Van Vliet, S. D. C. Araújo, S. Redeker, R. Van Schaik, E. Aronica, and J. A. Gorter, “Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy,” Brain, vol. 130, no. 2, pp. 521–534, 2007. View at Publisher · View at Google Scholar · View at Scopus
  122. N. Marchi, E. Oby, A. Batra et al., “In vivo and in vitro effects of pilocarpine: relevance to ictogenesis,” Epilepsia, vol. 48, no. 10, pp. 1934–1946, 2007. View at Publisher · View at Google Scholar · View at Scopus
  123. P. F. Fabene, E. C. Butcker, and G. Constantin, “Anti-leukocyte recruitment therapy for the treatment of seizures and epilepsy,” US Patent, no: US, 2008/0025992 A1, 2008.
  124. P. F. Fabene, P. Bramanti, and G. Constantin, “The emerging role for chemokines in epilepsy,” Journal of Neuroimmunology, vol. 224, no. 1-2, pp. 22–27, 2010. View at Publisher · View at Google Scholar · View at Scopus
  125. P. F. Fabene, C. Laudanna, and G. Constantin, “Leukocyte trafficking mechanisms in epilepsy,” Molecular Immunology, vol. 55, no. 1, pp. 100–104, 2013. View at Google Scholar
  126. F. M. Cutrer, A. G. Sorensen, R. M. Weisskoff et al., “Perfusion-weighted imaging defects during spontaneous migrainous aura,” Annals of Neurology, vol. 43, no. 1, pp. 25–31, 1998. View at Publisher · View at Google Scholar · View at Scopus
  127. H. R. Jäger, N. J. Giffin, and P. J. Goadsby, “Diffusion- and perfusion-weighted MR imaging in persistent migrainous visual disturbances,” Cephalalgia, vol. 25, no. 5, pp. 323–332, 2005. View at Publisher · View at Google Scholar · View at Scopus
  128. J. P. Dreier, K. Jurkat-Rott, G. G. Petzold et al., “Opening of the blood-brain barrier preceding cortical edema in a severe attack of FHM type II,” Neurology, vol. 64, no. 12, pp. 2145–2147, 2005. View at Publisher · View at Google Scholar · View at Scopus
  129. F. M. Gonçalves, A. Martins-Oliveira, R. Lacchini et al., “Matrix metalloproteinase (MMP)-2 gene polymorphisms affect circulating MMP-2 levels in patients with migraine with aura,” Gene, vol. 512, no. 1, pp. 35–40, 2013. View at Google Scholar
  130. A. Martins-Oliveira, F. M. Gonçalves, J. G. Speciali et al., “Specific matrix metalloproteinase 9 (MMP-9) haplotype affect the circulating MMP-9 levels in women with migraine,” Journal of Neuroimmunology, vol. 252, no. 1-2, pp. 89–94, 2012. View at Google Scholar
  131. S. Pautex, A. Michon, M. Guedira et al., “Pain in severe dementia: self-assessment or observational scales?” Journal of the American Geriatrics Society, vol. 54, no. 7, pp. 1040–1045, 2006. View at Publisher · View at Google Scholar · View at Scopus
  132. E. J. Scherder, J. A. Sergeant, and D. F. Swaab, “Pain processing in dementia and its relation to neuropathology,” Lancet Neurology, vol. 2, no. 11, pp. 677–686, 2003. View at Publisher · View at Google Scholar · View at Scopus
  133. R. Schmidt, M. Bach, P. Dal-Bianco et al., “Dementia and pain,” Neuropsychiatry, vol. 24, no. 1, pp. 1–13, 2010. View at Google Scholar
  134. G. Pickering, A. Eschalier, and C. Dubray, “Pain and Alzheimer's disease,” Gerontology, vol. 46, no. 5, pp. 235–241, 2000. View at Google Scholar · View at Scopus
  135. E. Licht, E. L. Siegler, and M. C. Reid, “Can the cognitively impaired safely use patient-controlled analgesia?” Journal of Opioid Management, vol. 5, no. 5, pp. 307–312, 2009. View at Google Scholar · View at Scopus
  136. D. M. Lee, N. Pendleton, A. Tajar et al., “Chronic widespread pain is associated with slower cognitive processing speed in middle-aged and older European men,” Pain, vol. 151, no. 1, pp. 30–36, 2010. View at Google Scholar
  137. O. Moriarty, B. E. McGuire, and D. P. Finn, “The effect of pain on cognitive function: a review of clinical and preclinical research,” Progress in Neurobiology, vol. 93, no. 3, pp. 385–404, 2011. View at Publisher · View at Google Scholar · View at Scopus
  138. I. Carrero, M. R. Gonzalo, B. Martin, J. M. Sanz-Anquela, J. Arevalo-Serrano, and A. Gonzalo-Ruiz, “Oligomers of beta-amyloid protein (Abeta1-42) induce the activation of cyclooxygenase-2 in astrocytes via an interaction with interleukin-1beta, tumour necrosis factor-alpha, and a nuclear factor kappa-B mechanism in the rat brain,” Experimental Neurology, vol. 236, no. 2, pp. 215–227, 2012. View at Google Scholar
  139. W. S. T. Griffin, J.G. Sheng, G. W. Roberts, and R. E. Mrak, “Interleukin-1 expression in different plaque types in Alzheimer's disease: significance in plaque evolution,” Journal of Neuropathology and Experimental Neurology, vol. 54, no. 2, pp. 276–281, 1995. View at Google Scholar · View at Scopus
  140. R. Lautner, N. Mattsson, M. Scholl et al., “Biomarkers for microglial activation in Alzheimer's disease,” International Journal of Alzheimer'S DiSeaSe, vol. 2011, Article ID 939426, 5 pages, 2011. View at Publisher · View at Google Scholar
  141. M. O. Romanitan, B. O. Popescu, Ş. Spulber et al., “Altered expression of claudin family proteins in Alzheimer's disease and vascular dementia brains,” Journal of Cellular and Molecular Medicine, vol. 14, no. 5, pp. 1088–1100, 2010. View at Publisher · View at Google Scholar · View at Scopus
  142. B. O. Popescu, E. C. Toescu, L. M. Popescu et al., “Blood-brain barrier alterations in ageing and dementia,” Journal of the Neurological Sciences, vol. 283, no. 1-2, pp. 99–106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  143. B. V. Zlokovic, “Clearing amyloid through the blood-brain barrier,” Journal of Neurochemistry, vol. 89, no. 4, pp. 807–811, 2004. View at Publisher · View at Google Scholar · View at Scopus
  144. M. Ujiie, D. L. Dickstein, D. A. Carlow, and W. A. Jefferies, “Blood-brain barrier permeability precedes senile plaque formation in an Alzheimer disease model,” Microcirculation, vol. 10, no. 6, pp. 463–470, 2003. View at Publisher · View at Google Scholar · View at Scopus
  145. M. M. Esiri, “The interplay between inflammation and neurodegeneration in CNS disease,” Journal of Neuroimmunology, vol. 184, no. 1-2, pp. 4–16, 2007. View at Publisher · View at Google Scholar · View at Scopus
  146. H. Akiyama, S. Barger, S. Barnum et al., “Inflammation and Alzheimer's disease,” Neurobiology of Aging, vol. 21, no. 3, pp. 383–421, 2000. View at Google Scholar
  147. T. Simuni and K. Sethi, “Nonmotor manifestations of Parkinson's disease,” Annals of Neurology, vol. 64, no. 2, pp. S65–S80, 2008. View at Publisher · View at Google Scholar · View at Scopus
  148. B. Ford, “Pain in Parkinson's Disease,” Movement Disorders, vol. 25, no. 3, pp. S98–S103, 2010. View at Google Scholar
  149. D. Borsook, “Neurological diseases and pain,” Brain, vol. 135, part 2, pp. 320–344, 2012. View at Google Scholar
  150. R. Kortekaas, K. L. Leenders, J. C. H. Van Oostrom et al., “Blood-brain barrier dysfunction in Parkinsonian midbrain in vivo,” Annals of Neurology, vol. 57, no. 2, pp. 176–179, 2005. View at Publisher · View at Google Scholar · View at Scopus
  151. P. M. Carvey, C. H. Zhao, B. Hendey et al., “6-Hydroxydopamine-induced alterations in blood-brain barrier permeability,” European Journal of Neuroscience, vol. 22, no. 5, pp. 1158–1168, 2005. View at Publisher · View at Google Scholar · View at Scopus
  152. E. C. Hirsch and S. Hunot, “Neuroinflammation in Parkinson's disease: a target for neuroprotection?” The Lancet Neurology, vol. 8, no. 4, pp. 382–397, 2009. View at Publisher · View at Google Scholar · View at Scopus
  153. W. Zhang, T. Wang, Z. Pei et al., “Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson's disease,” The FASEB Journal, vol. 19, no. 6, pp. 533–542, 2005. View at Google Scholar
  154. L. S. Forno, L. E. DeLanney, I. Irwin, D. Di Monti, and J. W. Langston, “Astrocytes and Parkinson's disease,” Progress in Brain Research, vol. 94, pp. 429–436, 1992. View at Google Scholar · View at Scopus
  155. P. Damier, E. C. Hirsch, P. Zhang, Y. Agid, and F. Javoy-Agid, “Glutathione peroxidase, glial cells and Parkinson's disease,” Neuroscience, vol. 52, no. 1, pp. 1–6, 1993. View at Publisher · View at Google Scholar · View at Scopus
  156. B. Mirza, H. Hadberg, P. Thomsen, and T. Moos, “The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson's disease,” Neuroscience, vol. 95, no. 2, pp. 425–432, 1999. View at Publisher · View at Google Scholar · View at Scopus
  157. Y. J. C. Song, G. M. Halliday, J. L. Holton et al., “Degeneration in different parkinsonian syndromes relates to astrocyte type and astrocyte protein expression,” Journal of Neuropathology and Experimental Neurology, vol. 68, no. 10, pp. 1073–1083, 2009. View at Publisher · View at Google Scholar · View at Scopus
  158. Y. C. Chung, H. W. Ko, E. Bok et al., “The role of neuroinflammation on the pathogenesis of Parkinson's disease,” BMB Reports, vol. 43, no. 4, pp. 225–232, 2010. View at Google Scholar · View at Scopus
  159. C. Baiguera, M. Alghisi, A. Pinna et al., “Late-onset Parkinsonism in NFkappaB/c-Rel-deficient mice,” Brain, vol. 135, Part 9, pp. 2750–2765, 2012. View at Google Scholar
  160. R. Cayrol, P. Saikali, and T. Vincent, “Effector functions of antiaquaporin-4 autoantibodies in neuromyelitis optica,” Annals of the New York Academy of Sciences, vol. 1173, pp. 478–486, 2009. View at Publisher · View at Google Scholar · View at Scopus
  161. A. B. O'Connor, S. R. Schwid, D. N. Herrmann, J. D. Markman, and R. H. Dworkin, “Pain associated with multiple sclerosis: systematic review and proposed classification,” Pain, vol. 137, no. 1, pp. 96–111, 2008. View at Publisher · View at Google Scholar · View at Scopus
  162. P. E. Bermejo, C. Oreja-Guevara, and E. Díez-Tejedor, “Pain in multiple sclerosis: prevalence, mechanisms, types and treatment,” Revista de Neurologia, vol. 50, no. 2, pp. 101–108, 2010. View at Google Scholar · View at Scopus
  163. A. Truini, P. Barbanti, C. Pozzilli, and G. Cruccu, “A mechanism-based classification of pain in multiple sclerosis,” Journal of Neurology, vol. 226, no. 2, pp. 351–367, 2013. View at Google Scholar
  164. H. E. de Vries and D. D. Dijkstra, “Mononuclear phagocytes at the blood-brain barrier in multiple sclerosis,” in Blood-Spinal Cord and Brain Barriers in Health and Disease, H. S. Sharma and J. Westman, Eds., pp. 409–417, Elsevier, San Diego, Calif, USA, 2004. View at Google Scholar
  165. H. E. de Vries, G. Kooij, D. Frenkel, S. Georgopoulos, A. Monsonego, and D. Janigro, “Inflammatory events at blood-brain barrier in neuroinflammatory and neurodegenerative disorders: implications for clinical disease,” Epilepsia, vol. 53, supplement 6, pp. 45–52, 2012. View at Google Scholar
  166. A. Reijerkerk, K. A. Lakeman, J. A. Drexhage et al., “Brain endothelial barrier passage by monocytes is controlled by the endothelin system,” Journal of Neurochemistry, vol. 121, no. 5, pp. 730–737, 2012. View at Google Scholar
  167. P. A. Seeldrayers, J. Syha, S. P. Morrissey et al., “Magnetic resonance imaging investigation of blood-brain barrier damage in adoptive transfer experimental autoimmune encephalomyelitis,” Journal of Neuroimmunology, vol. 46, no. 1-2, pp. 199–206, 1993. View at Google Scholar · View at Scopus
  168. G. Kooij, R. Backer, J. J. Koning et al., “P-glycoprotein acts as an immunomodulator during neuroinflammation,” PloS one, vol. 4, no. 12, p. e8212, 2009. View at Google Scholar · View at Scopus
  169. S. P. Morrissey, H. Stodal, U. Zettl et al., “In vivo MRI and its histological correlates in acute adoptive transfer experimental allergic encephalomyelitis: quantification of inflammation and oedema,” Brain, vol. 119, no. 1, pp. 239–248, 1996. View at Publisher · View at Google Scholar · View at Scopus
  170. J. H. Noseworthy, C. Lucchinetti, M. Rodriguez, and B. G. Weinshenker, “Multiple sclerosis,” The New England Journal of Medicine, vol. 343, no. 13, pp. 938–952, 2000. View at Publisher · View at Google Scholar · View at Scopus
  171. S. J. Bolton, D. C. Anthony, and V. H. Perry, “Loss of the tight junction proteins occludin and zonula occludens-1 from cerebral vascular endothelium during neutrophil-induced blood-brain barrier breakdown in vivo,” Neuroscience, vol. 86, no. 4, pp. 1245–1257, 1998. View at Publisher · View at Google Scholar · View at Scopus
  172. J. Plumb, S. McQuaid, M. Mirakhur, and J. Kirk, “Abnormal endothelial tight junctions in active lesions and normal-appearing white matter in multiple sclerosis,” Brain Pathology, vol. 12, no. 2, pp. 154–169, 2002. View at Google Scholar · View at Scopus
  173. J. Kirk, J. Plumb, M. Mirakhur, and S. McQuaid, “Tight junctional abnormality in multiple sclerosis white matter affects all calibres of vessel and is associated with blood-brain barrier leakage and active demyelination,” Journal of Pathology, vol. 201, no. 2, pp. 319–327, 2003. View at Publisher · View at Google Scholar · View at Scopus
  174. A. Minagar and J. S. Alexander, “Blood-brain barrier disruption in multiple sclerosis,” Multiple Sclerosis, vol. 9, no. 6, pp. 540–549, 2003. View at Publisher · View at Google Scholar · View at Scopus
  175. D. A. Hafler, J. M. Slavik, D. E. Anderson, K. C. O'Connor, P. De Jager, and C. Baecher-Allan, “Multiple sclerosis,” Immunological Reviews, vol. 204, pp. 208–231, 2005. View at Publisher · View at Google Scholar · View at Scopus
  176. M. J. Craner, T. G. Damarjian, S. Liu et al., “Sodium channels contribute to microglia/macrophage activation and function in EAE and MS,” GLIA, vol. 49, no. 2, pp. 220–229, 2005. View at Publisher · View at Google Scholar · View at Scopus
  177. A. E. Schellenberg, R. Buist, V. W. Yong, M. R. Del Bigio, and J. Peeling, “Magnetic resonance imaging of blood-spinal cord barrier disruption in mice with experimental autoimmune encephalomyelitis,” Magnetic Resonance in Medicine, vol. 58, no. 2, pp. 298–305, 2007. View at Publisher · View at Google Scholar · View at Scopus
  178. C. J. Olechowski, J. J. Truong, and B. J. Kerr, “Neuropathic pain behaviours in a chronic-relapsing model of experimental autoimmune encephalomyelitis (EAE),” Pain, vol. 141, no. 1-2, pp. 156–164, 2009. View at Publisher · View at Google Scholar · View at Scopus
  179. Y. Arima, M. Harada, D. Kamimura et al., “Regional neural activation defines a gateway for autoreactive T cells to cross the blood-brain barrier,” Cell, vol. 148, no. 3, pp. 447–457, 2012. View at Google Scholar
  180. S. B. Yuan, Y. Q. Shi, and S. J. Tang, “Wnt signaling in the pathogenesis of multiple sclerosis-associated chronic pain,” Journal of Neuroimmune Pharmacology, vol. 7, no. 4, pp. 904–913, 2012. View at Google Scholar
  181. M. Reis and S. Liebner, “Wnt signaling in the vasculature,” Experimental Cell Research, vol. 319, no. 9, pp. 1317–1323, 2013. View at Publisher · View at Google Scholar
  182. R. G. Miller, C. E. Jackson, E. J. Kasarskis et al., “Practice parameter update: the care of the patient with amyotrophic lateral sclerosis: multidisciplinary care, symptom management, and cognitive/behavioral impairment (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology,” Neurology, vol. 73, no. 15, pp. 1227–1233, 2009. View at Publisher · View at Google Scholar · View at Scopus
  183. J. M. C. Franca, A. D'Abreu, J. H. Friedman, A. Nucci, and I. Lopes-Cendes, “Chronic pain in Machado-Joseph disease: a frequent and disabling symptom,” Archives of Neurology, vol. 64, no. 12, pp. 1767–1770, 2007. View at Publisher · View at Google Scholar · View at Scopus
  184. C. M. De Castro-Costa, R. B. Oriá, J. A. Machado-Filho et al., “Amyotrophic lateral sclerosis: clinical analysis of 78 cases from Fortaleza (Northeastern Brazil),” Arquivos de Neuro-Psiquiatria, vol. 57, no. 3B, pp. 761–774, 1999. View at Google Scholar · View at Scopus
  185. B. V. Zlokovic, “The blood-brain barrier in health and chronic neurodegenerative disorders,” Neuron, vol. 57, no. 2, pp. 178–201, 2008. View at Publisher · View at Google Scholar · View at Scopus
  186. S. Garbuzova-Davis, E. Haller, S. Saporta, I. Kolomey, S. V. Nicosia, and P. R. Sanberg, “Ultrastructure of blood-brain barrier and blood-spinal cord barrier in SOD1 mice modeling ALS,” Brain Research, vol. 1157, no. 1, pp. 126–137, 2007. View at Publisher · View at Google Scholar · View at Scopus
  187. C. Nicaise, D. Mitrecic, P. Demetter et al., “Impaired blood-brain and blood-spinal cord barriers in mutant SOD1-linked ALS rat,” Brain Research, vol. 1301, pp. 152–162, 2009. View at Publisher · View at Google Scholar · View at Scopus
  188. Z. Zhong, R. Deane, Z. Ali et al., “ALS-causing SOD1 mutants generate vascular changes prior to motor neuron degeneration,” Nature Neuroscience, vol. 11, no. 4, pp. 420–422, 2008. View at Publisher · View at Google Scholar · View at Scopus
  189. M. R. Jablonski, D. A. Jacob, C. Campos et al., “Selective increase of two ABC drug efflux transporters at the blood-spinal cord barrier suggests induced pharmacoresistance in ALS,” Neurobiology of Disease, vol. 47, no. 2, pp. 194–200, 2012. View at Google Scholar
  190. M. C. Evans, Y. Couch, N. Sibson, and M. R. Turner, “Inflammation and neurovascular changes in amyotrophic lateral sclerosis,” Molecular and Cellular Neuroscience, vol. 53, pp. 34–41, 2013. View at Google Scholar
  191. J. I. Engelhardt, J. Tajti, and S. H. Appel, “Lymphocytic infiltrates in the spinal cord in amyotrophic lateral sclerosis,” Archives of Neurology, vol. 50, no. 1, pp. 30–36, 1993. View at Google Scholar · View at Scopus
  192. I. M. Chiu, A. Chen, Y. Zheng et al., “T lymphocytes potentiate endogenous neuroprotective inflammation in a mouse model of ALS,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 46, pp. 17913–17918, 2008. View at Google Scholar
  193. D. R. Beers, J. S. Henkel, W. Zhao et al., “Endogenous regulatory T lymphocytes ameliorate amyotrophic lateral sclerosis in mice and correlate with disease progression in patients with amyotrophic lateral sclerosis,” Brain, vol. 134, no. 5, pp. 1293–1314, 2011. View at Publisher · View at Google Scholar · View at Scopus
  194. J. S. Henkel, D. R. Beers, S. Wen et al., “Regulatory T-lymphocytes mediate amyotrophic lateral sclerosis progression and survival,” EMBO Molecular Medicine, vol. 5, no. 1, pp. 64–79, 2013. View at Google Scholar
  195. B. Niego, R. Freeman, T. B. Puschmann, A. M. Turnley, and R. L. Medcalf, “t-PA-specific modulation of a human blood-brain barrier model involves plasmin-mediated activation of the Rho kinase pathway in astrocytes,” Blood, vol. 119, no. 20, pp. 4752–4761, 2012. View at Google Scholar
  196. X. N. Huang, J. Fu, and W. Z. Wang, “The effects of fasudil on the permeability of the rat blood-brain barrier and blood-spinal cord barrier following experimental autoimmune encephalomyelitis,” Journal of Neuroimmunology, vol. 239, no. 1-2, pp. 61–67, 2011. View at Google Scholar
  197. J. M. Boyce-Rustay, G. H. Simler, S. McGaraughty et al., “Characterization of Fasudil in preclinical models of pain,” Journal of Pain, vol. 11, no. 10, pp. 941–949, 2010. View at Google Scholar
  198. E. Yoshimi, F. Kumakura, C. Hatori et al., “Antinociceptive effects of AS1892802, a novel rho kinase inhibitor, in rat models of inflammatory and noninflammatory arthritis,” Journal of Pharmacology and Experimental Therapeutics, vol. 334, no. 3, pp. 955–963, 2010. View at Publisher · View at Google Scholar · View at Scopus
  199. M. Bialer, “Why are antiepileptic drugs used for nonepileptic conditions?” Epilepsia, vol. 53, supplement 7, pp. 26–33, 2012. View at Google Scholar
  200. B. Bauer, A. M. S. Hartz, A. Pekcec, K. Toellner, D. S. Miller, and H. Potschka, “Seizure-induced up-regulation of P-glycoprotein at the blood-brain barrier through glutamate and cyclooxygenase-2 signaling,” Molecular Pharmacology, vol. 73, no. 5, pp. 1444–1453, 2008. View at Publisher · View at Google Scholar · View at Scopus
  201. N. B. Finnerup and C. Baastrup, “Spinal cord injury pain: mechanisms and management,” Current Pain and Headache Reports, vol. 16, no. 3, pp. 207–216, 2012. View at Google Scholar
  202. R. A. Moore, S. Straube, P. J. Wiffen, S. Derry, and H. J. McQuay, “Pregabalin for acute and chronic pain in adults,” Cochrane Database of Systematic Reviews, no. 3, p. CD007076, 2009. View at Google Scholar · View at Scopus
  203. R. A. Moore, P. J. Wiffen, S. Derry, and H. J. McQuay, “Gabapentin for chronic neuropathic pain and fibromyalgia in adults,” Cochrane Database of Systematic Reviews, vol. 3, p. CD007938, 2011. View at Google Scholar · View at Scopus
  204. D. Gill, S. Derry, P. J. Wiffen, and R. A. Moore, “Valproic acid and sodium valproate for neuropathic pain and fibromyalgia in adults,” Cochrane Database of Systematic Reviews, vol. 10, Article ID CD009183, 2011. View at Google Scholar
  205. L. Hearn, S. Derry, and R. A. Moore, “Lacosamide for neuropathic pain and fibromyalgia in adults,” Cochrane Database of Systematic Reviews, vol. 2, Article ID CD009318, 2012. View at Google Scholar
  206. B. Ahishali, M. Kaya, N. Orhan et al., “Effects of levetiracetam on blood-brain barrier disturbances following hyperthermia-induced seizures in rats with cortical dysplasia,” Life Sciences, vol. 87, no. 19–22, pp. 609–619, 2010. View at Publisher · View at Google Scholar · View at Scopus
  207. O. J. Vilholm, S. Cold, L. Rasmussen, and S. H. Sindrup, “Effect of levetiracetam on the postmastectomy pain syndrome,” European Journal of Neurology, vol. 15, no. 8, pp. 851–857, 2008. View at Publisher · View at Google Scholar · View at Scopus
  208. T. P. Jorns, A. Johnston, and J. M. Zakrzewska, “Pilot study to evaluate the efficacy and tolerability of levetiracetam (Keppra®) in treatment of patients with trigeminal neuralgia,” European Journal of Neurology, vol. 16, no. 6, pp. 740–744, 2009. View at Publisher · View at Google Scholar · View at Scopus
  209. S. Rossi, G. Mataluni, C. Codecà et al., “Effects of levetiracetam on chronic pain in multiple sclerosis: results of a pilot, randomized, placebo-controlled study,” European Journal of Neurology, vol. 16, no. 3, pp. 360–366, 2009. View at Publisher · View at Google Scholar · View at Scopus
  210. J. V. Holbech, M. Otto, F. W. Bach, T. S. Jensen, and S. H. Sindrup, “The anticonvulsant levetiracetam for the treatment of pain in polyneuropathy: a randomized, placebo-controlled, cross-over trial,” European Journal of Pain, vol. 15, no. 6, pp. 608–614, 2011. View at Publisher · View at Google Scholar · View at Scopus
  211. R. G. Beran and P. J. Spira, “Levetiracetam in chronic daily headache: a double-blind, randomised placebo-controlled study. (The Australian KEPPRA Headache Trial [AUS-KHT]),” Cephalalgia, vol. 31, no. 5, pp. 530–536, 2011. View at Publisher · View at Google Scholar · View at Scopus
  212. M. Kaya, A. J. Becker, and C. Gurses, “Blood-brain barrier, epileptogenesis, and treatment strategies in cortical dysplasia,” Epilepsia, vol. 53, supplement 6, pp. 31–36, 2012. View at Google Scholar
  213. N. B. Finnerup, J. Grydehøj, J. Bing et al., “Levetiracetam in spinal cord injury pain: a randomized controlled trial,” Spinal Cord, vol. 47, no. 12, pp. 861–867, 2009. View at Publisher · View at Google Scholar · View at Scopus
  214. J. K. Liao and U. Laufs, “Pleiotropic effects of statins,” Annual Review of Pharmacology and Toxicology, vol. 45, pp. 89–118, 2005. View at Publisher · View at Google Scholar · View at Scopus
  215. M. Pallebage-Gamarallage, V. Lam, R. Takechi, S. Galloway, K. Clark, and J. Mamo, “Restoration of dietary-fat induced blood-brain barrier dysfunction by anti-inflammatory lipid-modulating agents,” Lipids in Health and Disease, vol. 11, no. 117, 2012. View at Google Scholar
  216. M. J. Knauer, B. L. Urquhart, H. E. Meyer Zu Schwabedissen et al., “Human skeletal muscle drug transporters determine local exposure and toxicity of statins,” Circulation Research, vol. 106, no. 2, pp. 297–306, 2010. View at Publisher · View at Google Scholar · View at Scopus
  217. M. Kesim, M. Kadioglu, M. Okuyan et al., “The evaluation of analgesic effects of simvastatin, pravastatin and atorvastatin in hot plate test,” European Review for Medical and Pharmacological Sciences, vol. 16, no. 6, pp. 789–796, 2012. View at Google Scholar
  218. X. Q. Shi, T. K. Y. Lim, S. Lee, Y. Q. Zhao, and J. Zhang, “Statins alleviate experimental nerve injury-induced neuropathic pain,” Pain, vol. 152, no. 5, pp. 1033–1043, 2011. View at Publisher · View at Google Scholar · View at Scopus