Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2013, Article ID 720536, 19 pages
http://dx.doi.org/10.1155/2013/720536
Research Article

Progression of Luminal Breast Tumors Is Promoted by Ménage à Trois between the Inflammatory Cytokine TNFα and the Hormonal and Growth-Supporting Arms of the Tumor Microenvironment

Ela Kodesz Institute for Research on Cancer Development and Prevention, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel

Received 21 August 2013; Accepted 9 October 2013

Academic Editor: Salahuddin Ahmed

Copyright © 2013 Polina Weitzenfeld et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Eroles, A. Bosch, J. Alejandro Pérez-Fidalgo, and A. Lluch, “Molecular biology in breast cancer: intrinsic subtypes and signaling pathways,” Cancer Treatment Reviews, vol. 38, no. 6, pp. 698–707, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Guiu, S. Michiels, F. Andre et al., “Molecular subclasses of breast cancer: how do we define them? The IMPAKT 2012 working group statement,” Annals of Oncology, vol. 23, no. 12, pp. 2997–3006, 2012. View at Google Scholar
  3. S. C. Baumgarten and J. Frasor, “Minireview: inflammation: an instigator of more aggressive estrogen receptor (ER) positive breast cancers,” Molecular Endocrinology, vol. 26, no. 3, pp. 360–371, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Lahlou and W. J. Muller, “β1-integrins signaling and mammary tumor progression in transgenic mouse models: Implications for human breast cancer,” Breast Cancer Research, vol. 13, no. 6, article 229, 2011. View at Google Scholar · View at Scopus
  5. K. Raymond, M. M. Faraldo, M.-A. Deugnier, and M. A. Glukhova, “Integrins in mammary development,” Seminars in Cell and Developmental Biology, vol. 23, no. 5, pp. 599–605, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Naor, S. B. Wallach-Dayan, M. A. Zahalka, and R. V. Sionov, “Involvement of CD44, a molecule with a thousand faces, in cancer dissemination,” Seminars in Cancer Biology, vol. 18, no. 4, pp. 260–267, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Misra, P. Heldin, V. C. Hascall et al., “Hyaluronan-CD44 interactions as potential targets for cancer therapy,” FEBS Journal, vol. 278, no. 9, pp. 1429–1443, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. D. S. Micalizzi, S. M. Farabaugh, and H. L. Ford, “Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression,” Journal of Mammary Gland Biology and Neoplasia, vol. 15, no. 2, pp. 117–134, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Vincent-Salomon and J. P. Thiery, “Host microenvironment in breast cancer development: epithelia-mesenchymal transition in breast cancer development,” Breast Cancer Research, vol. 5, no. 2, pp. 101–106, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Scheel and R. A. Weinberg, “Phenotypic plasticity and epithelial-mesenchymal transitions in cancer and normal stem cells?” International Journal of Cancer, vol. 129, no. 10, pp. 2310–2314, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. C. D. Roskelley and M. J. Bissell, “The dominance of the microenvironment in breast and ovarian cancer,” Seminars in Cancer Biology, vol. 12, no. 2, pp. 97–104, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. J. C. Tse and R. Kalluri, “Mechanisms of metastasis: epithelial-to-mesenchymal transition and contribution of tumor microenvironment,” Journal of Cellular Biochemistry, vol. 101, no. 4, pp. 816–829, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Lorusso and C. Rüegg, “The tumor microenvironment and its contribution to tumor evolution toward metastasis,” Histochemistry and Cell Biology, vol. 130, no. 6, pp. 1091–1103, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Balkwill, “Tumour necrosis factor and cancer,” Nature Reviews Cancer, vol. 9, no. 5, pp. 361–371, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Balkwill and A. Mantovani, “Cancer and inflammation: implications for pharmacology and therapeutics,” Clinical Pharmacology and Therapeutics, vol. 87, no. 4, pp. 401–406, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. F. R. Balkwill and A. Mantovani, “Cancer-related inflammation: common themes and therapeutic opportunities,” Seminars in Cancer Biology, vol. 22, no. 1, pp. 33–40, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Bertazza and S. Mocellin, “The dual role of tumor necrosis factor (TNF) in cancer biology,” Current Medicinal Chemistry, vol. 17, no. 29, pp. 3337–3352, 2010. View at Google Scholar · View at Scopus
  18. S. Sangaletti, C. Tripodo, C. Ratti et al., “Oncogene-driven intrinsic inflammation induces leukocyte production of tumor necrosis factor that critically contributes to mammary carcinogenesis,” Cancer Research, vol. 70, no. 20, pp. 7764–7775, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. M. A. Warren, S. F. Shoemaker, D. J. Shealy, W. Bshar, and M. M. Ip, “Tumor necrosis factor deficiency inhibits mammary tumorigenesis and a tumor necrosis factor neutralizing antibody decreases mammary tumor growth in neu/erbB2 transgenic mice,” Molecular Cancer Therapeutics, vol. 8, no. 9, pp. 2655–2663, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Hamaguchi, H. Wakabayashi, A. Matsumine, A. Sudo, and A. Uchida, “TNF inhibitor suppresses bone metastasis in a breast cancer cell line,” Biochemical and Biophysical Research Communications, vol. 407, no. 3, pp. 525–530, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. M. A. Rivas, R. P. Carnevale, C. J. Proietti et al., “TNFα acting on TNFR1 promotes breast cancer growth via p42/P44 MAPK, JNK, Akt and NF-κB-dependent pathways,” Experimental Cell Research, vol. 314, no. 3, pp. 509–529, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Soria, M. Ofri-Shahak, I. Haas et al., “Inflammatory mediators in breast cancer: coordinated expression of TNFα & IL-1β with CCL2 & CCL5 and effects on epithelial-to-mesenchymal transition,” BMC Cancer, vol. 11, article 130, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. D. W. Miles, L. C. Happerfield, M. S. Naylor, L. G. Bobrow, R. D. Rubens, and F. R. Balkwill, “Expression of tumour necrosis factor (TNFα) and its receptors in benign and malignant breast tissue,” International Journal of Cancer, vol. 56, no. 6, pp. 777–782, 1994. View at Google Scholar · View at Scopus
  24. L. F. Cui, X. J. Guo, J. Wei et al., “Overexpression of TNF-α and TNFRII in invasive micropapillary carcinoma of the breast: clinicopathological correlations,” Histopathology, vol. 53, no. 4, pp. 381–388, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. I. García-Tuñón, M. Ricote, A. Ruiz, B. Fraile, R. Paniagua, and M. Royuela, “Role of tumor necrosis factor-α and its receptors in human benign breast lesions and tumors (in.situ and infiltrative),” Cancer Science, vol. 97, no. 10, pp. 1044–1049, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Zhou, A. M. Nitschke, W. Xiong et al., “Proteomic analysis of tumor necrosis factor-α resistant human breast cancer cells reveals a MEK5/Erk5-mediated epithelial-mesenchymal transition phenotype,” Breast Cancer Research, vol. 10, no. 6, article R105, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Ruike, Y. Imanaka, F. Sato, K. Shimizu, and G. Tsujimoto, “Genome-wide analysis of aberrant methylation in human breast cancer cells using methyl-DNA immunoprecipitation combined with high-throughput sequencing,” BMC Genomics, vol. 11, no. 1, article 137, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Ben-Baruch, “The tumor-promoting flow of cells into, within and out of the tumor site: regulation by the inflammatory axis of TNFα and chemokines,” Cancer Microenvironment, vol. 5, no. 2, pp. 151–164, 2012. View at Google Scholar · View at Scopus
  29. M. D. Planas-Silva and P. K. Waltz, “Estrogen promotes reversible epithelial-to-mesenchymal-like transition and collective motility in MCF-7 breast cancer cells,” Journal of Steroid Biochemistry and Molecular Biology, vol. 104, no. 1-2, pp. 11–21, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Huang, S. V. Fernandez, S. Goodwin et al., “Epithelial to mesenchymal transition in human breast epithelial cells transformed by 17β-estradiol,” Cancer Research, vol. 67, no. 23, pp. 11147–11157, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Darbre, J. Yates, S. Curtis, and R. J. B. King, “Effect of estradiol on human breast cancer cells in culture,” Cancer Research, vol. 43, no. 1, pp. 349–354, 1983. View at Google Scholar · View at Scopus
  32. G. Deblois and V. Giguere, “Oestrogen-related receptors in breast cancer: control of cellular metabolism and beyond,” Nature Reviews Cancer, vol. 13, pp. 27–36, 2012. View at Google Scholar
  33. E. W. Thompson, S. Paik, N. Brunner et al., “Association of increased basement membrane invasiveness with abscence of estrogen receptor and expression of vimentin in human breast cancer cell lines,” Journal of Cellular Physiology, vol. 150, no. 3, pp. 534–544, 1992. View at Google Scholar · View at Scopus
  34. K. Haim, P. Weitzenfeld, T. Meshel, and A. Ben-Baruch, “Epidermal growth factor and estrogen act by independent pathways to additively promote the release of the angiogenic chemokine CXCL8 by breast tumor cells,” Neoplasia, vol. 13, no. 3, pp. 230–243, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. D. K. Biswas, A. P. Cruz, E. Gansberger, and A. B. Pardee, “Epidermal growth factor-induced nuclear factor κB activation: a major pathway of cell-cycle progression in estrogen-receptor negative breast cancer cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 15, pp. 8542–8547, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Garcia, R. A. Franklin, and J. A. McCubrey, “EGF induces cell motility and multi-drug resistance gene expression in breast cancer cells,” Cell Cycle, vol. 5, no. 23, pp. 2820–2826, 2006. View at Google Scholar · View at Scopus
  37. F. Döll, J. Pfeilschifter, and A. Huwiler, “The epidermal growth factor stimulates sphingosine kinase-1 expression and activity in the human mammary carcinoma cell line MCF7,” Biochimica et Biophysica Acta, vol. 1738, no. 1–3, pp. 72–81, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Blick, E. Widodo, H. Hugo et al., “Epithelial mesenchymal transition traits in human breast cancer cell lines,” Clinical and Experimental Metastasis, vol. 25, no. 6, pp. 629–642, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. C. K. Osborne, B. Hamilton, G. Titus, and R. B. Livingston, “Epidermal growth factor stimulation of human breast cancer cells in culture,” Cancer Research, vol. 40, no. 7, pp. 2361–2366, 1980. View at Google Scholar · View at Scopus
  40. J. R. Woodburn, “The epidermal growth factor receptor and its inhibition in cancer therapy,” Pharmacology and Therapeutics, vol. 82, no. 2-3, pp. 241–250, 1999. View at Publisher · View at Google Scholar · View at Scopus
  41. M. A. Rivas, M. Tkach, W. Beguelin et al., “Transactivation of ErbB-2 induced by tumor necrosis factor α promotes NF-κB activation and breast cancer cell proliferation,” Breast Cancer Research and Treatment, vol. 122, no. 1, pp. 111–124, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. H. B. Jijon, A. Buret, C. L. Hirota, M. D. Hollenberg, and P. L. Beck, “The EGF receptor and HER2 participate in TNF-alpha-dependent MAPK activation and IL-8 secretion in intestinal epithelial cells,” Mediators of Inflammation, vol. 2012, Article ID 207398, 12 pages, 2012. View at Publisher · View at Google Scholar
  43. T. Blick, H. Hugo, E. Widodo et al., “Epithelial mesenchymal transition traits in human breast cancer cell lines parallel the CD44HI/CD24lO/-stem cell phenotype in human breast cancer,” Journal of Mammary Gland Biology and Neoplasia, vol. 15, no. 2, pp. 235–252, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Kao, K. Salari, M. Bocanegra et al., “Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery,” PLoS ONE, vol. 4, no. 7, Article ID e6146, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Lacroix and G. Leclercq, “Relevance of breast cancer cell lines as models for breast tumours: an update,” Breast Cancer Research and Treatment, vol. 83, no. 3, pp. 249–289, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. H. Seeger, D. Wallwiener, and A. O. Mueck, “Effects of estradiol and progestogens on tumor-necrosis factor-α-induced changes of biochemical markers for breast cancer growth and metastasis,” Gynecological Endocrinology, vol. 24, no. 10, pp. 576–579, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. E. Azenshtein, G. Luboshits, S. Shina et al., “The CC chemokine RANTES in breast carcinoma progression: Regulation of expression and potential mechanisms of promalignant activity,” Cancer Research, vol. 62, no. 4, pp. 1093–1102, 2002. View at Google Scholar · View at Scopus
  48. S. C. Brooks, E. R. Locke, and H. D. Soule, “Estrogen receptor in a human cell line (MCF 7) from breast carcinoma,” Journal of Biological Chemistry, vol. 248, no. 17, pp. 6251–6253, 1973. View at Google Scholar · View at Scopus
  49. Z. Papoutsi, C. Zhao, M. Putnik, J.-Å. Gustafsson, and K. Dahlman-Wright, “Binding of estrogen receptor α/β heterodimers to chromatin in MCF-7 cells,” Journal of Molecular Endocrinology, vol. 43, no. 2, pp. 65–72, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. L. C. Kim, L. Song, and E. B. Haura, “Src kinases as therapeutic targets for cancer,” Nature Reviews Clinical Oncology, vol. 6, no. 10, pp. 587–595, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. N. A. Chatzizacharias, G. P. Kouraklis, and S. E. Theocharis, “Clinical significance of FAK expression in human neoplasia,” Histology and Histopathology, vol. 23, no. 4-6, pp. 629–650, 2008. View at Google Scholar · View at Scopus
  52. M. Luo and J.-L. Guan, “Focal adhesion kinase: a prominent determinant in breast cancer initiation, progression and metastasis,” Cancer Letters, vol. 289, no. 2, pp. 127–139, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. S. K. Mitra and D. D. Schlaepfer, “Integrin-regulated FAK-Src signaling in normal and cancer cells,” Current Opinion in Cell Biology, vol. 18, no. 5, pp. 516–523, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Pasquier, B. S. Guerrouahen, H. Al Thawadi et al., “Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance,” Journal of Translational Medicine, vol. 11, article 94, 2013. View at Publisher · View at Google Scholar
  55. E. Lou, S. Fujisawa, A. Morozov et al., “Tunneling nanotubes provide a unique conduit for intercellular transfer of cellular contents in human malignant pleural mesothelioma,” PLoS ONE, vol. 7, no. 3, Article ID e33093, 2012. View at Publisher · View at Google Scholar · View at Scopus
  56. J. M. Nam, K. M. Ahmed, S. Costes et al., “Beta1-integrin via NF-kappaB signaling is essential for acquisition of invasiveness in a model of radiation treated in situ breast cancer,” Breast Cancer Research, vol. 15, article R60, 2013. View at Publisher · View at Google Scholar
  57. M. C. Schmid, C. J. Avraamides, P. Foubert et al., “Combined blockade of integrin-α4β1 plus cytokines SDF-1α or IL-1β potently inhibits tumor inflammation and growth,” Cancer Research, vol. 71, no. 22, pp. 6965–6975, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. G. Morozevich, N. Kozlova, I. Cheglakov, N. Ushakova, and A. Berman, “Integrin α5β1 controls invasion of human breast carcinoma cells by direct and indirect modulation of MMP-2 collagenase activity,” Cell Cycle, vol. 8, no. 14, pp. 2219–2225, 2009. View at Google Scholar · View at Scopus
  59. N. Kusuma, D. Denoyer, J. A. Eble et al., “Integrin-dependent response to laminin-511 regulates breast tumor cell invasion and metastasis,” International Journal of Cancer, vol. 130, no. 3, pp. 555–566, 2012. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Sameni, J. Dosescu, K. M. Yamada, B. F. Sloane, and D. Cavallo-Medved, “Functional live-cell imaging demonstrates that β1-integrin promotes type IV collagen degradation by breast and prostate cancer cells,” Molecular Imaging, vol. 7, no. 5, pp. 199–213, 2008. View at Google Scholar · View at Scopus
  61. X. H. Yang, A. L. Richardson, M. I. Torres-Arzayus et al., “CD151 accelerates breast cancer by regulating α6 integrin function, signaling, and molecular organization,” Cancer Research, vol. 68, no. 9, pp. 3204–3213, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. I. A. Ivanova, J. F. Vermeulen, C. Ercan et al., “FER kinase promotes breast cancer metastasis by regulating alpha- and beta-integrin-dependent cell adhesion and anoikis resistance,” Oncogene, 2013. View at Publisher · View at Google Scholar
  63. M. Götte and G. W. Yip, “Heparanase, hyaluronan, and CD44 in cancers: a breast carcinoma perspective,” Cancer Research, vol. 66, no. 21, pp. 10233–10237, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. N. Montgomery, A. Hill, S. McFarlane et al., “CD44 enhances invasion of basal-like breast cancer cells by upregulating serine protease and collagen-degrading enzymatic expression and activity,” Breast Cancer Research, vol. 14, p. R84, 2012. View at Publisher · View at Google Scholar
  65. S. Spaderna, O. Schmalhofer, M. Wahlbuhl et al., “The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer,” Cancer Research, vol. 68, no. 2, pp. 537–544, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. A. Aghdassi, M. Sendler, A. Guenther et al., “Recruitment of histone deacetylases HDAC1 and HDAC2 by the transcriptional repressor ZEB1 downregulates E-cadherin expression in pancreatic cancer,” Gut, vol. 61, no. 3, pp. 439–448, 2012. View at Publisher · View at Google Scholar · View at Scopus
  67. F. Fan, S. Samuel, K. W. Evans et al., “Overexpression of Snail induces epithelial-mesenchymal transition and a cancer stem cell-like phenotype in human colorectal cancer cells,” Cancer Medicine, vol. 1, pp. 5–16, 2012. View at Publisher · View at Google Scholar
  68. H. Siemens, R. Jackstadt, S. Hünten et al., “miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions,” Cell Cycle, vol. 10, no. 24, pp. 4256–4271, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. M. E. Baygi, Z.-S. Soheili, F. Essmann et al., “Slug/SNAI2 regulates cell proliferation and invasiveness of metastatic prostate cancer cell lines,” Tumor Biology, vol. 31, no. 4, pp. 297–307, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. K. Zhang, D. Chen, X. Jiao et al., “Slug enhances invasion ability of pancreatic cancer cells through upregulation of matrix metalloproteinase-9 and actin cytoskeleton remodeling,” Laboratory Investigation, vol. 91, no. 3, pp. 426–438, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. F. Stavridi and C. Palmieri, “Efficacy and toxicity of nonpegylated liposomal doxorubicin in breast cancer,” Expert Review of Anticancer Therapy, vol. 8, no. 12, pp. 1859–1869, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. J. Prados, C. Melguizo, R. Ortiz et al., “Doxorubicin-loaded nanoparticles: new advances in breast cancer therapy,” Anti-Cancer Agents in Medicinal Chemistry, vol. 12, no. 9, pp. 1058–1070, 2012. View at Publisher · View at Google Scholar
  73. M. Egeblad and M. Jaattela, “Cell death induced by TNF or serum starvation is independent of ErbB receptor signaling in MCF-7 breast carcinoma cells,” International Journal of Cancer, vol. 86, pp. 617–625, 2000. View at Google Scholar
  74. Z. Cai, A. Bettaieb, N. El Mahdani et al., “Alteration of the sphingomyelin/ceramide pathway is associated with resistance of human breast carcinoma MCF7 cells to tumor necrosis factor-α- mediated cytotoxicity,” Journal of Biological Chemistry, vol. 272, no. 11, pp. 6918–6926, 1997. View at Publisher · View at Google Scholar · View at Scopus
  75. R. Simstein, M. Burow, A. Parker, C. Weldon, and B. Beckman, “Apoptosis, chemoresistance, and breast cancer: Insights from the MCF-7 cell model system,” Experimental Biology and Medicine, vol. 228, no. 9, pp. 995–1003, 2003. View at Google Scholar · View at Scopus
  76. T. Leibovich-Rivkin, Y. Lebel-Haziv, S. Lerrer, P. Weitzenfeld, and A. Ben-Baruch, “The versatile world of inflammatory chemokines in cancer,” in The Tumor Immunoenvironment, M. R. Shurin, V. Umansky, and A. Malyguine, Eds., pp. 135–175, Springer, Amsterdam, The Netherlands, 2013. View at Google Scholar
  77. G. Soria and A. Ben-Baruch, “The inflammatory chemokines CCL2 and CCL5 in breast cancer,” Cancer Letters, vol. 267, no. 2, pp. 271–285, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. N. Todorovic-Rakovic and J. Milovanovic, “Interleukin-8 in breast cancer progression,” Journal of Interferon & Cytokine Research, vol. 22, no. 10, pp. 563–570, 2013. View at Publisher · View at Google Scholar
  79. R. T. Abraham, “Chemokine to the rescue: interleukin-8 mediates resistance to PI3K-pathway-targeted therapy in breast cancer,” Cancer Cell, vol. 22, pp. 703–705, 2012. View at Publisher · View at Google Scholar
  80. A. Yadav, V. Saini, and S. Arora, “MCP-1: chemoattractant with a role beyond immunity: a review,” Clinica Chimica Acta, vol. 411, no. 21-22, pp. 1570–1579, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. B.-Z. Qian, J. Li, H. Zhang et al., “CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis,” Nature, vol. 475, no. 7355, pp. 222–225, 2011. View at Publisher · View at Google Scholar · View at Scopus
  82. A. E. Place, S. Jin Huh, and K. Polyak, “The microenvironment in breast cancer progression: biology and implications for treatment,” Breast Cancer Research, vol. 13, no. 6, article 227, 2011. View at Publisher · View at Google Scholar · View at Scopus
  83. E. P. Gelmann, E. W. Thompson, and C. L. Sommers, “Invasive and metastatic properties of MCF-7 cells and ras(H)-transfected MCF-7 cell lines,” International Journal of Cancer, vol. 50, no. 4, pp. 665–669, 1992. View at Google Scholar · View at Scopus
  84. F. Aoudjit and K. Vuori, “Integrin signaling inhibits paclitaxel-induced apoptosis in breast cancer cells,” Oncogene, vol. 20, no. 36, pp. 4995–5004, 2001. View at Publisher · View at Google Scholar · View at Scopus
  85. A. Nista, C. Leonetti, G. Bernardini, M. Mattioni, and A. Santoni, “Functional role of alpha4beta1 and alpha5beta1 integrin fibronectin receptors expressed on adriamycin-resistant MCF-7 human mammary carcinoma cells,” International Journal of Cancer, vol. 72, pp. 133–141, 1997. View at Google Scholar
  86. T. Ishimoto, O. Nagano, T. Yae et al., “CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth,” Cancer Cell, vol. 19, no. 3, pp. 387–400, 2011. View at Publisher · View at Google Scholar · View at Scopus
  87. Z. Shi, W. M. Yang, L. P. Chen et al., “Enhanced chemosensitization in multidrug-resistant human breast cancer cells by inhibition of IL-6 and IL-8 production,” Breast Cancer Research and Treatment, vol. 135, no. 3, pp. 737–747, 2012. View at Publisher · View at Google Scholar
  88. Z. Suo, B. Risberg, M. G. Karlsson, K. Villman, E. Skovlund, and J. M. Nesland, “The expression of EGFR family ligands in breast carcinomas,” International Journal of Surgical Pathology, vol. 10, no. 2, pp. 91–99, 2002. View at Google Scholar · View at Scopus
  89. J. S. Smolen and P. Emery, “Infliximab: 12 years of experience,” Arthritis Research and Therapy, vol. 13, supplement 1, p. S2, 2011. View at Publisher · View at Google Scholar · View at Scopus
  90. T. A. Kerensky, A. B. Gottlieb, S. Yaniv, and S.-C. Au, “Etanercept: efficacy and safety for approved indications,” Expert Opinion on Drug Safety, vol. 11, no. 1, pp. 121–139, 2012. View at Publisher · View at Google Scholar · View at Scopus
  91. L. C. R. Silva, L. C. M. Ortigosa, and G. Benard, “Anti-TNF-α agents in the treatment of immune-mediated inflammatory diseases: mechanisms of action and pitfalls,” Immunotherapy, vol. 2, no. 6, pp. 817–833, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. P. P. Tak and J. R. Kalden, “Advances in rheumatology: new targeted therapeutics,” Arthritis Research and Therapy, vol. 13, supplemet 1, p. S5, 2011. View at Publisher · View at Google Scholar · View at Scopus
  93. S. Dent, B. Oyan, A. Honig, M. Mano, and S. Howell, “HER2-targeted therapy in breast cancer: a systematic review of neoadjuvant trials,” Cancer Treatment Reviews, vol. 39, no. 6, pp. 622–631, 2013. View at Publisher · View at Google Scholar
  94. N. Patani, L. A. Martin, and M. Dowsett, “Biomarkers for the clinical management of breast cancer: international perspective,” International Journal of Cancer, vol. 133, pp. 1–13, 2012. View at Google Scholar