Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2013 (2013), Article ID 791283, 7 pages
http://dx.doi.org/10.1155/2013/791283
Clinical Study

Insulin Therapy with Personal Insulin Pumps and Early Angiopathy in Children with Type 1 Diabetes Mellitus

Department of Pediatrics, Endocrinology, Diabetology with Cardiology Division, Medical University of Białystok, Białystok University Children's Hospital, 17 Waszyngtona Street, 15-274 Bialystok, Poland

Received 29 July 2013; Revised 23 September 2013; Accepted 29 September 2013

Academic Editor: Antonela Gverović Antunica

Copyright © 2013 Joanna Tołwińska et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Bruttomesso, S. Costa, and A. Baritussio, “Continuous subcutaneous insulin infusion (CSII) 30 years later: still the best option for insulin therapy,” Diabetes/Metabolism Research and Reviews, vol. 25, no. 2, pp. 99–111, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Danne, T. Battelino, P. Jarosz-Chobot et al., “Establishing glycaemic control with continuous subcutaneous insulin infusion in children and adolescents with type 1 diabetes: experience of the PedPump Study in 17 countries,” Diabetologia, vol. 51, no. 9, pp. 1594–1601, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Phillip, T. Battelino, H. Rodriguez, T. Danne, and F. Kaufman, “Use of insulin pump therapy in the pediatric age-group: consensus statement from the European Society for Paediatric Endocrinology, the Lawson Wilkins Pediatric Endocrine Society, and the International Society for Pediatric and Adolescent Diabetes, endorsed by the American Diabetes Association and the European Association for the Study of Diabetes,” Diabetes Care, vol. 30, no. 6, pp. 1653–1662, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Jeitler, K. Horvath, A. Berghold et al., “Continuous subcutaneous insulin infusion versus multiple daily insulin injections in patients with diabetes mellitus: systematic review and meta-analysis,” Diabetologia, vol. 51, no. 6, pp. 941–951, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Hammond, “Continuous subcutaneous insulin infusion: short-term benefits apparent, long-term benefits speculative,” The British Journal of Diabetes and Vascular Disease, vol. 4, no. 2, pp. 104–108, 2004. View at Google Scholar · View at Scopus
  6. M. Mauer and K. Drummond, “The early natural history of nephropathy in type 1 diabetes: I. Study design and baseline characteristics of the study participants,” Diabetes, vol. 51, no. 5, pp. 1572–1579, 2002. View at Google Scholar · View at Scopus
  7. H. Shamoon, H. Duffy, N. Fleischer et al., “The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus,” The New England Journal of Medicine, vol. 329, no. 14, pp. 977–986, 1993. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Giannini, A. Mohn, F. Chiarelli, and C. J. H. Kelnar, “Macrovascular angiopathy in children and adolescents with type 1 diabetes,” Diabetes/Metabolism Research and Reviews, vol. 27, no. 5, pp. 436–460, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. R. B. Goldberg, “Cytokine and cytokine-like inflammation markers, endothelial dysfunction, and imbalanced coagulation in development of diabetes and its complications,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 9, pp. 3171–3182, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Kaul, A. Hodgkinson, J. M. Tarr, E. M. Kohner, and R. Chibber, “Is inflammation a common retinal-renal-nerve pathogenic link in diabetes?” Current diabetes reviews, vol. 6, no. 5, pp. 294–303, 2010. View at Google Scholar · View at Scopus
  11. P. Libby, P. M. Ridker, and A. Maseri, “Inflammation and atherosclerosis,” Circulation, vol. 105, no. 9, pp. 1135–1143, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. D. S. Celermajer, “Noninvasive detection of atherosclerosis,” The New England Journal of Medicine, vol. 339, no. 27, pp. 2014–2015, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Tołwińsko, B. Głowińska-Olszewska, M. Urban, B. Florys, and J. Peczyńska, “Ultrasonographic evaluation of selected parameters of the endothelial function in brachial arterferies and IMT measurments in carotid arteries in children with diabetes type 1 dependent using personal insulin pumps. Preliminary report,” Endokrynologia, Diabetologia i Choroby Przemiany Materii Wieku Rozwojowego, vol. 12, no. 3, pp. 200–204, 2006. View at Google Scholar · View at Scopus
  14. B. Głowińska-Olszewska, M. Urban, B. Urban, J. Tołwińska, and A. Szadkowska, “The association of early atherosclerosis and retinopathy in adolescents with type 1 diabetes: preliminary report,” Acta Diabetologica, vol. 44, no. 3, pp. 131–137, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Pignoli, E. Tremoli, and A. Poli, “Intimal plus medial thickness of the arterial wall: a direct measurement with ultrasound imaging,” Circulation, vol. 74, no. 6, pp. 1399–1406, 1986. View at Google Scholar · View at Scopus
  16. D. S. Celermajer, K. E. Sorensen, V. M. Gooch et al., “Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis,” The Lancet, vol. 340, no. 8828, pp. 1111–1115, 1992. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Dahl-Jørgensen, J. R. Larsen, and K. F. Hanssen, “Atherosclerosis in childhood and adolescent type 1 diabetes: early disease, early treatment?” Diabetologia, vol. 48, no. 8, pp. 1445–1453, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. K. O. Schwab, J. Doerfer, W. Hecker et al., “Spectrum and prevalence of atherogenic risk factors in 27,358 children, adolescents, and young adults with type 1 diabetes: cross-sectional data from the German diabetes documentation and quality management system (DPV),” Diabetes Care, vol. 29, no. 2, pp. 218–225, 2006. View at Google Scholar · View at Scopus
  19. M. J. Järvisalo, A. Putto-Laurila, L. Jartti et al., “Carotid artery intima-media thickness in children with type 1 diabetes,” Diabetes, vol. 51, no. 2, pp. 493–498, 2002. View at Google Scholar · View at Scopus
  20. M. J. Järvisalo, M. Raitakari, J. O. Toikka et al., “Endothelial dysfunction and increased arterial intima-media thickness in children with type 1 diabetes,” Circulation, vol. 109, no. 14, pp. 1750–1755, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Tołwińska, M. Urban, B. Florys, B. Pieclukiewicz, M. Krawczuk-Rybak, and J. Peczynska, “Ultrasonographic evaluation of common carotid artery wall in children with type 1 diabetes,” Medical Science Monitor, vol. 4, no. 1, pp. 72–80, 1998. View at Google Scholar · View at Scopus
  22. H. Tamura, T. Suzue, F. Jitsunari, and T. Hirao, “Evaluation of carotid arterial intima-media thickness (IMT) and its relation to clinical parameters in Japanese children,” Acta Medica Okayama, vol. 65, no. 1, pp. 21–26, 2011. View at Google Scholar · View at Scopus
  23. R. D. Pozza, H. Netz, H.-P. Schwarz, and S. Bechtold, “Subclinical atherosclerosis in diabetic children: results of a longitudinal study,” Pediatric Diabetes, vol. 11, no. 2, pp. 129–133, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. W. Łuczyński, A. Szypowska, B. Głowińska-Olszewska, and A. Bossowski, “Overweight, obesity and features of metabolic syndrome in children with diabetes treated with insulin pump therapy,” European Journal of Pediatrics, vol. 170, no. 7, pp. 891–898, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. H. D. Margeirsdottir, J. R. Larsen, C. Brunborg, N. C. Øverby, and K. Dahl-Jørgensen, “High prevalence of cardiovascular risk factors in children and adolescents with type 1 diabetes: a population-based study,” Diabetologia, vol. 51, no. 4, pp. 554–561, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. The Diabetes Control and Complications Trial Research Group, “Effect of intensive diabetes treatment on the development and progression of long term complications in adolescents with insulin-dependent diabetes mellitus: Diabetes Control and Complications Trial,” Journal of Pediatrics, vol. 125, no. 2, pp. 177–188, 1994. View at Google Scholar
  27. E. Downie, M. E. Craig, S. Hing, J. Cusumano, A. K. F. Chan, and K. C. Donaghue, “Continued reduction in the prevalence of retinopathy in adolescents with type 1 diabetes: role of insulin therapy and glycemic control,” Diabetes Care, vol. 34, no. 11, pp. 2368–2373, 2011. View at Google Scholar · View at Scopus
  28. A. Ceriello, K. Esposito, L. Piconi et al., “Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients,” Diabetes, vol. 57, no. 5, pp. 1349–1354, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. I. M. E. Wentholt, W. Kulik, R. P. J. Michels, J. B. L. Hoekstra, and J. H. DeVries, “Glucose fluctuations and activation of oxidative stress in patients with type 1 diabetes,” Diabetologia, vol. 51, no. 1, pp. 183–190, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Hernández-Marco, P. Codoñer-Franch, S. Pons Morales, C. del Castillo Villaescusa, L. Boix García, and V. Valls Bellés, “Oxidant/antioxidant status and hyperfiltration in young patients with type 1 diabetes mellitus,” Pediatric Nephrology, vol. 24, no. 1, pp. 121–127, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Shamir, H. Kassis, M. Kaplan, T. Naveh, and N. Shehadeh, “Glycemic control in adolescents with type 1 diabetes mellitus improves lipid serum levels and oxidative stress,” Pediatric Diabetes, vol. 9, no. 2, pp. 104–109, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Bruttomesso, D. Crazzolara, A. Maran et al., “In Type 1 diabetic patients with good glycaemic control, blood glucose variability is lower during continuous subcutaneous insulin infusion than during multiple daily injections with insulin glargine,” Diabetic Medicine, vol. 25, no. 3, pp. 326–332, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. J. C. Pickup, J. Kidd, S. Burmiston, and N. Yemane, “Determinants of glycaemic control in type 1 diabetes during intensified therapy with multiple daily insulin injections or continuous subcutaneous insulin infusion: importance of blood glucose variability,” Diabetes/Metabolism Research and Reviews, vol. 22, no. 3, pp. 232–237, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Phillip, T. Battelino, H. Rodriguez et al., “Use of insulin pump therapy in the pediatric age group,” Diabetes Care, vol. 30, pp. 1653–1662, 2007. View at Publisher · View at Google Scholar
  35. C. Schreiver, U. Jacoby, B. Watzer, A. Thomas, D. Haffner, and D. C. Fischer, “Glycaemic variability in paediatric patients with type 1 diabetes on continuous subcutaneous insulin infusion (CSII) or multiple daily injections (MDI): a cross-sectional cohort study,” Clinical Endocrinology, vol. 79, no. 5, pp. 641–647, 2013. View at Publisher · View at Google Scholar
  36. M. Giménez, J. J. López, C. Castell, and I. Conget, “Hypoglycaemia and cardiovascular disease in Type 1 Diabetes. Results from the Catalan National Public Health registry on insulin pump therapy,” Diabetes Research and Clinical Practice, vol. 96, no. 2, pp. e23–e25, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. Y.-H. Noh, S.-M. Lee, E.-J. Kim et al., “Improvement of cardiovascular risk factors in patients with type 2 diabetes after long-term continuous subcutaneous insulin infusion,” Diabetes/Metabolism Research and Reviews, vol. 24, no. 5, pp. 384–391, 2008. View at Publisher · View at Google Scholar · View at Scopus