Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2013, Article ID 942375, 15 pages
http://dx.doi.org/10.1155/2013/942375
Review Article

Role of Macrophages in the Pathogenesis of Atopic Dermatitis

1Global Preclinical Drug Discovery, Department of Molecular Pharmacology, Grünenthal GmbH, Zieglerstrße 6, 52078 Aachen, Germany
2Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, 30625 Hannover, Germany

Received 15 October 2012; Revised 17 January 2013; Accepted 18 January 2013

Academic Editor: Chiou-Feng Lin

Copyright © 2013 Sadaf Kasraie and Thomas Werfel. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Mirza, L. A. DiPietro, and T. J. Koh, “Selective and specific macrophage ablation is detrimental to wound healing in mice,” American Journal of Pathology, vol. 175, no. 6, pp. 2454–2462, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Lucas, A. Waisman, R. Ranjan et al., “Differential roles of macrophages in diverse phases of skin repair,” Journal of Immunology, vol. 184, no. 7, pp. 3964–3977, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. B. M. Delavary, W. M. van der Veer, M. van Egmond, F. B. Niessen, and R. H. J. Beelen, “Macrophages in skin injury and repair,” Immunobiology, vol. 216, no. 7, pp. 753–762, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. P. J. Murray and T. A. Wynn, “Obstacles and opportunities for understanding macrophage polarization,” Journal of Leukocyte Biology, vol. 89, no. 4, pp. 557–563, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. A. F. Valledor, M. Comalada, L. F. Santamaría-Babi, J. Lloberas, and A. Celada, “Macrophage pro-inflammatory activation and deactivation: a question of balance,” Advances in Immunology, vol. 108, pp. 1–20, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Boguniewicz and D. Y. M. Leung, “Recent insights into atopic dermatitis and implications for management of infectious complications,” Journal of Allergy and Clinical Immunology, vol. 125, no. 1–3, pp. 4–13, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Niebuhr and T. Werfel, “Innate immunity, allergy and atopic dermatitis,” Current Opinion in Allergy and Clinical Immunology, vol. 10, no. 5, pp. 463–468, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. C. A. Akdis, M. Akdis, T. Bieber et al., “Diagnosis and treatment of atopic dermatitis in children and adults: European Academy of Allergology and Clinical Immunology/American Academy of Allergy, Asthma and Immunology/PRACTALL Consensus Report,” Journal of Allergy and Clinical Immunology, vol. 118, pp. 152–169, 2006. View at Google Scholar
  9. K. Breuer, A. Kapp, and T. Werfel, “Bacterial infections and atopic dermatitis,” Allergy, vol. 56, no. 11, pp. 1034–1041, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. J. J. Leyden, R. R. Marples, and A. M. Kligman, “Staphylococcus aureus in the lesions of atopic dermatitis,” British Journal of Dermatology, vol. 90, no. 5, pp. 525–530, 1974. View at Google Scholar · View at Scopus
  11. N. Novak and D. Simon, “Atopic dermatitis—from new pathophysiologic insights to individualized therapy,” Allergy, vol. 66, no. 7, pp. 830–839, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Guttman-Yassky, K. E. Nograles, and J. G. Krueger, “Contrasting pathogenesis of atopic dermatitis and psoriasis—part I: clinical and pathologic concepts,” Journal of Allergy and Clinical Immunology, vol. 127, no. 5, pp. 1110–1118, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Guttman-Yassky, K. E. Nograles, and J. G. Krueger, “Contrasting pathogenesis of atopic dermatitis and psoriasis—part II: immune cell subsets and therapeutic concepts,” Journal of Allergy and Clinical Immunology, vol. 127, no. 6, pp. 1420–1432, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. C. A. Akdis, M. Akdis, T. Bieber et al., “Diagnosis and treatment of atopic dermatitis in children and adults: European Academy of Allergology and Clinical Immunology/American Academy of Allergy, Asthma and Immunology/PRACTALL Consensus Report,” Journal of Allergy and Clinical Immunology, vol. 118, no. 1, pp. 152–169, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Novak, T. Bieber, and D. Y. M. Leung, “Immune mechanisms leading to atopic dermatitis,” Journal of Allergy and Clinical Immunology, vol. 112, no. 6, supplement, pp. S128–S139, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Vestergaard, H. Just, J. Baumgartner Nielsen, K. Thestrup-Pedersen, and M. Deleuran, “Expression of CCR2 on monocytes and macrophages in chronically inflamed skin in atopic dermatitis and psoriasis,” Acta Dermato-Venereologica, vol. 84, no. 5, pp. 353–358, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. R. C. M. Kiekens, T. Thepen, A. J. Oosting et al., “Heterogeneity within tissue-specific macrophage and dendritic cell populations during cutaneous inflammation in atopic dermatitis,” British Journal of Dermatology, vol. 145, no. 6, pp. 957–965, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Mortellaro, S. C. Wong, J. Fric, and P. Ricciardi-Castagnoli, “The need to identify myeloid dendritic cell progenitors in human blood,” Trends in Immunology, vol. 31, no. 1, pp. 18–23, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Lonati, M. A. Mommaas, G. Pasolini, A. Lavazza, G. Rowden, and G. De Panfilis, “Macrophages, but not Langerhans cell-like cells of dendritic lineage, express the CD36 molecule in normal human dermis: relevance to downregulatory cutaneous immune responses?” Journal of Investigative Dermatology, vol. 106, no. 1, pp. 96–101, 1996. View at Google Scholar · View at Scopus
  20. V. A. Fadok, M. L. Warner, D. L. Bratton, and P. M. Henson, “CD36 is required for phagocytosis of apoptotic cells by human macrophages that use either a phosphatidylserine receptor or the vitronectin receptor (α(V)β3),” Journal of Immunology, vol. 161, no. 11, pp. 6250–6257, 1998. View at Google Scholar · View at Scopus
  21. M. C. A. A. Tan, A. M. Mommaas, J. W. Drijfhout et al., “Mannose receptor-mediated uptake of antigens strongly enhances HLA class II-restricted antigen presentation by cultured dendritic cells,” European Journal of Immunology, vol. 27, no. 9, pp. 2426–2435, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Sugaya, T. Miyagaki, H. Ohmatsu et al., “Association of the numbers of CD163(+) cells in lesional skin and serum levels of soluble CD163 with disease progression of cutaneous T cell lymphoma,” Journal of Dermatological Science, vol. 68, pp. 45–51, 2012. View at Google Scholar
  23. W. C. N. Forte, V. C. Guardian, P. A. Mantovani, P. C. L. Dionigi, and M. C. S. Menezes, “Evaluation of phagocytes in atopic dermatitis,” Allergologia et Immunopathologia, vol. 37, no. 6, pp. 302–308, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. W. C. N. Forte, J. M. Sumita, A. G. Rodrigues, D. Liuson, and E. Tanaka, “Rebound phenomenon to systemic corticosteroid in atopic dermatitis,” Allergologia et Immunopathologia, vol. 33, no. 6, pp. 307–311, 2005. View at Google Scholar · View at Scopus
  25. W. C. N. Forte, M. C. S. Menezes, S. M. C. G. de Oliveira, and S. Bruno, “Atopic dermatitis with mononuclear phagocytic activity deficiency,” Allergologia et Immunopathologia, vol. 30, pp. 263–266, 2002. View at Google Scholar
  26. C. E. McCoy and L. A. J. O'Neill, “The role of toll-like receptors in macrophages,” Frontiers in Bioscience, vol. 13, no. 1, pp. 62–70, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Muzio and A. Mantovani, “Toll-like receptors,” Microbes and Infection, vol. 2, no. 3, pp. 251–255, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Muzio, D. Bosisio, N. Polentarutti et al., “Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells,” Journal of Immunology, vol. 164, no. 11, pp. 5998–6004, 2000. View at Google Scholar · View at Scopus
  29. A. Iwasaki and R. Medzhitov, “Toll-like receptor control of the adaptive immune responses,” Nature Immunology, vol. 5, no. 10, pp. 987–995, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. A. F. McGettrick and L. A. J. O'Neill, “The expanding family of MyD88-like adaptors in Toll-like receptor signal transduction,” Molecular Immunology, vol. 41, no. 6-7, pp. 577–582, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Rehli, “Of mice and men: species variations of Toll-like receptor expression,” Trends in Immunology, vol. 23, no. 8, pp. 375–378, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. H. An, H. Xu, Y. Yu et al., “Up-regulation of TLR9 gene expression by LPS in mouse macrophages via activation of NF-κB, ERK and p38 MAPK signal pathways,” Immunology Letters, vol. 81, no. 3, pp. 165–169, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. B. Beutler, “Inferences, questions and possibilities in Toll-like receptor signalling,” Nature, vol. 430, no. 6996, pp. 257–263, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. M. D. Howell, B. E. Kim, P. Gao et al., “Cytokine modulation of atopic dermatitis filaggrin skin expression,” Journal of Allergy and Clinical Immunology, vol. 120, no. 1, pp. 150–155, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. A. De Benedetto, R. Agnihothri, L. Y. McGirt, L. G. Bankova, and L. A. Beck, “Atopic dermatitis: a disease caused by innate immune defects?” The Journal of Investigative Dermatology, vol. 129, no. 1, pp. 14–30, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Morr, O. Takeuchi, S. Akira, M. M. Simon, and P. F. Mühlradt, “Differential recognition of structural details of bacterial lipopeptides by Toll-like receptors,” European Journal of Immunology, vol. 32, pp. 3337–3347, 2002. View at Google Scholar
  37. O. Takeuchi, T. Kawai, P. F. Mühlradt et al., “Discrimination of bacterial lipoproteins by Toll-like recepttor 6,” International Immunology, vol. 13, no. 7, pp. 933–940, 2001. View at Google Scholar · View at Scopus
  38. S. E. Girardin, L. H. Travassos, M. Hervé et al., “Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2,” The Journal of Biological Chemistry, vol. 278, no. 43, pp. 41702–41708, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. L. Visser, M. J. Melief, D. van Riel et al., “Phagocytes containing a disease-promoting toll-like receptor/nod ligand are present in the brain during demyelinating disease in primates,” American Journal of Pathology, vol. 169, no. 5, pp. 1671–1685, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. J. B. Travers, A. Kozman, N. Mousdicas et al., “Infected atopic dermatitis lesions contain pharmacologic amounts of lipoteichoic acid,” Journal of Allergy and Clinical Immunology, vol. 125, no. 1–3, pp. 146–152, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. H. Hasannejad, R. Takahashi, M. Kimishima, K. Hayakawa, and T. Shiohara, “Selective impairment of Toll-like receptor 2-mediated proinflammatory cytokine production by monocytes from patients with atopic dermatitis,” Journal of Allergy and Clinical Immunology, vol. 120, no. 1, pp. 69–75, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Niebuhr, C. Lutat, S. Sigel, and T. Werfel, “Impaired TLR-2 expression and TLR-2-mediated cytokine secretion in macrophages from patients with atopic dermatitis,” Allergy, vol. 64, no. 11, pp. 1580–1587, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. D. Chisholm, L. Libet, T. Hayashi, and A. A. Horner, “Airway peptidoglycan and immunostimulatory DNA exposures have divergent effects on the development of airway allergen hypersensitivities,” Journal of Allergy and Clinical Immunology, vol. 113, no. 3, pp. 448–454, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. P. Ahmad-Nejad, S. Mrabet-Dahbi, K. Breuer et al., “The Toll-like receptor 2 R753Q polymorphism defines a subgroup of patients with atopic dermatitis having severe phenotype,” Journal of Allergy and Clinical Immunology, vol. 113, no. 3, pp. 565–567, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Niebuhr, J. Langnickel, C. Draing, H. Renz, A. Kapp, and T. Werfel, “Dysregulation of toll-like receptor-2 (TLR-2)-induced effects in monocytes from patients with atopic dermatitis: impact of the TLR-2 R753Q polymorphism,” Allergy, vol. 63, no. 6, pp. 728–734, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. H. S. Deshmukh, J. B. Hamburger, S. H. Ahn, D. G. McCafferty, S. R. Yang, and V. G. Fowler Jr., “Critical role of NOD2 in regulating the immune response to Staphylococcus aureus,” Infection and Immunity, vol. 77, no. 4, pp. 1376–1382, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. L. Franchi, C. McDonald, T. D. Kanneganti, A. Amer, and G. Núñez, “Nucleotide-binding oligomerization domain-like receptors: intracellular pattern recognition molecules for pathogen detection and host defense,” Journal of Immunology, vol. 177, no. 6, pp. 3507–3513, 2006. View at Google Scholar · View at Scopus
  48. L. Franchi, T. Eigenbrod, R. Muñoz-Planillo, and G. Nuñez, “The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis,” Nature Immunology, vol. 10, no. 3, pp. 241–247, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. R. Muñoz-Planillo, L. Franchi, L. S. Miller, and G. Núñez, “A critical role for hemolysins and bacterial lipoproteins in Staphylococcus aureus-induced activation of the Nlrp3 inflammasome,” Journal of Immunology, vol. 183, no. 6, pp. 3942–3948, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Kasraie, M. Niebuhr, V. Kopfnagel, O. Dittrich-Breiholz, M. Kracht, and T. Werfel, “Macrophages from patients with atopic dermatitis show a reduced CXCL10 expression in response to staphylococcal a-toxin,” Allergy, vol. 67, pp. 41–49, 2012. View at Google Scholar
  51. M. Akdis, S. Burgler, R. Crameri et al., “Interleukins, from 1 to 37, and interferon-γ: receptors, functions, and roles in diseases,” Journal of Allergy and Clinical Immunology, vol. 127, no. 3, pp. 701–721, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. E. S. Fedenko, O. G. Elisyutina, T. M. Filimonova et al., “Cytokine gene expression in the skin and peripheral blood of atopic dermatitis patients and healthy individuals,” Self and Nonself, vol. 2, pp. 120–124, 2011. View at Google Scholar
  53. B. Homey, M. Steinhoff, T. Ruzicka, and D. Y. M. Leung, “Cytokines and chemokines orchestrate atopic skin inflammation,” Journal of Allergy and Clinical Immunology, vol. 118, no. 1, pp. 178–189, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Sica and A. Mantovani, “Macrophage plasticity and polarization: in vivo veritas,” The Journal of Clinical Investigation, vol. 122, pp. 787–795, 2012. View at Google Scholar
  55. S. K. Biswas and A. Mantovani, “Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm,” Nature Immunology, vol. 11, no. 10, pp. 889–896, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Gordon and F. O. Martinez, “Alternative activation of macrophages: mechanism and functions,” Immunity, vol. 32, no. 5, pp. 593–604, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. F. O. Martinez, S. Gordon, M. Locati, and A. Mantovani, “Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression,” Journal of Immunology, vol. 177, no. 10, pp. 7303–7311, 2006. View at Google Scholar · View at Scopus
  58. A. Mantovani, A. Sica, S. Sozzani, P. Allavena, A. Vecchi, and M. Locati, “The chemokine system in diverse forms of macrophage activation and polarization,” Trends in Immunology, vol. 25, no. 12, pp. 677–686, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. D. M. Mosser, “The many faces of macrophage activation,” Journal of Leukocyte Biology, vol. 73, pp. 209–212, 2003. View at Google Scholar
  60. A. Mantovani, S. Sozzani, M. Locati, P. Allavena, and A. Sica, “Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes,” Trends in Immunology, vol. 23, no. 11, pp. 549–555, 2002. View at Publisher · View at Google Scholar · View at Scopus
  61. H. Y. Kim, R. H. DeKruyff, and D. T. Umetsu, “The many paths to asthma: phenotype shaped by innate and adaptive immunity,” Nature Immunology, vol. 11, pp. 577–584, 2010. View at Google Scholar
  62. B. N. Melgert, N. H. ten Hacken, B. Rutgers, W. Timens, D. S. Postma, and M. N. Hylkema, “More alternative activation of macrophages in lungs of asthmatic patients,” Journal of Allergy and Clinical Immunology, vol. 127, no. 3, pp. 831–833, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. A. P. Moreira and C. M. Hogaboam, “Macrophages in allergic asthma: fine-tuning their pro- and anti-inflammatory actions for disease resolution,” Journal of Interferon and Cytokine Research, vol. 31, no. 6, pp. 485–491, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. G. Trujillo, E. C. O'Connor, S. L. Kunkel, and C. M. Hogaboam, “A novel mechanism for CCR4 in the regulation of macrophage activation in bleomycin-induced pulmonary fibrosis,” American Journal of Pathology, vol. 172, no. 5, pp. 1209–1221, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. T. A. Reese, H. E. Liang, A. M. Tager et al., “Chitin induces accumulation in tissue of innate immune cells associated with allergy,” Nature, vol. 447, no. 7140, pp. 92–96, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. T. A. Wynn, “IL-13 effector functions,” Annual Review of Immunology, vol. 21, pp. 425–456, 2003. View at Google Scholar
  67. J. L. Ather, K. Ckless, R. Martin et al., “Serum amyloid A activates the NLRP3 inflammasome and promotes Th17 allergic asthma in mice,” Journal of Immunology, vol. 187, no. 1, pp. 64–73, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. A. Nambu and S. Nakae, “IL-1 and allergy,” Allergology International, vol. 59, pp. 125–135, 2010. View at Google Scholar
  69. H. Tsutsui, T. Yoshimoto, N. Hayashi, H. Mizutani, and K. Nakanishi, “Induction of allergic inflammation by interleukin-18 in experimental animal models,” Immunological Reviews, vol. 202, pp. 115–138, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. D. Y. M. Leung and T. Bieber, “Atopic dermatitis,” The Lancet, vol. 361, no. 9352, pp. 151–160, 2003. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Grewe, C. A. F. M. Bruijnzeel-Koomen, E. Schöpf et al., “A role for Th1 and Th2 cells in the immunopathogenesis of atopic dermatitis,” Immunology Today, vol. 19, no. 8, pp. 359–361, 1998. View at Publisher · View at Google Scholar · View at Scopus
  72. M. Triggiani, A. Petraroli, S. Loffredo et al., “Differentiation of monocytes into macrophages induces the upregulation of histamine H1 receptor,” Journal of Allergy and Clinical Immunology, vol. 119, no. 2, pp. 472–481, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. B. Homey, S. Meller, T. Savinko, H. Alenius, and A. Lauerma, “Modulation of chemokines by staphylococcal superantigen in atopic dermatitis,” Chemical Immunology and Allergy, vol. 93, no. 1, pp. 181–194, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. C. A. Holden, S. C. Chan, and J. M. Hanifin, “Monocyte localization of elevated cAMP phosphodiesterase activity in atopic dermatitis,” Journal of Investigative Dermatology, vol. 87, no. 3, pp. 372–376, 1986. View at Google Scholar · View at Scopus
  75. N. Novak, T. Bieber, and N. Katoh, “Engagement of FcεRI on human monocytes induces the production of IL-10 and prevents their differentiation in dendritic cells,” Journal of Immunology, vol. 167, no. 2, pp. 797–804, 2001. View at Google Scholar · View at Scopus
  76. M. Jutel, T. Watanabe, M. Akdis, K. Blaser, and C. A. Akdis, “Immune regulation by histamine opinion,” Current Opinion in Immunology, vol. 14, no. 6, pp. 735–740, 2002. View at Publisher · View at Google Scholar · View at Scopus
  77. G. Marone, F. Granata, G. Spadaro, A. Genovese, and M. Triggiani, “The histamine-cytokine network in allergic inflammation,” Journal of Allergy and Clinical Immunology, vol. 112, no. 4, supplement, pp. S83–S88, 2003. View at Publisher · View at Google Scholar · View at Scopus
  78. K. Y. Wang, N. Arima, S. Higuchi et al., “Switch of histamine receptor expression from H2 to H1 during differentiation of monocytes into macrophages,” FEBS Letters, vol. 473, no. 3, pp. 345–348, 2000. View at Publisher · View at Google Scholar · View at Scopus
  79. E. Vannier, L. C. Miller, and C. A. Dinarello, “Histamine suppresses gene expression and synthesis of tumor necrosis factor α via histamine H2 receptors,” Journal of Experimental Medicine, vol. 174, no. 1, pp. 281–284, 1991. View at Google Scholar · View at Scopus
  80. G. Caron, Y. Delneste, E. Roelandts et al., “Histamine induces CD86 expression and chemokine production by human immature dendritic cells,” Journal of Immunology, vol. 166, no. 10, pp. 6000–6006, 2001. View at Google Scholar · View at Scopus
  81. D. Dijkstra, R. Leurs, P. Chazot et al., “Histamine downregulates monocyte CCL2 production through the histamine H4 receptor,” Journal of Allergy and Clinical Immunology, vol. 120, no. 2, pp. 300–307, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. M. Gschwandtner, H. Bunk, B. Köther et al., “Histamine down-regulates IL-27 production in antigen-presenting cells,” Journal of Leukocyte Biology, vol. 92, pp. 21–29, 2012. View at Google Scholar
  83. S. Kasraie, M. Niebuhr, and T. Werfel, “Interleukin (IL)-31 induces pro-inflammatory cytokines in human monocytes and macrophages following stimulation with staphylococcal exotoxins,” Allergy, vol. 65, no. 6, pp. 712–721, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. J. M. Hanifin and S. C. Chan, “Monocyte phosphodiesterase abnormalities and dysregulation of lymphocyte function in atopic dermatitis,” Journal of Investigative Dermatology, vol. 105, no. 1, supplement, pp. 84S–88S, 1995. View at Google Scholar · View at Scopus
  85. A. Genovese, A. Detoraki, F. Granata, M. R. Galdiero, G. Spadaro, and G. Marone, “Angiogenesis, lymphangiogenesis and atopic dermatitis,” Chemical Immunology and Allergy, vol. 96, pp. 50–60, 2012. View at Google Scholar
  86. F. Granata, A. Frattini, S. Loffredo et al., “Production of vascular endothelial growth factors from human lung macrophages induced by group IIA and group X secreted phospholipases A2,” Journal of Immunology, vol. 184, no. 9, pp. 5232–5241, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. R. P. Kataru, K. Jung, C. Jang et al., “Critical role of CD11b+ macrophages and VEGF in inflammatory lymphangiogenesis, antigen clearance, and inflammation resolution,” Blood, vol. 113, no. 22, pp. 5650–5659, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. T. Bieber, “Atopic dermatitis,” The New England Journal of Medicine, vol. 358, no. 14, pp. 1483–1494, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. V. Y. Shi, L. Bao, and L. S. Chan, “Inflammation-driven dermal lymphangiogenesis in atopic dermatitis is associated with CD11b+ macrophage recruitment and VEGF-C up-regulation in the IL-4-transgenic mouse model,” Microcirculation, vol. 19, pp. 567–579, 2012. View at Google Scholar