Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2013, Article ID 971579, 18 pages
http://dx.doi.org/10.1155/2013/971579
Review Article

Low-Density Lipoprotein Modified by Myeloperoxidase in Inflammatory Pathways and Clinical Studies

1Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles, Boulevard du Triomphe, Campus Plaine CP 205/5, 1050 Brussels, Belgium
2Analytical Platform of the Faculty of Pharmacy, Université Libre de Bruxelles, Boulevard du Triomphe, Campus Plaine CP 205/5, 1050 Brussels, Belgium
3Institute for Molecular Biology and Medicine (IBMM), Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium
4Department of Urology, Erasme University Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium
5Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Rue de Gozée 706, 6110 Montigny-le-Tilleul, Belgium

Received 2 May 2013; Accepted 26 June 2013

Academic Editor: Ronit Shiri-Sverdlov

Copyright © 2013 Cédric Delporte et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Lind, “Circulating markers of inflammation and atherosclerosis,” Atherosclerosis, vol. 169, no. 2, pp. 203–214, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Noels and C. Weber, “Editorial comment: catching up with important players in atherosclerosis: type i interferons and neutrophils,” Current Opinion in Lipidology, vol. 22, no. 2, pp. 144–145, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Weber and H. Noels, “Atherosclerosis: current pathogenesis and therapeutic options,” Nature Medicine, vol. 17, no. 11, pp. 1410–1422, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. M. E. DeBakey, G. M. Lawrie, and D. H. Glaeser, “Patterns of atherosclerosis and their surgical significance,” Annals of Surgery, vol. 201, no. 2, pp. 115–131, 1985. View at Google Scholar · View at Scopus
  5. L. Mazzolai, P. Silacci, K. Bouzourene, F. Daniel, H. Brunner, and D. Hayoz, “Tissue factor activity is upregulated in human endothelial cells exposed to oscillatory shear stress,” Thrombosis and Haemostasis, vol. 87, no. 6, pp. 1062–1068, 2002. View at Google Scholar · View at Scopus
  6. T. Van Assche, J. Hendrickx, H. M. Crauwels et al., “Transcription profiles of aortic smooth muscle cells from atherosclerosis-prone and -resistant regions in young apolipoprotein E-deficient mice before plaque development,” Journal of Vascular Research, vol. 48, no. 1, pp. 31–42, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. A. J. Lusis, “Atherosclerosis,” Nature, vol. 407, no. 6801, pp. 233–241, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. J. W. Heinecke, “Oxidants and antioxidants in the pathogenesis of atherosclerosis: implications for the oxidized low density lipoprotein hypothesis,” Atherosclerosis, vol. 141, no. 1, pp. 1–15, 1998. View at Google Scholar · View at Scopus
  9. D. Steinberg, S. Parthasarathy, T. E. Carew, J. C. Khoo, and J. L. Witztum, “Beyond cholesterol: modifications of low-density lipoprotein that increase its atherogenicity,” The New England Journal of Medicine, vol. 320, no. 14, pp. 915–924, 1989. View at Google Scholar · View at Scopus
  10. H. Yoshida and R. Kisugi, “Mechanisms of LDL oxidation,” Clinica Chimica Acta, vol. 411, no. 23-24, pp. 1875–1882, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Chen, S. R. Thomas, and J. F. Keaney Jr., “Beyond LDL oxidation: ROS in vascular signal transduction,” Free Radical Biology and Medicine, vol. 35, no. 2, pp. 117–132, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Obama, R. Kato, Y. Masuda, K. Takahashi, T. Aiuchi, and H. Itabe, “Analysis of modified apolipoprotein B-100 structures formed in oxidized low-density lipoprotein using LC-MS/MS,” Proteomics, vol. 7, no. 13, pp. 2132–2141, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. C. P. Sparrow, S. Parthasarathy, and D. Steinberg, “Enzymatic modification of low density lipoprotein by purified lipoxygenase plus phospholipase A2 mimics cell-mediated oxidative modification,” Journal of Lipid Research, vol. 29, no. 6, pp. 745–753, 1988. View at Google Scholar · View at Scopus
  14. E. Malle, G. Waeg, R. Schreiber, E. F. Gröne, W. Sattler, and H.-J. Gröne, “Immunohistochemical evidence for the myeloperoxidase/H2O2/halide system in human atherosclerotic lesions. Colocalization of myeloperoxidase and hypochlorite-modified proteins,” European Journal of Biochemistry, vol. 267, no. 14, pp. 4495–4503, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. L. J. Hazell, L. Arnold, D. Flowers, G. Waeg, E. Malle, and R. Stocker, “Presence of hypochlorite-modified proteins in human atherosclerotic lesions,” Journal of Clinical Investigation, vol. 97, no. 6, pp. 1535–1544, 1996. View at Google Scholar · View at Scopus
  16. H. S. Kruth, W. Huang, I. Ishii, and W.-Y. Zhang, “Macrophage foam cell formation with native low density lipoprotein,” Journal of Biological Chemistry, vol. 277, no. 37, pp. 34573–34580, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Libby, P. M. Ridker, and G. K. Hansson, “Progress and challenges in translating the biology of atherosclerosis,” Nature, vol. 473, no. 7347, pp. 317–325, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. H. F. Hoff, N. Zyromski, D. Armstrong, and J. O'Neil, “Aggregation as well as chemical modification of LDL during oxidation is responsible for poor processing in macrophages,” Journal of Lipid Research, vol. 34, no. 11, pp. 1919–1929, 1993. View at Google Scholar · View at Scopus
  19. G. K. Hansson, “Regulation of immune mechanisms in atherosclerosis,” Annals of the New York Academy of Sciences, vol. 947, pp. 157–165, 2001. View at Google Scholar
  20. G. K. Hansson, “Immune mechanisms in atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, pp. 1876–1890, 2001. View at Google Scholar
  21. T. Hevonoja, M. O. Pentikäinen, M. T. Hyvönen, P. T. Kovanen, and M. Ala-Korpela, “Structure of low density lipoprotein (LDL) particles: basis for understanding molecular changes in modified LDL,” Biochimica et Biophysica Acta, vol. 1488, no. 3, pp. 189–210, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. C.-Y. Yang, S.-H. Chen, and S. H. Gianturco, “Sequence, structure, receptor-binding domains and internal repeats of human apolipoprotein B-100,” Nature, vol. 323, no. 6090, pp. 738–742, 1986. View at Google Scholar · View at Scopus
  23. T. J. Knott, R. J. Pease, and L. M. Powell, “Complete protein sequence and identification of structural domains of human apolipoprotein B,” Nature, vol. 323, no. 6090, pp. 734–738, 1986. View at Google Scholar · View at Scopus
  24. T. J. Knott, S. C. Rall Jr., and T. L. Innerarity, “Human apolipoprotein B: structure of carboxyl-terminal domains, sites of gene expression, and chromosomal localization,” Science, vol. 230, no. 4721, pp. 37–43, 1985. View at Google Scholar · View at Scopus
  25. S. W. Law, S. M. Grant, and K. Higuchi, “Human liver apolipoprotein B-100 cDNA: complete nucleic acid and derived amino acid sequence,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 21, pp. 8142–8146, 1986. View at Google Scholar · View at Scopus
  26. C.-Y. Yang, T. W. Kim, Q. Pao et al., “Structure and conformational analysis of lipid-associating peptides of apolipoprotein B-100 produced by trypsinolysis,” Journal of Protein Chemistry, vol. 8, no. 6, pp. 689–699, 1989. View at Google Scholar · View at Scopus
  27. J. P. Segrest, M. K. Jones, H. De Loof, and N. Dashti, “Structure of apolipoprotein B-100 in low density lipoproteins,” Journal of Lipid Research, vol. 42, no. 9, pp. 1346–1367, 2001. View at Google Scholar · View at Scopus
  28. J. Borén, U. Ekström, B. Ågren, P. Nilsson-Ehle, and T. L. Innerarity, “The molecular mechanism for the genetic disorder familial defective apolipoprotein B100,” Journal of Biological Chemistry, vol. 276, no. 12, pp. 9214–9218, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. A. C. Rutledge, Q. Su, and K. Adeli, “Apolipoprotein B100 biogenesis: a complex array of intracellular mechanisms regulating folding, stability, and lipoprotein assembly,” Biochemistry and Cell Biology, vol. 88, no. 2, pp. 251–267, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Milne, R. Theilis Jr., R. Maurice et al., “The use of monoclonal antibodies to localize the low density lipoprotein receptor-binding domain of apolipoprotein B,” Journal of Biological Chemistry, vol. 264, no. 33, pp. 19754–19760, 1989. View at Google Scholar · View at Scopus
  31. F. K. Welty, L. Seman, and F. T. Yen, “Purification of the apolipoprotein B-67-containing low density lipoprotein particle and its affinity for the low density lipoprotein receptor,” Journal of Lipid Research, vol. 36, no. 12, pp. 2622–2629, 1995. View at Google Scholar · View at Scopus
  32. E. S. Krul, K. G. Parhofer, P. H. R. Barrett, R. D. Wagner, and G. Schonfeld, “ApoB-75, a truncation of apolipoprotein B associated with familial hypobetalipoproteinemia: genetic and kinetic studies,” Journal of Lipid Research, vol. 33, no. 7, pp. 1037–1050, 1992. View at Google Scholar · View at Scopus
  33. K. H. Weisgraber, “Apolipoprotein E: structure-function relationships,” Advances in Protein Chemistry, vol. 45, pp. 249–302, 1994. View at Google Scholar · View at Scopus
  34. H. Al-Ali and H. M. Khachfe, “The N-terminal domain of apolipoprotein B-100: structural characterization by homology modeling,” BMC Biochemistry, vol. 8, article 12, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Kriško and C. Etchebest, “Theoretical model of human apolipoprotein B100 tertiary structure,” Proteins, vol. 66, no. 2, pp. 342–358, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. P.-F. Chen, Y. L. Marcel, C.-Y. Yang et al., “Primary sequence mapping of human apolipoprotein B-100 epitopes. Comparisons of trypsin accessibility and immunoreactivity and implication for apoB conformation,” European Journal of Biochemistry, vol. 175, no. 1, pp. 111–118, 1988. View at Google Scholar · View at Scopus
  37. J. Stocks and N. E. Miller, “Analysis of apolipoproteins and lipoproteins by capillary electrophoresis,” Electrophoresis, vol. 20, pp. 2118–2123, 1999. View at Google Scholar
  38. C.-Y. Yang, Z.-W. Gu, S.-A. Weng et al., “Structure of apolipoprotein B-100 of human low density lipoproteins,” Arteriosclerosis, vol. 9, no. 1, pp. 96–108, 1989. View at Google Scholar · View at Scopus
  39. P. J. Thornalley and N. Rabbani, “Detection of oxidized and glycated proteins in clinical samples using mass spectrometry—a user's perspective,” Biochimica et Biophysica Acta, 2013. View at Publisher · View at Google Scholar
  40. C. M. Spickett, A. Reis, and A. R. Pitt, “The use of narrow mass-window, high-resolution extracted product ion chromatograms for the sensitive and selective identification of protein modifications,” Analytical Chemistry, vol. 85, no. 9, pp. 4621–4627, 2013. View at Google Scholar
  41. C. Delporte, P. Van Antwerpen, K. Zouaoui Boudjeltia et al., “Optimization of apolipoprotein-B-100 sequence coverage by liquid chromatography-tandem mass spectrometry for the future study of its posttranslational modifications,” Analytical Biochemistry, vol. 411, no. 1, pp. 129–138, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. S. J. Klebanoff, A. J. Kettle, H. Rosen, C. C. Winterbourn, and W. M. Nauseef, “Myeloperoxidase: a front-line defender against phagocytosed microorganisms,” Journal of Leukocyte Biology, vol. 93, pp. 185–198, 2013. View at Google Scholar
  43. S. J. Klebanoff, “Myeloperoxidase: friend and foe,” Journal of Leukocyte Biology, vol. 77, no. 5, pp. 598–625, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. M. J. Davies, “Myeloperoxidase-derived oxidation: mechanisms of biological damage and its prevention,” Journal of Clinical Biochemistry and Nutrition, vol. 48, no. 1, pp. 8–19, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. M. J. Davies, C. L. Hawkins, D. I. Pattison, and M. D. Rees, “Mammalian heme peroxidases: from molecular mechanisms to health implications,” Antioxidants and Redox Signaling, vol. 10, no. 7, pp. 1199–1234, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. B. S. van der Veen, M. P. J. De Winther, and P. Heeringa, “Myeloperoxidase: molecular mechanisms of action and their relevance to human health and disease,” Antioxidants and Redox Signaling, vol. 11, no. 11, pp. 2899–2937, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. D. F. Bainton, J. L. Ullyot, and M. G. Farquhar, “The development of neutrophilic polymorphonuclear leukocytes in human bone marrow,” Journal of Experimental Medicine, vol. 134, no. 4, pp. 907–934, 1971. View at Google Scholar · View at Scopus
  48. W. B. Dunn, J. H. Hardin, and S. S. Spicer, “Ultrastructural localization of myeloperoxidase in human neutrophil and rabbit heterophil and eosinophil leukocytes,” Blood, vol. 32, no. 6, pp. 935–944, 1968. View at Google Scholar · View at Scopus
  49. P. G. Furtmüller, M. Zederbauer, W. Jantschko et al., “Active site structure and catalytic mechanisms of human peroxidases,” Archives of Biochemistry and Biophysics, vol. 445, no. 2, pp. 199–213, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Banerjee, J. Stampler, P. G. Furtmüller, and C. Obinger, “Conformational and thermal stability of mature dimeric human myeloperoxidase and a recombinant monomeric form from CHO cells,” Biochimica et Biophysica Acta, vol. 1814, no. 2, pp. 375–387, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Hansson, I. Olsson, and W. M. Nauseef, “Biosynthesis, processing, and sorting of human myeloperoxidase,” Archives of Biochemistry and Biophysics, vol. 445, no. 2, pp. 214–224, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. P. Van Antwerpen, M.-C. Slomianny, K. Z. Boudjeltia et al., “Glycosylation pattern of mature dimeric leukocyte and recombinant monomeric myeloperoxidase: glycosylation is required for optimal enzymatic activity,” Journal of Biological Chemistry, vol. 285, no. 21, pp. 16351–16359, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. T. J. Fiedler, C. A. Davey, and R. E. Fenna, “X-ray crystal structure and characterization of halide-binding sites of human myeloperoxidase at 1.8 Å resolution,” Journal of Biological Chemistry, vol. 275, no. 16, pp. 11964–11971, 2000. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Blair-Johnson, T. Fiedler, and R. Fenna, “Human myeloperoxidase: structure of a cyanide complex and its interaction with bromide and thiocyanate substrates at 1.9 Å resolution,” Biochemistry, vol. 40, no. 46, pp. 13990–13997, 2001. View at Publisher · View at Google Scholar · View at Scopus
  55. B. J. Staudinger, M. A. Oberdoerster, P. J. Lewis, and H. Rosen, “mRNA expression profiles for Escherichia coli ingested by normal and phagocyte oxidase-deficient human neutrophils,” Journal of Clinical Investigation, vol. 110, no. 8, pp. 1151–1163, 2002. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Zederbauer, P. G. Furtmüller, S. Brogioni, C. Jakopitsch, G. Smulevich, and C. Obinger, “Heme to protein linkages in mammalian peroxidases: impact on spectroscopic, redox and catalytic properties,” Natural Product Reports, vol. 24, no. 3, pp. 571–584, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. S. J. Klebanoff, “Myeloperoxidase-halide-hydrogen peroxide antibacterial system,” Journal of Bacteriology, vol. 95, no. 6, pp. 2131–2138, 1968. View at Google Scholar · View at Scopus
  58. S. J. Klebanoff, “A peroxidase-mediated antimicrobial system in leukocytes,” Journal of Clinical Investigation, vol. 46, p. 1078, 1967. View at Google Scholar
  59. D. I. Pattison, M. J. Davies, and C. L. Hawkins, “Reactions and reactivity of myeloperoxidase-derived oxidants: differential biological effects of hypochlorous and hypothiocyanous acids,” Free Radical Research, vol. 46, pp. 975–995, 2012. View at Google Scholar
  60. J. Talib, D. I. Pattison, J. A. Harmer, D. S. Celermajer, and M. J. Davies, “High plasma thiocyanate levels modulate protein damage induced by myeloperoxidase and perturb measurement of 3-chlorotyrosine,” Free Radical Biology & Medicine, vol. 53, pp. 20–29, 2012. View at Google Scholar
  61. J. Arnhold and J. Flemmig, “Human myeloperoxidase in innate and acquired immunity,” Archives of Biochemistry and Biophysics, vol. 500, no. 1, pp. 92–106, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. E. W. Odell and A. W. Segal, “The bactericidal effects of the respiratory burst and the myeloperoxidase system isolated in neutrophil cytoplasts,” Biochimica et Biophysica Acta, vol. 971, no. 3, pp. 266–274, 1988. View at Google Scholar · View at Scopus
  63. M.-L. Brennan, M. S. Penn, F. Van Lente et al., “Prognostic value of myeloperoxidase in patients with chest pain,” The New England Journal of Medicine, vol. 349, no. 17, pp. 1595–1604, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. S. Baldus, C. Heeschen, T. Meinertz et al., “Myeloperoxidase serum levels predict risk in patients with acute coronary syndromes,” Circulation, vol. 108, no. 12, pp. 1440–1445, 2003. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Daugherty, J. L. Dunn, D. L. Rateri, and J. W. Heinecke, “Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions,” Journal of Clinical Investigation, vol. 94, no. 1, pp. 437–444, 1994. View at Google Scholar · View at Scopus
  66. A. Ravandi, A. Kuksis, and N. A. Shaikh, “Glucosylated glycerophosphoethanolamines are the major LDL glycation products and increase LDL susceptibility to oxidation: evidence of their presence in atherosclerotic lesions,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 2, pp. 467–477, 2000. View at Google Scholar · View at Scopus
  67. N. Rabbani, M. V. Chittari, C. W. Bodmer, D. Zehnder, A. Ceriello, and P. J. Thornalley, “Increased glycation and oxidative damage to apolipoprotein B100 of LDL cholesterol in patients with type 2 diabetes and effect of metformin,” Diabetes, vol. 59, no. 4, pp. 1038–1045, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. V. V. Tertov, V. V. Kaplun, I. A. Sobenin, and A. N. Orekhov, “Low-density lipoprotein modification occurring in human plasma possible mechanism of in vivo lipoprotein desialylation as a primary step of atherogenic modification,” Atherosclerosis, vol. 138, no. 1, pp. 183–195, 1998. View at Publisher · View at Google Scholar · View at Scopus
  69. B. Garner, D. J. Harvey, L. Royle et al., “Characterization of human apolipoprotein B100 oligosaccharides in LDL subfractions derived from normal and hyperlipidemic plasma: deficiency of α-N-acetylneuraminyllactosyl-ceramide in light and small dense LDL particles,” Glycobiology, vol. 11, no. 10, pp. 791–802, 2001. View at Google Scholar · View at Scopus
  70. K. D. O'Brien, C. E. Alpers, J. E. Hokanson, S. Wang, and A. Chait, “Oxidation-specific epitopes in human coronary atherosclerosis are not limited to oxidized low-density lipoprotein,” Circulation, vol. 94, no. 6, pp. 1216–1225, 1996. View at Google Scholar · View at Scopus
  71. K. C. Briley-Saebo, Y. S. Cho, and S. Tsimikas, “Imaging of oxidation-specific epitopes in atherosclerosis and macrophage-rich vulnerable plaques,” Current Cardiovascular Imaging Reports, vol. 4, pp. 4–16, 2011. View at Google Scholar
  72. P. Holvoet, D. De Keyzer, and D. R. Jacobs Jr., “Oxidized LDL and the metabolic syndrome,” Future Lipidology, vol. 3, no. 6, pp. 637–649, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. H. Itabe, “Oxidative modification of LDL: its pathological role in atherosclerosis,” Clinical Reviews in Allergy & Immunology, vol. 37, no. 1, pp. 4–11, 2009. View at Google Scholar · View at Scopus
  74. F. H. Greig, S. Kennedy, and C. M. Spickett, “Physiological effects of oxidized phospholipids and their cellular signaling mechanisms in inflammation,” Free Radical Biology and Medicine, vol. 52, no. 2, pp. 266–280, 2012. View at Publisher · View at Google Scholar · View at Scopus
  75. C. L. Hawkins, D. I. Pattison, and M. J. Davies, “Hypochlorite-induced oxidation of amino acids, peptides and proteins,” Amino Acids, vol. 25, no. 3-4, pp. 259–274, 2003. View at Publisher · View at Google Scholar · View at Scopus
  76. C. M. Spickett, A. Jerlich, O. M. Panasenko et al., “The reactions of hypochlorous acid, the reactive oxygen species produced by myeloperoxidase, with lipids,” Acta Biochimica Polonica, vol. 47, no. 4, pp. 889–899, 2000. View at Google Scholar · View at Scopus
  77. A. Kriško, G. Stjepanović, G. Pifat, J.-M. Ruysschaert, and E. Goormaghtigh, “Detection of apolipoprotein B100 early conformational changes during oxidation,” Biochimica et Biophysica Acta, vol. 1768, no. 11, pp. 2923–2930, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. N. Stadler, R. A. Lindner, and M. J. Davies, “Direct detection and quantification of transition metal ions in human atherosclerotic plaques: evidence for the presence of elevated levels of iron and copper,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 5, pp. 949–954, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. J. P. Gaut and J. W. Heinecke, “Mechanisms for oxidizing low-density lipoprotein: insights from patterns of oxidation products in the artery wall and from mouse models of atherosclerosis,” Trends in Cardiovascular Medicine, vol. 11, no. 3-4, pp. 103–112, 2001. View at Publisher · View at Google Scholar · View at Scopus
  80. J. L. Sullivan, “Do hemochromatosis mutations protect against iron-mediated atherogenesis?” Circulation, vol. 2, no. 6, pp. 652–657, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. J. L. Sullivan, “Iron in arterial plaque: a modifiable risk factor for atherosclerosis,” Biochimica et Biophysica Acta, vol. 1790, no. 7, pp. 718–723, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. J. L. Sullivan and S. D. Katz, “Iron reduction and cardiovascular outcomes,” Journal of the American Medical Association, vol. 297, no. 19, p. 2075, 2007. View at Google Scholar · View at Scopus
  83. S. Yla-Herttuala, M. E. Rosenfeld, S. Parthasarathy et al., “Colocalization of 15-lipoxygenase mRNA and protein with epitopes of oxidized low density lipoprotein in macrophage-rich areas of atherosclerotic lesions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 18, pp. 6959–6963, 1990. View at Google Scholar · View at Scopus
  84. S. Yla-Herttuala, M. E. Rosenfeld, S. Parthasarathy et al., “Gene expression in macrophage-rich human atherosclerotic lesions: 15-lipoxygenase and acetyl low density lipoprotein receptor messenger RNA colocalize with oxidation specific lipid-protein adducts,” Journal of Clinical Investigation, vol. 87, no. 4, pp. 1146–1152, 1991. View at Google Scholar · View at Scopus
  85. S. L. Hazen, J. R. Crowley, D. M. Mueller, and J. W. Heinecke, “Mass spectrometric quantification of 3-chlorotyrosine in human tissues with attomole sensitivity: a sensitive and specific marker for myeloperoxidase-catalyzed chlorination at sites of inflammation,” Free Radical Biology and Medicine, vol. 23, no. 6, pp. 909–916, 1997. View at Publisher · View at Google Scholar · View at Scopus
  86. S. L. Hazen and J. W. Heinecke, “3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima,” Journal of Clinical Investigation, vol. 99, no. 9, pp. 2075–2081, 1997. View at Google Scholar · View at Scopus
  87. R. Zhang, M.-L. Brennan, X. Fu et al., “Association between myeloperoxidase levels and risk of coronary artery disease,” Journal of the American Medical Association, vol. 286, no. 17, pp. 2136–2142, 2001. View at Google Scholar · View at Scopus
  88. D. Kutter, P. Devaquet, G. Vanderstocken, J. M. Paulus, V. Marchal, and A. Gothot, “Consequences of total and subtotal myeloperoxidase deficiency: risk or benefit?” Acta Haematologica, vol. 104, no. 1, pp. 10–15, 2000. View at Google Scholar · View at Scopus
  89. H.-J. Gröne, E. F. Gröne, and E. Malle, “Immunohistochemical detection of hypochlorite-modified proteins in glomeruli of human membranous glomerulonephritis,” Laboratory Investigation, vol. 82, no. 1, pp. 5–14, 2002. View at Google Scholar · View at Scopus
  90. E. Malle, G. Marsche, J. Arnhold, and M. J. Davies, “Modification of low-density lipoprotein by myeloperoxidase-derived oxidants and reagent hypochlorous acid,” Biochimica et Biophysica Acta, vol. 1761, no. 4, pp. 392–415, 2006. View at Publisher · View at Google Scholar · View at Scopus
  91. A. Jerlich, A. R. Pitt, R. J. Schaur, and C. M. Spickett, “Pathways of phospholipid oxidation by HOCl in human LDL detected by LC-MS,” Free Radical Biology and Medicine, vol. 28, no. 5, pp. 673–682, 2000. View at Publisher · View at Google Scholar · View at Scopus
  92. S. L. Hazen, F. F. Hsu, K. Duffin, and J. W. Heinecke, “Molecular chlorine generated by the myeloperoxidase-hydrogen peroxide- chloride system of phagocytes converts low density lipoprotein cholesterol into a family of chlorinated sterols,” Journal of Biological Chemistry, vol. 271, no. 38, pp. 23080–23088, 1996. View at Publisher · View at Google Scholar · View at Scopus
  93. A. C. Carr, M. C. Myzak, R. Stocker, M. R. McCall, and B. Frei, “Myeloperoxidase binds to low-density lipoprotein: potential implications for atherosclerosis,” FEBS Letters, vol. 487, no. 2, pp. 176–180, 2000. View at Publisher · View at Google Scholar · View at Scopus
  94. A. V. Sokolov, K. V. Ageeva, O. S. Cherkalina et al., “Identification and properties of complexes formed by myeloperoxidase with lipoproteins and ceruloplasmin,” Chemistry and Physics of Lipids, vol. 163, no. 4-5, pp. 347–355, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. E.-M. Daphna, S. Michaela, P. Eynat, A. Irit, and S. Rimon, “Association of myeloperoxidase with heparin: oxidative inactivation of proteins on the surface of endothelial cells by the bound enzyme,” Molecular and Cellular Biochemistry, vol. 183, no. 1-2, pp. 55–61, 1998. View at Publisher · View at Google Scholar · View at Scopus
  96. A. Sokolov, K. Ageeva, M. Pulina et al., “Ceruloplasmin and myeloperoxidase in complex affect the enzymatic properties of each other,” Free Radical Research, vol. 42, no. 11-12, pp. 989–998, 2008. View at Publisher · View at Google Scholar · View at Scopus
  97. A. V. Sokolov, A. V. Chekanov, V. A. Kostevich, D. V. Aksenov, V. B. Vasilyev, and O. M. Panasenko, “Revealing binding sites for myeloperoxidase on the surface of human low density lipoproteins,” Chemistry and Physics of Lipids, vol. 164, no. 1, pp. 49–53, 2011. View at Publisher · View at Google Scholar · View at Scopus
  98. L. Zheng, B. Nukuna, M.-L. Brennan et al., “Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and function impairment in subjects with cardiovascular disease,” Journal of Clinical Investigation, vol. 114, no. 4, pp. 529–541, 2004. View at Publisher · View at Google Scholar · View at Scopus
  99. J. W. Heinecke, “Tyrosyl radical production by myeloperoxidase: a phagocyte pathway for lipid peroxidation and dityrosine cross-linking of proteins,” Toxicology, vol. 177, no. 1, pp. 11–22, 2002. View at Publisher · View at Google Scholar · View at Scopus
  100. R. T. Hamilton, L. Asatryan, J. T. Nilsen et al., “LDL protein nitration: implication for LDL protein unfolding,” Archives of Biochemistry and Biophysics, vol. 479, no. 1, pp. 1–14, 2008. View at Publisher · View at Google Scholar · View at Scopus
  101. S. J. Nicholls and S. L. Hazen, “Myeloperoxidase, modified lipoproteins, and atherogenesis,” Journal of Lipid Research, vol. 50, pp. S346–S351, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. S. J. Nicholls and S. L. Hazen, “Myeloperoxidase and cardiovascular disease,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 6, pp. 1102–1111, 2005. View at Publisher · View at Google Scholar · View at Scopus
  103. S. Baldus, T. Heitzer, J. P. Eiserich et al., “Myeloperoxidase enhances nitric oxide catabolism during myocardial ischemia and reperfusion,” Free Radical Biology and Medicine, vol. 37, no. 6, pp. 902–911, 2004. View at Publisher · View at Google Scholar · View at Scopus
  104. S. Baldus, J. P. Eiserich, A. Mani et al., “Endothelial transcytosis of myeloperoxidase confers specificity to vascular ECM proteins as targets of tyrosine nitration,” Journal of Clinical Investigation, vol. 108, no. 12, pp. 1759–1770, 2001. View at Publisher · View at Google Scholar · View at Scopus
  105. J. Arnhold, E. Monzani, P. G. Furtmüller, M. Zederbauer, L. Casella, and C. Obinger, “Kinetics and thermodynamics of halide and nitrite oxidation by mammalian heme peroxidases,” European Journal of Inorganic Chemistry, no. 19, pp. 3801–3811, 2006. View at Publisher · View at Google Scholar · View at Scopus
  106. A. C. Carr, E. A. Decker, Y. Park, and B. Frei, “Comparison of low-density lipoprotein modification by myeloperoxidase-derived hypochlorous and hypobromous acids,” Free Radical Biology and Medicine, vol. 31, no. 1, pp. 62–72, 2001. View at Publisher · View at Google Scholar · View at Scopus
  107. Z. Wang, S. J. Nicholls, E. R. Rodriguez et al., “Protein carbamylation links inflammation, smoking, uremia and atherogenesis,” Nature Medicine, vol. 13, no. 10, pp. 1176–1184, 2007. View at Publisher · View at Google Scholar · View at Scopus
  108. M. Holzer, M. Gauster, T. Pfeifer et al., “Protein carbamylation renders high-density lipoprotein dysfunctional,” Antioxidants and Redox Signaling, vol. 14, no. 12, pp. 2337–2346, 2011. View at Publisher · View at Google Scholar · View at Scopus
  109. N. Moguilevsky, K. Zouaoui Boudjeltia, S. Babar et al., “Monoclonal antibodies against LDL progressively oxidized by myeloperoxidase react with ApoB-100 protein moiety and human atherosclerotic lesions,” Biochemical and Biophysical Research Communications, vol. 323, no. 4, pp. 1223–1228, 2004. View at Publisher · View at Google Scholar · View at Scopus
  110. M. Vaes, K. Zouaoui Boudjeltia, P. Van Antwerpen et al., “Poster Abstract: XIV International Symposium on Atherosclerosis, Th-P15:146 Low-density lipoprotein oxidation by myeloperoxidase occurs in the blood circulation during hemodialysis,” Atherosclerosis Supplements, vol. 7, p. 525, 2006. View at Google Scholar
  111. C. Mazière and J.-C. Mazière, “Activation of transcription factors and gene expression by oxidized low-density lipoprotein,” Free Radical Biology and Medicine, vol. 46, no. 2, pp. 127–137, 2009. View at Publisher · View at Google Scholar · View at Scopus
  112. A. Popolo, G. Autore, A. Pinto, and S. Marzocco, “Oxidative stress in patients with cardiovascular disease and chronic renal failure,” Free Radical Research, vol. 47, no. 5, pp. 346–356, 2013. View at Google Scholar
  113. T. Chen, Z. Huang, L. Wang et al., “MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages,” Cardiovascular Research, vol. 83, no. 1, pp. 131–139, 2009. View at Publisher · View at Google Scholar · View at Scopus
  114. K. J. Moore and I. Tabas, “Macrophages in the pathogenesis of atherosclerosis,” Cell, vol. 145, no. 3, pp. 341–355, 2011. View at Publisher · View at Google Scholar · View at Scopus
  115. L. J. Hazell and R. Stocker, “Oxidation of low-density lipoprotein with hypochlorite causes transformation of the lipoprotein into a high-uptake form for macrophages,” Biochemical Journal, vol. 290, no. 1, pp. 165–172, 1993. View at Google Scholar · View at Scopus
  116. E. A. Podrez, M. Febbraio, N. Sheibani et al., “Macrophage scavenger receptor CD36 is the major receptor for LDL modified by monocyte-generated reactive nitrogen species,” Journal of Clinical Investigation, vol. 105, no. 10, pp. 1095–1108, 2000. View at Google Scholar · View at Scopus
  117. E. A. Podrez, D. Schmitt, H. F. Hoff, and S. L. Hazen, “Myeloperoxidase-generated reactive nitrogen species convert LDL into an atherogenic form in vitro,” Journal of Clinical Investigation, vol. 103, no. 11, pp. 1547–1560, 1999. View at Google Scholar · View at Scopus
  118. L. Nagy, P. Tontonoz, J. G. A. Alvarez, H. Chen, and R. M. Evans, “Oxidized LDL regulates macrophage gene expression through ligand activation of PPARγ,” Cell, vol. 93, no. 2, pp. 229–240, 1998. View at Publisher · View at Google Scholar · View at Scopus
  119. P. Tontonoz, L. Nagy, J. G. A. Alvarez, V. A. Thomazy, and R. M. Evans, “PPARγ promotes monocyte/macrophage differentiation and uptake of oxidized LDL,” Cell, vol. 93, no. 2, pp. 241–252, 1998. View at Publisher · View at Google Scholar · View at Scopus
  120. T. Westendorf, J. Graessler, and S. Kopprasch, “Hypochlorite-oxidized low-density lipoprotein upregulates CD36 and PPARγ mRNA expression and modulates SR-BI gene expression in murine macrophages,” Molecular and Cellular Biochemistry, vol. 277, no. 1-2, pp. 143–152, 2005. View at Publisher · View at Google Scholar · View at Scopus
  121. A. C. Carr, “Hypochlorous acid-modified low-density lipoprotein inactivates the lysosomal protease cathepsin B: Protection by ascorbic and lipoic acids,” Redox Report, vol. 6, no. 6, pp. 343–349, 2001. View at Publisher · View at Google Scholar · View at Scopus
  122. S. Vicca, C. Hennequin, T. Nguyen-Khoa et al., “Caspase-dependent apoptosis in THP-1 cells exposed to oxidized low-density lipoproteins,” Biochemical and Biophysical Research Communications, vol. 273, no. 3, pp. 948–954, 2000. View at Publisher · View at Google Scholar · View at Scopus
  123. K. Z. Boudjeltia, I. Legssyer, P. Van Antwerpen et al., “Triggering of inflammatory response by myeloperoxidase-oxidized LDL,” Biochemistry and Cell Biology, vol. 84, no. 5, pp. 805–812, 2006. View at Publisher · View at Google Scholar · View at Scopus
  124. H. Baumann and J. Gauldie, “The acute phase response,” Immunology Today, vol. 15, no. 2, pp. 74–80, 1994. View at Publisher · View at Google Scholar · View at Scopus
  125. X.-L. Chen, S. E. Varner, A. S. Rao et al., “Laminar flow induction of antioxidant response element-mediated genes in endothelial cells: a novel anti-inflammatory mechanism,” Journal of Biological Chemistry, vol. 278, no. 2, pp. 703–711, 2003. View at Publisher · View at Google Scholar · View at Scopus
  126. D. Calay, A. Rousseau, L. Mattart et al., “Copper and myeloperoxidase-modified LDLs activate Nrf2 through different pathways of ros production in macrophages,” Antioxidants and Redox Signaling, vol. 13, no. 10, pp. 1491–1502, 2010. View at Publisher · View at Google Scholar · View at Scopus
  127. S. Akiba, Y. Yoneda, S. Ohno, M. Nemoto, and T. Sato, “Oxidized LDL activates phospholipase A2 to supply fatty acids required for cholesterol esterification,” Journal of Lipid Research, vol. 44, no. 9, pp. 1676–1685, 2003. View at Publisher · View at Google Scholar · View at Scopus
  128. F. Bea, F. N. Hudson, A. Chait, T. J. Kavanagh, and M. E. Rosenfeld, “Induction of glutathione synthesis in macrophages by oxidized low-density lipoproteins is mediated by consensus antioxidant response elements,” Circulation Research, vol. 92, no. 4, pp. 386–393, 2003. View at Publisher · View at Google Scholar · View at Scopus
  129. A. Maruyama, S. Tsukamoto, K. Nishikawa et al., “Nrf2 regulates the alternative first exons of CD36 in macrophages through specific antioxidant response elements,” Archives of Biochemistry and Biophysics, vol. 477, no. 1, pp. 139–145, 2008. View at Publisher · View at Google Scholar · View at Scopus
  130. Q. Liu, Z. Dai, Z. Liu et al., “Oxidized low-density lipoprotein activates adipophilin through ERK1/2 signal pathway in RAW264.7 cells,” Acta Biochimica et Biophysica Sinica, vol. 42, no. 9, pp. 635–645, 2010. View at Publisher · View at Google Scholar · View at Scopus
  131. T. W. Kensler, N. Wakabayashi, and S. Biswal, “Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway,” Annual Review of Pharmacology and Toxicology, vol. 47, pp. 89–116, 2007. View at Publisher · View at Google Scholar · View at Scopus
  132. S. Pennathur and J. W. Heinecke, “Oxidative stress and endothelial dysfunction in vascular disease,” Current Diabetes Reports, vol. 7, no. 4, pp. 257–264, 2007. View at Publisher · View at Google Scholar · View at Scopus
  133. H. Adachi and M. Tsujimoto, “Endothelial scavenger receptors,” Progress in Lipid Research, vol. 45, no. 5, pp. 379–404, 2006. View at Publisher · View at Google Scholar · View at Scopus
  134. G. Marsche, R. Zimmermann, S. Horiuchi, N. N. Tandon, W. Sattler, and E. Malle, “Class B scavenger receptors CD36 and SR-BI are receptors for hypochlorite-modified low density lipoprotein,” Journal of Biological Chemistry, vol. 278, no. 48, pp. 47562–47570, 2003. View at Publisher · View at Google Scholar · View at Scopus
  135. C. Claise, M. Edeas, J. Chalas et al., “Oxidized low-density lipoprotein induces the production of interleukin-8 by endothelial cells,” FEBS Letters, vol. 398, no. 2-3, pp. 223–227, 1996. View at Publisher · View at Google Scholar · View at Scopus
  136. C. Woenckhaus, A. Kaufmann, D. Bußfeld, D. Gemsa, H. Sprenger, and H.-J. Gröne, “Hypochlorite-modified LDL: chemotactic potential and chemokine induction in human monocytes,” Clinical Immunology and Immunopathology, vol. 86, no. 1, pp. 27–33, 1998. View at Publisher · View at Google Scholar · View at Scopus
  137. G. Cesarman-Maus and K. A. Hajjar, “Molecular mechanisms of fibrinolysis,” British Journal of Haematology, vol. 129, no. 3, pp. 307–321, 2005. View at Publisher · View at Google Scholar · View at Scopus
  138. T. Astrup, “The biological significance of fibrinolysis,” The Lancet, vol. 268, no. 6942, pp. 565–568, 1956. View at Google Scholar · View at Scopus
  139. K. Sueishi, K. Ichikawa, K. Kato, K. Nakagawa, and Y.-X. Chen, “Atherosclerosis: coagulation and fibrinolysis,” Seminars in Thrombosis and Hemostasis, vol. 24, no. 3, pp. 255–260, 1998. View at Google Scholar · View at Scopus
  140. C. Mayerl, M. Lukasser, R. Sedivy, H. Niederegger, R. Seiler, and G. Wick, “Atherosclerosis research from past to present—on the track of two pathologists with opposing views, Carl von Rokitansky and Rudolf Virchow,” Virchows Archiv, vol. 449, no. 1, pp. 96–103, 2006. View at Publisher · View at Google Scholar · View at Scopus
  141. K. Zouaoui Boudjeltia, M. Guillaume, C. Henuzet et al., “Fibrinolysis and cardiovascular risk factors: association with fibrinogen, lipids, and monocyte count,” European Journal of Internal Medicine, vol. 17, no. 2, pp. 102–108, 2006. View at Publisher · View at Google Scholar · View at Scopus
  142. K. Zouaoui Boudjeltia, J. Daher, P. Van Antwerpen et al., “Exposure of endothelial cells to physiological levels of myeloperoxidase-modified LDL delays pericellular fibrinolysis,” PLoS ONE, vol. 7, Article ID e38810, 2012. View at Google Scholar
  143. K. Z. Boudjeltia, P. Cauchie, C. Remacle et al., “A new device for measurement of fibrin clot lysis: application to the euglobulin clot lysis time,” BMC Biotechnology, vol. 2, no. 1, article 8, 2002. View at Google Scholar · View at Scopus
  144. N. A. Strobel, R. G. Fassett, S. A. Marsh, and J. S. Coombes, “Oxidative stress biomarkers as predictors of cardiovascular disease,” International Journal of Cardiology, vol. 147, no. 2, pp. 191–201, 2011. View at Publisher · View at Google Scholar · View at Scopus
  145. S. Tsimikas and Y. I. Miller, “Oxidative modification of lipoproteins: mechanisms, role in inflammation and potential clinical applications in cardiovascular disease,” Current Pharmaceutical Design, vol. 17, no. 1, pp. 27–37, 2011. View at Publisher · View at Google Scholar · View at Scopus
  146. M.-L. Brennan, A. Gaur, A. Pahuja, A. J. Lusis, and W. F. Reynolds, “Mice lacking myeloperoxidase are more susceptible to experimental autoimmune encephalomyelitis,” Journal of Neuroimmunology, vol. 112, no. 1-2, pp. 97–105, 2001. View at Publisher · View at Google Scholar · View at Scopus
  147. J. Himmelfarb and T. A. Ikizler, “Medical progress: hemodialysis,” The New England Journal of Medicine, vol. 363, no. 19, pp. 1833–1845, 2010. View at Publisher · View at Google Scholar · View at Scopus
  148. C. Libetta, V. Sepe, P. Esposito, F. Galli, and A. Dal Canton, “Oxidative stress and inflammation: implications in uremia and hemodialysis,” Clinical Biochemistry, vol. 44, no. 14-15, pp. 1189–1198, 2011. View at Publisher · View at Google Scholar · View at Scopus
  149. J. Borawski, “Myeloperoxidase as a marker of hemodialysis biocompatibility and oxidative stress: the underestimated modifying effects of heparin,” American Journal of Kidney Diseases, vol. 47, no. 1, pp. 37–41, 2006. View at Publisher · View at Google Scholar · View at Scopus
  150. B. Nikpoor, G. Turecki, C. Fournier, P. Théroux, and G. A. Rouleau, “A functional myeloperoxidase polymorphic variant is associated with coronary artery disease in French-Canadians,” American Heart Journal, vol. 142, no. 2, pp. 336–339, 2001. View at Publisher · View at Google Scholar · View at Scopus
  151. E. Malle, T. Buch, and H.-J. Grone, “Myeloperoxidase in kidney disease,” Kidney International, vol. 64, no. 6, pp. 1956–1967, 2003. View at Publisher · View at Google Scholar · View at Scopus
  152. L. M. Hillegass, D. E. Griswold, B. Brickson, and C. Albrightson-Winslow, “Assessment of myeloperoxidase activity in whole rat kidney,” Journal of Pharmacological Methods, vol. 24, no. 4, pp. 285–295, 1990. View at Publisher · View at Google Scholar · View at Scopus
  153. A. Rutgers, P. Heeringa, J. P. Kooman, F. M. Van Der Sande, and J. W. C. Tervaert, “Peripheral blood myeloperoxidase activity increases during hemodialysis,” Kidney International, vol. 64, no. 2, p. 760, 2003. View at Google Scholar
  154. C.-C. Wu, J.-S. Chen, W.-M. Wu et al., “Myeloperoxidase serves as a marker of oxidative stress during single haemodialysis session using two different biocompatible dialysis membranes,” Nephrology Dialysis Transplantation, vol. 20, pp. 1134–1139, 2005. View at Publisher · View at Google Scholar · View at Scopus
  155. J. Himmelfarb, M. E. McMenamin, G. Loseto, and J. W. Heinecke, “Myeloperoxidase-catalyzed 3-chlorotyrosine formation in dialysis patients,” Free Radical Biology and Medicine, vol. 31, no. 10, pp. 1163–1169, 2001. View at Publisher · View at Google Scholar · View at Scopus
  156. C. Delporte, T. Franck, C. Noyon et al., “Simultaneous measurement of protein-bound 3-chlorotyrosine and homocitrulline by LC-MS/MS after hydrolysis assisted by microwave: application to the study of myeloperoxidase activity during hemodialysis,” Talanta, vol. 99, pp. 603–609, 2012. View at Google Scholar
  157. T. Franck, S. Kohnen, K. Z. Boudjeltia et al., “A new easy method for specific measurement of active myeloperoxidase in human biological fluids and tissue extracts,” Talanta, vol. 80, no. 2, pp. 723–729, 2009. View at Publisher · View at Google Scholar · View at Scopus
  158. S. M. Wehrens, S. M. Hampton, M. Kerkhofs, and D. J. Skene, “Mood, alertness, and performance in response to sleep deprivation and recovery sleep in experienced shiftworkers versus non-shiftworkers,” Chronobiology International, vol. 29, pp. 537–548, 2012. View at Google Scholar
  159. M. Kerkhofs and K. Z. Boudjeltia, “From total sleep deprivation to cardiovascular disease: a key role for the immune system?” Sleep, vol. 35, pp. 895–896, 2012. View at Google Scholar
  160. K. Spiegel, E. Tasali, R. Leproult, and E. Van Cauter, “Effects of poor and short sleep on glucose metabolism and obesity risk,” Nature Reviews Endocrinology, vol. 5, no. 5, pp. 253–261, 2009. View at Publisher · View at Google Scholar · View at Scopus
  161. B. Faraut, K. Z. Boudjeltia, L. Vanhamme, and M. Kerkhofs, “Immune, inflammatory and cardiovascular consequences of sleep restriction and recovery,” Sleep Medicine Reviews, vol. 16, no. 2, pp. 137–149, 2012. View at Publisher · View at Google Scholar · View at Scopus
  162. M. Nagai, S. Hoshide, and K. Kario, “Sleep duration as a risk factor for cardiovascular disease—a review of the recent literature,” Current Cardiology Reviews, vol. 6, no. 1, pp. 54–61, 2010. View at Publisher · View at Google Scholar · View at Scopus
  163. L. Gallicchio and B. Kalesan, “Sleep duration and mortality: a systematic review and meta-analysis,” Journal of Sleep Research, vol. 18, no. 2, pp. 148–158, 2009. View at Publisher · View at Google Scholar · View at Scopus
  164. W. M. A. van Leeuwen, M. Lehto, P. Karisola et al., “Sleep restriction increases the risk of developing cardiovascular diseases by augmenting proinflammatory responses through IL-17 and CRP,” PLoS ONE, vol. 4, no. 2, Article ID e4589, 2009. View at Publisher · View at Google Scholar · View at Scopus
  165. K. Ackermann, V. L. Revell, O. Lao, E. J. Rombouts, D. J. Skene, and M. Kayser, “Diurnal rhythms in blood cell populations and the effect of acute sleep deprivation in healthy young men,” Sleep, vol. 35, pp. 933–940, 2012. View at Google Scholar
  166. B. Faraut, K. Z. Boudjeltia, M. Dyzma et al., “Benefits of napping and an extended duration of recovery sleep on alertness and immune cells after acute sleep restriction,” Brain, Behavior, and Immunity, vol. 25, no. 1, pp. 16–24, 2011. View at Publisher · View at Google Scholar · View at Scopus
  167. T. Lange and J. Born, “The immune recovery function of sleep—tracked by neutrophil counts,” Brain, Behavior, and Immunity, vol. 25, no. 1, pp. 14–15, 2011. View at Publisher · View at Google Scholar · View at Scopus
  168. K. Boudjeltia, B. Faraut, M. J. Esposito et al., “Temporal dissociation between myeloperoxidase (MPO)-modified LDL and MPO elevations during chronic sleep restriction and recovery in healthy young men,” PLoS ONE, vol. 6, no. 11, Article ID e28230, 2011. View at Publisher · View at Google Scholar · View at Scopus
  169. M. Irwin, J. Thompson, C. Miller, J. C. Gillin, and M. Ziegler, “Effects of sleep and sleep deprivation on catecholamine and interleukin-2 levels in humans: clinical implications,” Journal of Clinical Endocrinology and Metabolism, vol. 84, no. 6, pp. 1979–1985, 1999. View at Google Scholar · View at Scopus
  170. T. Bleeke, H. Zhang, N. Madamanchi, C. Patterson, and J. E. Faber, “Catecholamine-induced vascular wall growth is dependent on generation of reactive oxygen species,” Circulation Research, vol. 94, no. 1, pp. 37–45, 2004. View at Publisher · View at Google Scholar · View at Scopus
  171. M. H. Ahmed, S. Barakat, and A. O. Almobarak, “Nonalcoholic fatty liver disease and cardiovascular disease: has the time come for cardiologists to be hepatologists?” Journal of Obesity, vol. 2012, Article ID 483135, 9 pages, 2012. View at Publisher · View at Google Scholar
  172. G. Musso, M. Cassader, C. Olivetti, F. Rosina, G. Carbone, and R. Gambino, “Association of obstructive sleep apnoea with the presence and severity of non-alcoholic fatty liver disease. A systematic review and meta-analysis,” Obesity Reviews, vol. 14, pp. 417–431, 2013. View at Google Scholar
  173. S. O. Muhidin, A. A. Magan, K. A. Osman, S. Syed, and M. H. Ahmed, “The relationship between nonalcoholic fatty liver disease and colorectal cancer: the future challenges and outcomes of the metabolic syndrome,” Journal of Obesity, vol. 2012, Article ID 637538, 2012. View at Publisher · View at Google Scholar
  174. S. S. Rensen, Y. Slaats, J. Nijhuis et al., “Increased hepatic myeloperoxidase activity in obese subjects with nonalcoholic steatohepatitis,” American Journal of Pathology, vol. 175, no. 4, pp. 1473–1482, 2009. View at Publisher · View at Google Scholar · View at Scopus
  175. S. S. Rensen, V. Bieghs, S. Xanthoulea et al., “Neutrophil-derived myeloperoxidase aggravates non-alcoholic steatohepatitis in low-density lipoprotein receptor-deficient mice,” PLoS ONE, vol. 7, Article ID e52411, 2012. View at Google Scholar
  176. D. D. Sin and S. F. Paul Man, “Why are patients with chronic obstructive pulmonary disease at increased risk of cardiovascular diseases? The potential role of systemic inflammation in chronic obstructive pulmonary disease,” Circulation, vol. 107, no. 11, pp. 1514–1519, 2003. View at Publisher · View at Google Scholar · View at Scopus
  177. D. M. Mannino, A. S. Buist, T. L. Petty, P. L. Enright, and S. C. Redd, “Lung function and mortality in the United States: data from the First National Health and Nutrition Examination Survey follow up study,” Thorax, vol. 58, no. 5, pp. 388–393, 2003. View at Publisher · View at Google Scholar · View at Scopus
  178. L. P. McGarvey, M. John, J. A. Anderson, M. Zvarich, and R. A. Wise, “Ascertainment of cause-specific mortality in COPD: operations of the TORCH Clinical Endpoint Committee,” Thorax, vol. 62, no. 5, pp. 411–415, 2007. View at Publisher · View at Google Scholar · View at Scopus
  179. K. Zouaoui Boudjeltia, G. Tragas, S. Babar et al., “Effects of oxygen therapy on systemic inflammation and myeloperoxidase modified LDL in hypoxemic COPD patients,” Atherosclerosis, vol. 205, no. 2, pp. 360–362, 2009. View at Publisher · View at Google Scholar · View at Scopus
  180. T. Bratel, A. Wennlund, and K. Carlström, “Impact of hypoxaemia on neuroendocrine function and catecholamine secretion in chronic obstructive pulmonary disease (COPD). Effects of long-term oxygen treatment,” Respiratory Medicine, vol. 94, no. 12, pp. 1221–1228, 2000. View at Publisher · View at Google Scholar · View at Scopus
  181. G. J. Christ and T. Lue, “Physiology and biochemistry of erections,” Endocrine, vol. 23, no. 2-3, pp. 93–100, 2004. View at Google Scholar · View at Scopus
  182. M. Kirby, G. Jackson, and U. Simonsen, “Endothelial dysfunction links erectile dysfunction to heart disease,” International Journal of Clinical Practice, vol. 59, no. 2, pp. 225–229, 2005. View at Publisher · View at Google Scholar · View at Scopus
  183. E. A. Saltzman, A. T. Guay, and J. Jacobson, “Improvement in erectile function in men with organic erectile dysfunction by correction of elevated cholesterol levels: a clinical observation,” The Journal of Urology, vol. 172, no. 1, pp. 255–258, 2004. View at Google Scholar · View at Scopus
  184. T. Roumeguère, E. Wespes, Y. Carpentier, P. Hoffmann, and C. C. Schulman, “Erectile dysfunction is associated with a high prevalence of hyperlipidemia and coronary heart disease risk,” European Urology, vol. 44, no. 3, pp. 355–359, 2003. View at Publisher · View at Google Scholar · View at Scopus
  185. A. Ponholzer, C. Temml, R. Obermayr, C. Wehrberger, and S. Madersbacher, “Is erectile dysfunction an indicator for increased risk of coronary heart disease and stroke?” European Urology, vol. 48, no. 3, pp. 512–518, 2005. View at Publisher · View at Google Scholar · View at Scopus
  186. C. Vlachopoulos, K. Rokkas, N. Ioakeimidis et al., “Prevalence of asymptomatic coronary artery disease in men with vasculogenic erectile dysfunction: a prospective angiographic study,” European Urology, vol. 48, no. 6, pp. 996–1003, 2005. View at Publisher · View at Google Scholar · View at Scopus
  187. A. Nuszkowski, R. Gräbner, G. Marsche, A. Unbehaun, E. Malle, and R. Heller, “Hypochlorite-modified low density lipoprotein inhibits nitric oxide synthesis in endothelial cells via an intracellular dislocalization of endothelial nitric-oxide synthase,” Journal of Biological Chemistry, vol. 276, no. 17, pp. 14212–14221, 2001. View at Google Scholar · View at Scopus
  188. K. Zouaoui Boudjeltia, T. Roumeguere, P. Delree et al., “Presence of LDL modified by myeloperoxidase in the penis in patients with vascular erectile dysfunction: a Preliminary Study,” European Urology, vol. 51, no. 1, pp. 262–269, 2007. View at Publisher · View at Google Scholar · View at Scopus
  189. T. Roumeguère, K. Z. Boudjeltia, and M. Vanhaeverbeek, “Effect of LDL modified by myeloperoxidase-H2O2-Cl- system on intracellular cyclic guanosine monophosphate level of endothelial cells: a link to erectile dysfunction?” European Urology, vol. 55, no. 3, pp. 754–755, 2009. View at Publisher · View at Google Scholar · View at Scopus
  190. P. Perimenis, T. Roumeguere, H. Heidler, E. Roos, M. Belger, and H. Schmitt, “Evaluation of patient expectations and treatment satisfaction after 1-year Tadalafil therapy for erectile dysfunction: the DETECT study,” Journal of Sexual Medicine, vol. 6, no. 1, pp. 257–267, 2009. View at Publisher · View at Google Scholar · View at Scopus
  191. T. Roumeguère, B. Verheyden, S. Arver, A. Bitton, M. Belger, and H. Schmitt, “Therapeutic response after first month of tadalafil treatment predicts 12 months treatment continuation in patients with erectile dysfunction: results from the DETECT study,” Journal of Sexual Medicine, vol. 5, no. 7, pp. 1708–1719, 2008. View at Publisher · View at Google Scholar · View at Scopus
  192. B. Verheyden, T. Roumeguère, A. Bitton, M. Belger, and H. Schmitt, “Effects of 12-month tadalafil therapy for erectile dysfunction on couple relationships: results from the DETECT study,” Journal of Sexual Medicine, vol. 6, no. 12, pp. 3458–3468, 2009. View at Publisher · View at Google Scholar · View at Scopus
  193. T. Roumeguère, K. Zouaoui Boudjeltia, S. Babar et al., “Effects of phosphodiesterase inhibitors on the inflammatory response of endothelial cells stimulated by myeloperoxidase-modified low-density lipoprotein or tumor necrosis factor alpha,” European Urology, vol. 57, no. 3, pp. 522–529, 2010. View at Publisher · View at Google Scholar · View at Scopus