Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2014, Article ID 348959, 8 pages
http://dx.doi.org/10.1155/2014/348959
Clinical Study

Effect of Probiotic (VSL#3) and Omega-3 on Lipid Profile, Insulin Sensitivity, Inflammatory Markers, and Gut Colonization in Overweight Adults: A Randomized, Controlled Trial

Department of Microbiology and Immunology, National Institute of Nutrition, ICMR, Hyderabad 500007, India

Received 13 January 2014; Revised 22 February 2014; Accepted 25 February 2014; Published 26 March 2014

Academic Editor: Ishak Ozel Tekin

Copyright © 2014 Hemalatha Rajkumar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. M. Ridker, C. H. Hennekens, J. E. Buring, and N. Rifai, “C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women,” The New England Journal of Medicine, vol. 342, no. 12, pp. 836–843, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. G. J. Blake and P. M. Ridker, “Novel clinical markers of vascular wall inflammation,” Circulation Research, vol. 89, no. 9, pp. 763–771, 2001. View at Google Scholar · View at Scopus
  3. E. Faloia, G. Michetti, M. de Robertis, M. P. Luconi, G. Furlani, and M. Boscaro, “Inflammation as a link between obesity and metabolic syndrome,” Journal of Nutrition and Metabolism, vol. 2012, Article ID 476380, 7 pages, 2012. View at Publisher · View at Google Scholar
  4. WHO, “Obesity and overweight,” Fact Sheet N°311, WHO, Geneva, Switzerland, 2013, http://www.who.int/mediacentre/factsheets/fs311/en. View at Google Scholar
  5. R. Bhalwar, Text Book of Public Health and Community Medicine, Department of Community Medicine, AFMC, Pune, India, 1st edition, 2009.
  6. W. Koenig, M. Sund, M. Fröhlich et al., “C-reactive protein, a sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men: results from the MONICA (monitoring trends and determinants in cardiovascular disease) Augsburg cohort study, 1984 to 1992,” Circulation, vol. 99, no. 2, pp. 237–242, 1999. View at Google Scholar · View at Scopus
  7. M. B. Pepys, I. F. Rowe, and M. L. Baltz, “C-Reactive protein: binding to lipids and lipoproteins,” International Review of Experimental Pathology, vol. 27, pp. 83–111, 1985. View at Google Scholar · View at Scopus
  8. L. E. P. Rohde, C. H. Hennekens, and P. M. Ridker, “Survey of C-reactive protein and cardiovascular risk factors in apparently healthy men,” American Journal of Cardiology, vol. 84, no. 9, pp. 1018–1022, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. G. S. Hotamisligil, P. Arner, J. F. Caro, R. L. Atkinson, and B. M. Spiegelman, “Increased adipose tissue expression of tumor necrosis factor-α in human obesity and insulin resistance,” Journal of Clinical Investigation, vol. 95, no. 5, pp. 2409–2415, 1995. View at Google Scholar · View at Scopus
  10. A. Purohit, M. W. Ghilchik, L. Duncan et al., “Aromatase activity and interleukin-6 production by normal and malignant breast tissues,” Journal of Clinical Endocrinology and Metabolism, vol. 80, no. 10, pp. 3052–3058, 1995. View at Google Scholar · View at Scopus
  11. H. Baumann and J. Gauldie, “The acute phase response,” Immunology Today, vol. 15, no. 2, pp. 74–80, 1994. View at Publisher · View at Google Scholar · View at Scopus
  12. D. A. Papanicolaou, R. L. Wilder, S. C. Manolagas, and G. P. Chrousos, “The pathophysiologic roles of interleukin-6 in human disease,” Annals of Internal Medicine, vol. 128, no. 2, pp. 127–137, 1998. View at Google Scholar · View at Scopus
  13. J. S. Yudkin, C. D. A. Stehouwer, J. J. Emeis, and S. W. Coppack, “C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue?” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 19, no. 4, pp. 972–978, 1999. View at Google Scholar · View at Scopus
  14. M. L. Jones, C. J. Martoni, M. Parent, and S. Prakash, “Cholesterol-lowering efficacy of a microencapsulated bile salt hydrolase-active Lactobacillus reuteri NCIMB 30242 yoghurt formulation in hypercholesterolaemic adults,” British Journal of Nutrition, vol. 107, no. 10, pp. 1505–1513, 2012. View at Publisher · View at Google Scholar
  15. M. Kumar, S. Rakesh, R. Nagpal et al., “Probiotic Lactobacillus rhamnosus GG and Aloe vera gel improve lipid profiles in hypercholesterolemic rats,” Nutrition, vol. 29, no. 3, pp. 574–579, 2013. View at Publisher · View at Google Scholar
  16. Z. Li, S. Yang, H. Lin et al., “Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease,” Hepatology, vol. 37, no. 2, pp. 343–350, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. C. C. Tai and S. T. Ding, “N-3 polyunsaturated fatty acids regulate lipid metabolism through several inflammation mediators: mechanisms and implications for obesity prevention,” Journal of Nutritional Biochemistry, vol. 21, no. 5, pp. 357–363, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. Root Martin, S. R. Collier, K. A. Zwetsloot, K. L. West, and M. C. McGinn, “A randomized trial of fish oil omega-3 fatty acids on arterial health, inflammation, and metabolic syndrome in a young healthy population,” Nutrition Journal, vol. 12, article 1, 2013. View at Publisher · View at Google Scholar
  19. Y. Adkins and D. S. Kelley, “Mechanisms underlying the cardioprotective effects of omega-3 polyunsaturated fatty acids,” Journal of Nutritional Biochemistry, vol. 21, no. 9, pp. 781–792, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. H. E. Bays, A. P. Tighe, R. Sadovsky, and M. H. Davidson, “Prescription omega-3 fatty acids and their lipid effects: physiologic mechanisms of action and clinical implications,” Expert Review of Cardiovascular Therapy, vol. 6, no. 3, pp. 391–409, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. W. T. Friedewald, R. I. Levy, and D. S. Fredrickson, “Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge,” Clinical Chemistry, vol. 18, no. 6, pp. 499–502, 1972. View at Google Scholar · View at Scopus
  22. D. R. Matthews, J. P. Hosker, and A. S. Rudenski, “Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man,” Diabetologia, vol. 28, no. 7, pp. 412–419, 1985. View at Google Scholar · View at Scopus
  23. J. W. Anderson and S. E. Gilliland, “Effect of fermented milk (yogurt) containing Lactobacillus acidophilus L1 on serum cholesterol in hypercholesterolemic humans,” Journal of the American College of Nutrition, vol. 18, no. 1, pp. 43–50, 1999. View at Google Scholar · View at Scopus
  24. J. Z. Xiao, S. Kondo, N. Takahashi et al., “Effects of milk products fermented by Bifidobacterium longum on blood lipids in rats and healthy adult male volunteers,” Journal of Dairy Science, vol. 86, no. 7, pp. 2452–2461, 2003. View at Google Scholar · View at Scopus
  25. G. Kießling, J. Schneider, and G. Jahreis, “Long-term consumption of fermented dairy products over 6 months increases HDL cholesterol,” European Journal of Clinical Nutrition, vol. 56, no. 9, pp. 843–849, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Bukowska, J. Pieczul-Mroz, M. Jastrzebska, K. Chelstowski, and M. Naruszewicz, “Decrease in fibrinogen and LDL-cholesterol levels upon supplementation of diet with Lactobacillus plantarum in subjects with moderately elevated cholesterol,” Atherosclerosis, vol. 137, no. 2, pp. 437–438, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Naruszewicz, M.-L. Johansson, D. Zapolska-Downar, and H. Bukowska, “Effect of Lactobacillus plantarum 299v on cardiovascular disease risk factors in smokers,” American Journal of Clinical Nutrition, vol. 76, no. 6, pp. 1249–1255, 2002. View at Google Scholar · View at Scopus
  28. K. Hatakka, M. Mutanen, R. Holma, M. Saxelin, and R. Korpela, “Lactobacillus rhamnosus LC705 together with Propionibacterium freudenreichii ssp shermanii JS administered in capsules is ineffective in lowering serum lipids,” Journal of the American College of Nutrition, vol. 27, no. 4, pp. 441–447, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. L. A. Simons, S. G. Amansec, and P. Conway, “Effect of Lactobacillus fermentum on serum lipids in subjects with elevated serum cholesterol,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 16, no. 8, pp. 531–535, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. S. J. Lewis and S. Burmeister, “A double-blind placebo-controlled study of the effects of Lactobacillus acidophilus on plasma lipids,” European Journal of Clinical Nutrition, vol. 59, no. 6, pp. 776–780, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Kumar, H. Rajkumar, M. Kumar et al., “Molecular cloning, characterization and heterologous expression of bile salt hydrolase (Bsh) from Lactobacillus fermentum NCDO394,” Molecular Biology Reports, vol. 40, no. 8, pp. 5057–5066, 2013. View at Publisher · View at Google Scholar
  32. M. Kumar, R. Nagpal, R. Kumar et al., “Cholesterol lowering probiotics as potential biotherapeutics for metabolic diseases,” Experimental Diabetes Research, vol. 2012, Article ID 902917, 14 pages, 2012. View at Publisher · View at Google Scholar
  33. I. Nordgaard, P. B. Mortensen, and A. M. Langkilde, “Small intestinal malabsorption and colonic fermentation of resistant starch and resistant peptides to short-chain fatty acids,” Nutrition, vol. 11, no. 2, pp. 129–137, 1995. View at Google Scholar · View at Scopus
  34. C. S. Venter and H. H. Vorster, “Possible metabolic consequences of fermentation in the colon for humans,” Medical Hypotheses, vol. 29, no. 3, pp. 161–166, 1989. View at Google Scholar · View at Scopus
  35. B. E. Phillipson, D. W. Rothrock, and W. E. Connor, “Reduction of plasma lipids, lipoproteins, and apoproteins by dietary fish oils in patients with hypertriglyceridemia,” The New England Journal of Medicine, vol. 312, no. 19, pp. 1210–1216, 1985. View at Google Scholar · View at Scopus
  36. W. S. Harris, W. E. Connor, D. R. Illingworth, D. W. Rothrock, and D. M. Foster, “Effects of fish oil on VLDL triglyceride kinetics in humans,” Journal of Lipid Research, vol. 31, no. 9, pp. 1549–1558, 1990. View at Google Scholar · View at Scopus
  37. P. J. Nestel, W. E. Connor, and M. F. Reardon, “Suppression by diets rich in fish oil of very low density lipoprotein production in man,” Journal of Clinical Investigation, vol. 74, no. 1, pp. 82–89, 1984. View at Google Scholar · View at Scopus
  38. H. S. Ejtahed, J. Mohtadi-Nia, A. Homayouni-Rad, M. Niafar, M. Asghari-Jafarabadi, and V. Mofid, “Probiotic yogurt improves antioxidant status in type 2 diabetic patients,” Nutrition, vol. 28, no. 5, pp. 539–543, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Matsuzaki, R. Yamazaki, S. Hashimoto, and T. Yokokura, “Antidiabetic effects of an oral administration of Lactobacillus casei in a non-insulin-dependent diabetes mellitus (NIDDM) model using KK-A(y) mice,” Endocrine Journal, vol. 44, no. 3, pp. 357–365, 1997. View at Google Scholar · View at Scopus
  40. M. Visser, L. M. Bouter, G. M. McQuillan, M. H. Wener, and T. B. Harris, “Elevated C-reactive protein levels in overweight and obese adults,” Journal of the American Medical Association, vol. 282, no. 22, pp. 2131–2135, 1999. View at Publisher · View at Google Scholar · View at Scopus
  41. P. D. Cani, N. M. Delzenne, J. Amar, and R. Burcelin, “Role of gut microflora in the development of obesity and insulin resistance following high-fat diet feeding,” Pathologie Biologie, vol. 56, no. 5, pp. 305–309, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Tilg and A. Kaser, “Gut microbiome, obesity, and metabolic dysfunction,” Journal of Clinical Investigation, vol. 121, no. 6, pp. 2126–2132, 2011. View at Publisher · View at Google Scholar · View at Scopus