Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2014, Article ID 573825, 7 pages
http://dx.doi.org/10.1155/2014/573825
Research Article

IL-17-Expressing CD4+ and CD8+ T Lymphocytes in Human Toxoplasmosis

1Course of Tropical Medicine and Infectology, Laboratory of Immunology, Federal University of Triângulo Mineiro, Avenida Frei Paulino, No. 30, 38025-180 Uberaba, MG, Brazil
2Laboratory of Biomedical Sciences, Federal University of Uberlândia, Rua 20, No. 1600, 38304-402 Ituiutaba, MG, Brazil
3Course of Tropical Medicine and Infectology, Laboratory of Parasitology, Federal University of Triângulo Mineiro, Avenida Frei Paulino, No. 30, 38025-180 Uberaba, MG, Brazil
4Laboratory of Histology and Embryology, Federal University of Uberlândia, Avenida Pará, No. 1720, 38400-902 Uberlândia, MG, Brazil
5Laboratory of Immunology, Federal University of Uberlândia, Avenida Pará, No. 1720, 38400-902 Uberlândia, MG, Brazil

Received 25 April 2014; Revised 11 July 2014; Accepted 12 July 2014; Published 17 August 2014

Academic Editor: Christophe Chevillard

Copyright © 2014 Jéssica Líver Alves Silva et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Nicolle and L. Manceaux, “Sur un protozoaire nouveau du gondi: toxoplasma,” Seances Academy Scientific, vol. 148, pp. 369–372, 1909. View at Google Scholar
  2. L. M. Weiss and K. Kim, Toxoplasma Gondii. The Model Apicomplexan: Perspectives and Metods, A. Press, 1st edition, 2007.
  3. J. P. Dubey, “Toxoplasmosis—a waterborne zoonosis,” Veterinary Parasitology, vol. 126, no. 1-2, pp. 57–72, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. B. J. Luft and J. S. Remington, “Toxoplasmic encephalitis in AIDS,” Clinical Infectious Diseases, vol. 15, no. 2, pp. 211–222, 1992. View at Publisher · View at Google Scholar · View at Scopus
  5. R. T. Gazzinelli, F. T. Hakim, S. Hieny, G. M. Shearer, and A. Sher, “Synergistic role of CD4+ and CD8+ T lymphocytes in IFN-γ production and protective immunity induced by an attenuated Toxoplasma gondii vaccine,” Journal of Immunology, vol. 146, no. 1, pp. 286–292, 1991. View at Google Scholar · View at Scopus
  6. T. Korn, E. Bettelli, M. Oukka, and V. K. Kuchroo, “IL-17 and Th17 cells,” Annual Review of Immunology, vol. 27, pp. 485–517, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Mesquita Junior, J. A. Araujo, T. T. Catelan et al., “Immune system—part II: basis of the immunological response mediated by T and B lymphocytes,” Revista Brasileira de Reumatologia, vol. 50, no. 5, pp. 552–580, 2010. View at Google Scholar
  8. D. J. Cua, J. Sherlock, Y. Chen et al., “Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain,” Nature, vol. 421, no. 6924, pp. 744–748, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. H. R. Yen, T. J. Harris, S. Wada et al., “Tc17 CD8 T cells: functional plasticity and subset diversity,” Journal of Immunology, vol. 183, no. 11, pp. 7161–7168, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Tomiyama, H. Takata, T. Matsuda, and M. Takiguchi, “Phenotypic classification of human CD8+ T cells reflecting their function: Inverse correlation between quantitative expression of CD27 and cytotoxic effector function,” European Journal of Immunology, vol. 34, no. 4, pp. 999–1010, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Huber, S. Heink, H. Grothe et al., “Th17-like developmental process leads to CD8+ Tc17 cells with reduced cytotoxic activity,” European Journal of Immunology, vol. 39, no. 7, pp. 1716–1725, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Saito, “Cytokine network at the feto-maternal interface,” Journal of Reproductive Immunology, vol. 47, no. 2, pp. 87–103, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Luppi, “How immune mechanisms are affected by pregnancy,” Vaccine, vol. 21, no. 24, pp. 3352–3357, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Schäfer-Somi, “Cytokines during early pregnancy of mammals: a review,” Animal Reproduction Science, vol. 75, no. 1-2, pp. 73–94, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Saito, A. Nakashima, T. Shima, and M. Ito, “Th1/Th2/Th17 and Regulatory T-Cell Paradigm in Pregnancy,” The American Journal of Reproductive Immunology, vol. 63, no. 6, pp. 601–610, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. P. J. Gaddi and G. S. Yap, “Cytokine regulation of immunopathology in toxoplasmosis,” Immunology and Cell Biology, vol. 85, no. 2, pp. 155–159, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Rezende-Oliveira, N. M. Silva, J. R. Mineo, and V. Rodrigues Junior, “Cytokines and chemokines production by mononuclear cells from parturient women after stimulation with live Toxoplasma gondii,” Placenta, vol. 33, no. 9, pp. 682–687, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. R. T. Gazzinelli, M. Wysocka, S. Hieny et al., “In the absence of endogenous IL-10, mice acutely infected with Toxoplasma gondii succumb to a lethal immune response dependent on CD4+ T cells and accompanied by overproduction of IL-12, IFN-γ, and TNF-α,” Journal of Immunology, vol. 157, no. 2, pp. 798–805, 1996. View at Google Scholar · View at Scopus
  19. J. Matowicka-Karna, V. Dymicka-Piekarska, and H. Kemona, “Does Toxoplasma gondii infection affect the levels of IgE and cytokines (IL-5, IL-6, IL-10, IL-12, and TNF-alpha)?” Clinical and Developmental Immunology, vol. 2009, Article ID 374696, 4 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Matowicka-Karna, H. Kemona, and A. Panasiuk, “The evaluations of concentrations IL-5 and IL-6 in toxoplasmosis,” Wiadomości Parazytologiczne, vol. 50, no. 3, pp. 417–423, 2004. View at Google Scholar · View at Scopus
  21. T. Kondo, H. Takata, F. Matsuki, and M. Takiguchi, “Cutting edge: Phenotypic characterization and differentiation of human CD8+ T cells producing IL-171,” Journal of Immunology, vol. 182, no. 4, pp. 1794–1798, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Nakashima, M. Ito, A. Shiozaki, T. Hidaka, and S. Saito, “Circulating and decidual levels in healthy,” American Journal of Reproductive Immunology, vol. 63, no. 2, pp. 104–109, 2009. View at Google Scholar
  23. H. Zhang, X. Hu, X. Liu, R. Zhang, Q. Fu, and X. Xu, “The Treg/Th17 imbalance in Toxoplasma gondii-infected pregnant mice,” American Journal of Reproductive Immunology, vol. 67, no. 2, pp. 112–121, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. M. N. Kelly, J. K. Kolls, K. Happel et al., “Interteukin-17/interleukin-17 receptor-mediated signaling is important for generation of an optimal polymorphonuclear response against Toxoplasma gondii infection,” Infection and Immunity, vol. 73, no. 1, pp. 617–621, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. S. P. Singh, H. H. Zhang, J. F. Foley, M. N. Hedrick, and J. M. Farber, “Human T cells that are able to produce IL-17 express the chemokine receptor CCR6,” Journal of Immunology, vol. 180, no. 1, pp. 214–221, 2008. View at Google Scholar · View at Scopus