Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2014, Article ID 651890, 13 pages
http://dx.doi.org/10.1155/2014/651890
Research Article

Paeonol Attenuates Cigarette Smoke-Induced Lung Inflammation by Inhibiting ROS-Sensitive Inflammatory Signaling

1Department of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
2Department of Neurosurgery, Cheng Hsin General Hospital, Taipei 11220, Taiwan
3Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan

Received 27 May 2014; Revised 14 July 2014; Accepted 15 July 2014; Published 3 August 2014

Academic Editor: Yuh-Lien Chen

Copyright © 2014 Meng-Han Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. F. Chung and I. M. Adcock, “Multifaceted mechanisms in COPD: inflammation, immunity, and tissue repair and destruction,” European Respiratory Journal, vol. 31, no. 6, pp. 1334–1356, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. P. J. Barnes, “Mediators of chronic obstructive pulmonary disease,” Pharmacological Reviews, vol. 56, no. 4, pp. 515–548, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. A. J. Thorley and T. D. Tetley, “Pulmonary epithelium, cigarette smoke, and chronic obstructive pulmonary disease,” International Journal of Chronic Obstructive Pulmonary Disease, vol. 2, no. 4, pp. 409–428, 2007. View at Google Scholar · View at Scopus
  4. B. T. Mossman, K. M. Lounsbury, and S. P. Reddy, “Oxidants and signaling by mitogen activated protein kinases in lung epithelium,” American Journal of Respiratory Cell and Molecular Biology, vol. 34, no. 6, pp. 666–669, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Mio, D. J. Romberger, A. B. Thompson, R. A. Robbins, A. Heires, and S. I. Rennard, “Cigarette smoke induces interleukin-8 release from human bronchial epithelial cells,” American Journal of Respiratory and Critical Care Medicine, vol. 155, no. 5, pp. 1770–1776, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Moretto, F. Facchinetti, T. Southworth, M. Civelli, D. Singh, and R. Patacchini, “α,β-Unsaturated aldehydes contained in cigarette smoke elicit IL-8 release in pulmonary cells through mitogen-activated protein kinases,” American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 296, no. 5, pp. L839–L848, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. L. Wu, A. H. Lin, C. H. Chen et al., “Glucosamine attenuates cigarette smoke-induced lung inflammation by inhibiting ROS-sensitive inflammatory signaling,” Free Radical Biology and Medicine, vol. 69, pp. 208–218, 2014. View at Google Scholar
  8. G. J. Tang, H. Y. Wang, J. Y. Wang et al., “Novel role of AMP-activated protein kinase signaling in cigarette smoke induction of IL-8 in human lung epithelial cells and lung inflammation in mice,” Free Radical Biology and Medicine, vol. 50, no. 11, pp. 1492–1502, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. I. Rahman and I. M. Adcock, “Oxidative stress and redox regulation of lung inflammation in COPD,” European Respiratory Journal, vol. 28, no. 1, pp. 219–242, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. I.-T. Lee and C.-M. Yang, “Inflammatory signalings involved in airway and pulmonary diseases,” Mediators of Inflammation, vol. 2013, Article ID 791231, 12 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Lin, I. Lee, Y. Yang, C. Lee, Y. R. Kou, and C. Yang, “Induction of COX-2/PGE2/IL-6 is crucial for cigarette smoke extract-induced airway inflammation: role of TLR4-dependent NADPH oxidase activation,” Free Radical Biology and Medicine, vol. 48, no. 2, pp. 240–254, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. S.-E. Cheng, S.-F. Luo, M.-J. Jou et al., “Cigarette smoke extract induces cytosolic phospholipase A2 expression via NADPH oxidase, MAPKs, AP-1, and NF-κB in human tracheal smooth muscle cells,” Free Radical Biology and Medicine, vol. 46, no. 7, pp. 948–960, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. I. Rahman and I. Kilty, “Antioxidant therapeutic targets in COPD,” Current Drug Targets, vol. 7, no. 6, pp. 707–720, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Chen, D. Liu, L. W. Soromou et al., “Paeonol suppresses lipopolysaccharide-induced inflammatory cytokines in macrophage cells and protects mice from lethal endotoxin shock,” Fundamental & Clinical Pharmacology, vol. 28, no. 3, pp. 268–276, 2014. View at Publisher · View at Google Scholar · View at Scopus
  15. P. K. Fu, C. L. Wu, T. H. Tsai, and C. L. Hsieh, “Anti-inflammatory and anticoagulative effects of paeonol on LPS-induced acute lung injury in rats,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 837513, 12 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. Q. Du, G. Feng, L. Shen, J. Cui, and J. Cai, “Paeonol attenuates airway inflammation and hyperresponsiveness in a murine model of ovalbumin-induced asthma,” Canadian Journal of Physiology and Pharmacology, vol. 88, no. 10, pp. 1010–1016, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. J. F. Zhao, S. J. Jim Leu, S. K. Shyue, K. H. Su, J. Wei, and T. S. Lee, “Novel effect of paeonol on the formation of foam cells: promotion of LXRa-ABCA1-dependent cholesterol efflux in macrophages,” The American Journal of Chinese Medicine, vol. 41, no. 5, pp. 1079–1096, 2013. View at Google Scholar
  18. T.-C. Chou, “Anti-inflammatory and analgesic effects of paeonol in carrageenan-evoked thermal hyperalgesia,” British Journal of Pharmacology, vol. 139, no. 6, pp. 1146–1152, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. H. S. Chae, O. H. Kang, Y. S. Lee et al., “Inhibition of LPS-induced iNOS, COX-2 and inflammatory mediator expression by paeonol through the MAPKs inactivation in RAW 264.7 cells,” The American Journal of Chinese Medicine, vol. 37, no. 1, pp. 181–194, 2009. View at Google Scholar · View at Scopus
  20. S. W. Himaya, B. Ryu, Z. Qian, and S. Kim, “Paeonol from Hippocampus kuda Bleeler suppressed the neuro-inflammatory responses in vitro via NF-κB and MAPK signaling pathways,” Toxicology in Vitro, vol. 26, no. 6, pp. 878–887, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. T. Tseng, Y. Y. Hsu, Y. T. Shih, and Y. C. Lo, “Paeonol attenuates microglia-mediated inflammation and oxidative stress-induced neurotoxicity in rat primary microglia and cortical neurons,” Shock, vol. 37, no. 3, pp. 312–318, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. C. S. Yun, Y. G. Choi, M. Y. Jeong, J. H. Lee, and S. Lim, “Moutan Cortex Radicis inhibits inflammatory changes of gene expression in lipopolysaccharide-stimulated gingival fibroblasts,” Journal of Natural Medicines, vol. 67, no. 3, pp. 576–589, 2013. View at Publisher · View at Google Scholar · View at Scopus
  23. I. T. Nizamutdinova, H. M. Oh, Y. N. Min et al., “Paeonol suppresses intercellular adhesion molecule-1 expression in tumor necrosis factor-α-stimulated human umbilical vein endothelial cells by blocking p38, ERK and nuclear factor-κB signaling pathways,” International Immunopharmacology, vol. 7, no. 3, pp. 343–350, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Y. Zhang, N. Ge, and Z. Y. Zhang, “Theoretical elucidation of activity differences of five phenolic antioxidants,” Acta Pharmacologica Sinica, vol. 20, no. 4, pp. 363–366, 1999. View at Google Scholar · View at Scopus
  25. H. Matsuda, T. Ohta, A. Kawaguchi, and M. Yoshikawa, “Bioactive constituents of Chinese natural medicines. VI. Moutan Cortex. (2): structures and radical scavenging effects of suffruticosides A, B, C, D, and E and galloyl-oxypaeoniflorin,” Chemical & Pharmaceutical Bulletin, vol. 49, no. 1, pp. 69–72, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. C.-L. Hsieh, C.-Y. Cheng, T.-H. Tsai et al., “Paeonol reduced cerebral infarction involving the superoxide anion and microglia activation in ischemia-reperfusion injured rats,” Journal of Ethnopharmacology, vol. 106, no. 2, pp. 208–215, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. B. Yu, Y. W. Liao, K. H. Su et al., “Prior exercise training alleviates the lung inflammation induced by subsequent exposure to environmental cigarette smoke,” Acta Physiologica, vol. 205, no. 4, pp. 532–540, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. A. J. Connor, J. D. Laskin, and D. L. Laskin, “Ozone-induced lung injury and sterile inflammation: role of toll-like receptor 4,” Experimental and Molecular Pathology, vol. 92, no. 2, pp. 229–235, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Yamaguchi, F. Nasu, A. Harada, and M. Kunitomo, “Oxidants in the gas phase of cigarette smoke pass through the lung alveolar wall and raise systemic oxidative stress,” Journal of Pharmacological Sciences, vol. 103, no. 3, pp. 275–282, 2007. View at Google Scholar
  30. F. Facchinetti, F. Amadei, P. Geppetti et al., “α,β-unsaturated aldehydes in cigarette smoke release inflammatory mediators from human macrophages,” American Journal of Respiratory Cell and Molecular Biology, vol. 37, no. 5, pp. 617–623, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. P. L. Liu, Y. L. Chen, S. J. Lin, and Y. R. Kou, “Wood smoke extract induces oxidative stress-mediated caspase-independent apoptosis in human lung endothelial cells: role of AIF and EndoG,” The American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 289, no. 5, pp. L739–L749, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Benov, L. Sztejnberg, and I. Fridovich, “Critical evaluation of the use of hydroethidine as a measure of superoxide anion radical,” Free Radical Biology and Medicine, vol. 25, no. 7, pp. 826–831, 1998. View at Publisher · View at Google Scholar · View at Scopus
  33. A. A. Beg, T. S. Finco, P. V. Nantermet, and A. S. Baldwin Jr., “Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of IκBα: a mechanism for NF-κB activation,” Molecular and Cellular Biology, vol. 13, no. 6, pp. 3301–3310, 1993. View at Google Scholar · View at Scopus
  34. T. Nakayama, D. F. Church, and W. A. Pryor, “Quantitative analysis of the hydrogen peroxide formed in aqueous cigarette tar extracts,” Free Radical Biology and Medicine, vol. 7, no. 1, pp. 9–15, 1989. View at Publisher · View at Google Scholar · View at Scopus
  35. A. C. Toledo, R. M. Magalhaes, D. C. Hizume et al., “Aerobic exercise attenuates pulmonary injury induced by exposure to cigarette smoke,” European Respiratory Journal, vol. 39, no. 2, pp. 254–264, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. G. P. Bienert and F. Chaumont, “Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide,” Biochimica et Biophysica Acta, vol. 1840, no. 5, pp. 1596–1604, 2014. View at Google Scholar
  37. H. Yao, S. R. Yang, A. Kode et al., “Redox regulation of lung inflammation: role of NADPH oxidase and NF-κB signalling,” Biochemical Society Transactions, vol. 35, no. 5, pp. 1151–1155, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. Z. Orosz, A. Csiszar, N. Labinskyy et al., “Cigarette smoke-induced proinflammatory alterations in the endothelial phenotype: role of NAD(P)H oxidase activation,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 292, no. 1, pp. H130–H139, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. L. H. Zhang, P. G. Xiao, Y. Huang, and Y. K. Qian, “Recent progresses in pharmacological and clinical studies of paeonol,” Chinese Journal of Integrated Traditional and Western Medicine, vol. 16, no. 3, pp. 187–190, 1996. View at Google Scholar · View at Scopus
  40. T. Yoshida and R. M. Tuder, “Pathobiology of cigarette smoke-induced chronic obstructive pulmonary disease,” Physiological Reviews, vol. 87, no. 3, pp. 1047–1082, 2007. View at Publisher · View at Google Scholar · View at Scopus