Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2014 (2014), Article ID 683230, 11 pages
http://dx.doi.org/10.1155/2014/683230
Review Article

Chagas Disease Cardiomyopathy: Immunopathology and Genetics

1Heart Institute (InCor), University of São Paulo School of Medicine, Avenida Dr. Enéas de Carvalho Aguiar, 44 Bloco 2 9° Andar, 05406-000 São Paulo, SP, Brazil
2Institute for Investigation in Immunology (iii), INCT, São Paulo, SP, Brazil
3Division of Clinical Immunology and Allergy, University of São Paulo School of Medicine, 05406-000 São Paulo, SP, Brazil
4Aix-Marseille Université, INSERM, GIMP UMR_S906, 13385 Marseille, France

Received 11 June 2014; Revised 5 August 2014; Accepted 5 August 2014; Published 19 August 2014

Academic Editor: Marcelo T. Bozza

Copyright © 2014 Edecio Cunha-Neto and Christophe Chevillard. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Salvatella, P. Irabedra, D. Sánchez, L. G. Castellanos, and M. Espinal, “South-south cooperation for Chagas disease,” The Lancet, vol. 382, no. 9890, pp. 395–396, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. C. J. Schofield, J. Jannin, and R. Salvatella, “The future of Chagas disease control,” Trends in Parasitology, vol. 22, no. 12, pp. 583–588, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. World Health Organisation, Control of Chagas Disease, World Health Organization Technical Report, WHO, Geneva, Switzerland, 2002.
  4. L. V. Kirchhoff and R. D. Pearson, “The emergence of chagas disease in the United States and Canada,” Current Infectious Disease Reports, vol. 9, no. 5, pp. 347–350, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. U. O. Martín, D. Afchain, A. de Marteleur, O. Ledesma, and A. Caprón, “Circulating immune complexes in different developmental stages of Chagas' disease,” Medicina, vol. 47, no. 2, pp. 159–162, 1987. View at Google Scholar · View at Scopus
  6. M. de Lourdes Higuchi, C. F. de Morais, A. C. P. Barreto et al., “The role of active myocarditis in the development of heart failure in chronic Chagas' disease: a study based on endomyocardial biopsies,” Clinical Cardiology, vol. 10, no. 11, pp. 665–670, 1987. View at Publisher · View at Google Scholar · View at Scopus
  7. A. M. B. Bilate, V. M. C. Salemi, F. J. A. Ramires et al., “The Syrian hamster as a model for the dilated cardiomyopathy of Chagas' disease: a quantitative echocardiographical and histopathological analysis,” Microbes and Infection, vol. 5, no. 12, pp. 1116–1124, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. L. E. Ramirez, E. Lages-Silva, J. M. Soares Jr., and E. Chapadeiro, “The hamster (Mesocricetus auratus) as experimental model in Chagas' disease: parasitological and histopathological studies in acute and chronic phases of Trypanosoma cruziinfection,” Revista da Sociedade Brasileira de Medicina Tropical, vol. 27, no. 3, pp. 163–169, 1994. View at Google Scholar · View at Scopus
  9. R. B. Bestetti and G. Muccillo, “Clinical course of chagas' heart disease: a comparison with dilated cardiomyopathy,” International Journal of Cardiology, vol. 60, no. 2, pp. 187–193, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. M. M. Barbosa, M. O. C. Rocha, F. A. Botoni, A. L. P. Ribeiro, and M. C. P. Nunes, “Is atrial function in Chagas dilated cardiomyopathy more impaired than in idiopathic dilated cardiomyopathy?” European Journal of Echocardiography, vol. 12, no. 9, pp. 643–647, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Milei, R. Storino, G. F. Alonso, R. Beigelman, S. Vanzulli, and V. J. Ferrans, “Endomyocardial biopsies in chronic chagasic cardiomyopathy,” Cardiology, vol. 80, no. 5-6, pp. 424–437, 1992. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Cunha-Neto, L. G. Nogueira, P. C. Teixeira et al., “Immunological and non-immunological effects of cytokines and chemokines in the pathogenesis of chronic Chagas disease cardiomyopathy,” Memorias do Instituto Oswaldo Cruz, vol. 104, supplement 1, pp. 252–258, 2009. View at Google Scholar · View at Scopus
  13. M. de Lourdes Higuchi, P. S. Gutierrez, V. D. Aiello et al., “Immunohistochemical characterization of infiltrating cells in human chronic chagasic myocarditis: comparison with myocardial rejection process,” Virchows Archiv A: Pathological Anatomy and Histopathology, vol. 423, no. 3, pp. 157–160, 1993. View at Publisher · View at Google Scholar · View at Scopus
  14. D. D. Reis, E. M. Jones, S. Tostes Jr. et al., “Characterization of inflammatory infiltrates in chronic chagasic myocardial lesions: presence of tumor necrosis factor-α+ cells and dominance of granzyme A+, CD8+ lymphocytes,” American Journal of Tropical Medicine and Hygiene, vol. 48, no. 5, pp. 637–644, 1993. View at Google Scholar · View at Scopus
  15. L. C. J. Abel, L. V. Rizzo, B. Ianni et al., “Chronic Chagas' disease cardiomyopathy patients display an increased IFN-γ response to Trypanosoma cruzi infection,” Journal of Autoimmunity, vol. 17, no. 1, pp. 99–107, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. M. J. F. Morato, D. G. Colley, and M. R. Powell, “Cytokine profiles during experimental Chagas' disease,” Brazilian Journal of Medical and Biological Research, vol. 31, no. 1, pp. 123–125, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. D. B. Rocha Rodrigues, M. A. dos Reis, A. Romano et al., “In situ expression of regulatory cytokines by heart inflammatory cells in Chagas' disease patients with heart failure,” Clinical & Developmental Immunology, vol. 2012, Article ID 361730, 7 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. N. Añez, H. Carrasco, H. Parada et al., “Myocardial parasite persistence in chronic chagasic patients,” American Journal of Tropical Medicine and Hygiene, vol. 60, no. 5, pp. 726–732, 1999. View at Google Scholar · View at Scopus
  19. S. G. Fonseca, H. Moins-Teisserenc, E. Clave et al., “Identification of multiple HLA-A*0201-restricted cruzipain and FL-160 CD8+ epitopes recognized by T cells from chronically Trypanosoma cruzi-infected patients,” Microbes and Infection, vol. 7, no. 4, pp. 688–697, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Cunha-Neto and J. Kalil, “Autoimmunity in Chagas' heart disease,” São Paulo Medical Journal, vol. 113, no. 2, pp. 757–766, 1995. View at Google Scholar · View at Scopus
  21. A. Bafica, H. C. Santiago, R. Goldszmid, C. Ropert, R. T. Gazzinelli, and A. Sher, “Cutting edge: TLR9 and TLR2 signaling together account for MyD88-dependent control of parasitemia in Trypanosoma cruzi infection,” Journal of Immunology, vol. 177, no. 6, pp. 3515–3519, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. V. Michailowsky, M. R. N. Celes, A. P. Marino et al., “Intercellular adhesion molecule 1 deficiency leads to impaired recruitment of T lymphocytes and enhanced host susceptibility to infection with Trypanosoma cruzi,” The Journal of Immunology, vol. 173, no. 1, pp. 463–470, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. A. M. B. Bilate and E. Cunha-Neto, “Chagas disease cardiomyopathy: current concepts of an old disease,” Revista do Instituto de Medicina Tropical de São Paulo, vol. 50, no. 2, pp. 67–74, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. M. M. Teixeira, R. T. Gazzinelli, and J. S. Silva, “Chemokines, inflammation and Trypanosoma cruzi infection,” Trends in Parasitology, vol. 18, no. 6, pp. 262–265, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. A. P. M. P. Marino, A. da Silva, P. dos Santos et al., “Regulated on activation, normal T cell expressed and secreted (RANTES) antagonist (Met-RANTES) controls the early phase of trypanosoma cruzi-elicited myocarditis,” Circulation, vol. 110, no. 11, pp. 1443–1449, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. J. S. Silva, D. R. Twardzik, and S. G. Reed, “Regulation of Trypanosoma cruzi infections in vitro and in vivo by transforming growth factor β (TGF-β),” Journal of Experimental Medicine, vol. 174, no. 3, pp. 539–545, 1991. View at Publisher · View at Google Scholar · View at Scopus
  27. R. R. dos Santos, M. A. Rossi, J. L. Laus, J. S. Silva, W. Savino, and J. Mengel, “Anti-CD4 abrogates rejection and reestablishes long-term tolerance to syngeneic newborn hearts grafted in mice chronically infected with Trypanosoma cruzi,” Journal of Experimental Medicine, vol. 175, no. 1, pp. 29–39, 1992. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Hölscher, M. Mohrs, W. J. Dai et al., “Tumor necrosis factor alpha-mediated toxic shock in Trypanosoma cruzi-infected interleukin 10-deficient mice,” Infection and Immunity, vol. 68, no. 7, pp. 4075–4083, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. P. M. da Matta Guedes, F. R. S. Gutierrez, F. L. Maia et al., “IL-17 produced during Trypanosoma cruzi infection plays a central role in regulating parasite-induced myocarditis.,” PLoS neglected tropical diseases, vol. 4, no. 2, Article ID e604, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. F. S. Mariano, F. R. S. Gutierrez, W. R. Pavanelli et al., “The involvement of CD4+CD25+ T cells in the acute phase of Trypanosoma cruzi infection,” Microbes and Infection, vol. 10, no. 7, pp. 825–833, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. E. Moretti, B. Basso, L. Cervetta, A. Brigada, and G. Barbieri, “Patterns of cytokines and soluble cellular receptors in the sera of children with acute Chagas' disease,” Clinical and Diagnostic Laboratory Immunology, vol. 9, no. 6, pp. 1324–1327, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Samudio, S. Montenegro-James, M. de Cabral et al., “Differential expression of systemic cytokine profiles in Chagas' disease is associated with endemicity of Trypanosoma cruzi infections,” Acta Tropica, vol. 69, no. 2, pp. 89–97, 1998. View at Publisher · View at Google Scholar · View at Scopus
  33. R. C. Ferreira, B. M. Ianni, L. C. J. Abel et al., “Increased plasma levels of tumor necrosis factor-α in asymptomatic “Indeterminate” and Chagas disease cardiomyopathy patients,” Memórias do Instituto Oswaldo Cruz, vol. 98, no. 3, pp. 407–411, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Talvani, M. O. C. Rocha, A. L. Ribeiro, R. Correa-Oliveira, and M. M. Teixeira, “Chemokine receptor expression on the surface of peripheral blood mononuclear cells in Chagas disease,” Journal of Infectious Diseases, vol. 189, no. 2, pp. 214–220, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. J. A. S. Gomes, L. M. G. Bahia-Oliveira, M. O. C. Rocha, O. A. Martins-Filho, G. Gazzinelli, and R. Correa-Oliveira, “Evidence that development of severe cardiomyopathy in human Chagas' disease is due to a Th1-specific immune response,” Infection and Immunity, vol. 71, no. 3, pp. 1185–1193, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. F. F. Araujo, J. A. S. Gomes, M. O. C. Rocha et al., “Potential role of CD4+CD25high regulatory T cells in morbidity in Chagas disease,” Frontiers in Bioscience, vol. 12, no. 8, pp. 2797–2806, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. A. B. M. da Silveira, F. F. de Araújo, M. A. R. Freitas et al., “Characterization of the presence and distribution of Foxp3+ cells in chagasic patients with and without megacolon,” Human Immunology, vol. 70, no. 1, pp. 65–67, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. E. Cunha-Neto, V. J. Dzau, P. D. Allen et al., “Cardiac gene expression profiling provides evidence for cytokinopathy as a molecular mechanism in Chagas' disease cardiomyopathy,” The American Journal of Pathology, vol. 167, no. 2, pp. 305–313, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. M. M. Reis, M. D. L. Higuchi, L. A. Benvenuti et al., “An in situ quantitative immunohistochemical study of cytokines and IL-2R+ in chronic human chagasic myocarditis: Correlation with the presence of myocardial Trypanosoma cruzi antigens,” Clinical Immunology and Immunopathology, vol. 83, no. 2, pp. 165–172, 1997. View at Publisher · View at Google Scholar · View at Scopus
  40. S. G. Fonseca, M. M. Reis, V. Coelho et al., “Locally produced survival cytokines IL-15 and IL-7 may be associated to the predominance of CD8+ T cells at heart lesions of human chronic chagas disease cardiomyopathy,” Scandinavian Journal of Immunology, vol. 66, no. 2-3, pp. 362–371, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. L. G. Nogueira, R. H. B. Santos, B. M. Ianni et al., “Myocardial chemokine expression and intensity of myocarditis in Chagas cardiomyopathy are controlled by polymorphisms in CXCL9 and CXCL10,” PLoS Neglected Tropical Diseases, vol. 6, no. 10, Article ID e1867, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. M. A. Munoz-Fernandez and M. Fresno, “Activation of human macrophages for the killing of intracellular Trypanosoma cruzi by TNF-α and IFN-γ through a nitric oxide-dependent mechanism,” Immunology Letters, vol. 33, no. 1, pp. 35–40, 1992. View at Publisher · View at Google Scholar · View at Scopus
  43. T. C. Araújo-Jorge, M. C. Waghabi, A. M. Hasslocher-Moreno et al., “Implication of transforming growth factor-β1 in Chagas disease myocardiopathy,” Journal of Infectious Diseases, vol. 186, no. 12, pp. 1823–1828, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. L. Riol-Blanco, N. Sánchez-Sánchez, A. Torres et al., “The chemokine receptor CCR7 activates in dendritic cells two signaling modules that independently regulate chemotaxis and migratory speed,” The Journal of Immunology, vol. 174, no. 7, pp. 4070–4080, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. R. Liu, C. Zhou, D. Wang et al., “Enhancement of DNA vaccine potency by sandwiching antigen-coding gene between secondary lymphoid tissue chemokine (SLC) and IgG Fc fragment genes,” Cancer Biology and Therapy, vol. 5, no. 4, pp. 427–434, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. P. C. Teixeira, L. K. Iwai, A. C. K. Kuramoto et al., “Proteomic inventory of myocardial proteins from patients with chronic Chagas' cardiomyopathy,” Brazilian Journal of Medical and Biological Research, vol. 39, no. 12, pp. 1549–1562, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. P. C. Teixeira, R. H. B. Santos, A. I. Fiorelli et al., “Selective decrease of components of the creatine kinase system and ATP synthase complex in chronic Chagas disease cardiomyopathy,” PLoS Neglected Tropical Diseases, vol. 5, no. 6, Article ID e1205, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. H. Jiang, G. Qiu, J. Li-Ling, N. Xin, and K. Sun, “Reduced ACTC1 expression might play a role in the onset of congenital heart disease by inducing cardiomyocyte apoptosis,” Circulation Journal, vol. 74, no. 11, pp. 2410–2418, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Tostes Jr., D. B. Rocha-Rodrigues, G. de Araujo Pereira, and V. Rodrigues Jr., “Myocardiocyte apoptosis in heart failure in chronic Chagas' disease,” International Journal of Cardiology, vol. 99, no. 2, pp. 233–237, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. R. S. Foo, K. Mani, and R. N. Kitsis, “Death begets failure in the heart,” The Journal of Clinical Investigation, vol. 115, no. 3, pp. 565–571, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. F. Zicker, P. G. Smith, J. C. Almeida Netto, R. M. Oliveira, and E. M. S. Zicker, “Physical activity, opportunity for reinfection, and sibling history of heart disease as risk factors for Chagas' cardiopathy,” The American Journal of Tropical Medicine and Hygiene, vol. 43, no. 5, pp. 498–505, 1990. View at Google Scholar · View at Scopus
  52. M. T. Fernandez-Mestre, Z. Layrisse, S. Montagnani et al., “Influence of the HLA class II polymorphism in chronic Chagas' disease,” Parasite Immunology, vol. 20, no. 4, pp. 197–203, 1998. View at Google Scholar · View at Scopus
  53. N. H. S. Deghaide, R. O. Dantas, and E. A. Donadi, “HLA class I and II profiles of patients presenting with Chagas' disease,” Digestive Diseases and Sciences, vol. 43, no. 2, pp. 246–252, 1998. View at Publisher · View at Google Scholar · View at Scopus
  54. Z. Layrisse, M. T. Fernandez, S. Montagnani et al., “HLA-C*03 is a risk factor for cardiomyopathy in Chagas disease,” Human Immunology, vol. 61, no. 9, pp. 925–929, 2000. View at Publisher · View at Google Scholar · View at Scopus
  55. I. A. Colorado, H. Acquatella, F. Catalioti, M. T. Fernandez, and Z. Layrisse, “HLA class II DRB1, DQB11, DPB1 polymorphism and cardiomyopathy due to Trypanosoma cruzi chronic infection,” Human Immunology, vol. 61, no. 3, pp. 320–325, 2000. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Nieto, Y. Beraún, M. D. Callado et al., “HLA haplotypes are associated with differential susceptibility to Trypanosoma cruzi infection,” Tissue Antigens, vol. 55, no. 3, pp. 195–198, 2000. View at Publisher · View at Google Scholar · View at Scopus
  57. S. G. Borrás, C. Diez, C. Cotorruelo et al., “HLA class II DRB1 polymorphism in Argentinians undergoing chronic Trypanosoma cruzi infection,” Annals of Clinical Biochemistry, vol. 43, no. 3, pp. 214–216, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. K. C. Faé, S. A. Drigo, E. Cunha-Neto et al., “HLA and β-myosin heavy chain do not influence susceptibility to Chagas' disease cardiomyopathy,” Microbes and Infection, vol. 2, no. 7, pp. 745–751, 2000. View at Publisher · View at Google Scholar · View at Scopus
  59. J. M. Rodríguez-Pérez, D. Cruz-Robles, G. Hernández-Pacheco et al., “Tumor necrosis factor-alpha promoter polymorphism in Mexican patients with Chagas' disease,” Immunology Letters, vol. 98, no. 1, pp. 97–102, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. V. Campelo, R. O. Dantas, R. T. Simões et al., “TNF microsatellite alleles in Brazilian chagasic patients,” Digestive Diseases and Sciences, vol. 52, no. 12, pp. 3334–3339, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. Y. Beraún, A. Nieto, M. D. Collado, A. González, and J. Martín, “Polymorphisms at tumor necrosis factor (TNF) loci are not associated with Chagas' disease,” Tissue Antigens, vol. 52, no. 1, pp. 81–83, 1998. View at Publisher · View at Google Scholar · View at Scopus
  62. S. A. Drigo, E. Cunha-Neto, B. Ianni et al., “Lack of association of tumor necrosis factor-α polymorphisms with Chagas disease in Brazilian patients,” Immunology Letters, vol. 108, no. 1, pp. 109–111, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. S. A. Drigo, E. Cunha-Neto, B. Ianni et al., “TNF gene polymorphisms are associated with reduced survival in severe Chagas' disease cardiomyopathy patients,” Microbes and Infection, vol. 8, no. 3, pp. 598–603, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. R. Ramasawmy, E. Cunha-Neto, K. C. Faé et al., “BAT1, a putative anti-inflammatory gene, is associated with chronic chagas cardiomyopathy,” Journal of Infectious Diseases, vol. 193, no. 10, pp. 1394–1399, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. R. Ramasawmy, K. C. Fae, E. Cunha-Neto et al., “Polymorphisms in the gene for lymphotoxin-alpha predispose to chronic chagas cardiomyopathy,” Journal of Infectious Diseases, vol. 196, no. 12, pp. 1836–1843, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. C. W. Pissetti, R. F. de Oliveira, D. Correia, G. A. N. Nascentes, M. M. Llaguno, and V. Rodrigues, “Association between the lymphotoxin-alpha gene polymorphism and chagasic cardiopathy,” Journal of Interferon and Cytokine Research, vol. 33, no. 3, pp. 130–135, 2013. View at Publisher · View at Google Scholar · View at Scopus
  67. R. Ramasawmy, K. C. Faé, E. Cunha-Neto et al., “Variants in the promoter region of IKBL/NFKBIL1 gene may mark susceptibility to the development of chronic Chagas' cardiomyopathy among Trypanosoma cruzi-infected individuals,” Molecular Immunology, vol. 45, no. 1, pp. 283–288, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. G. C. Costa, M. O. D. C. Rocha, P. R. Moreira et al., “Functional IL-10 gene polymorphism is associated with Chagas disease cardiomyopathy,” Journal of Infectious Diseases, vol. 199, no. 3, pp. 451–454, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. M. Moreno, E. L. Silva, L. E. Ramírez, L. G. Palacio, D. Rivera, and M. Arcos-Burgos, “Chagas' disease susceptibility/resistance: linkage disequilibrium analysis suggest epistasis between major histocompatibility complex and interleukin-10,” Tissue Antigens, vol. 64, no. 1, pp. 18–24, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. C. A. Petersen and B. A. Burleigh, “Role for interleukin-1β in Trypanosoma cruzi-induced cardiomyocyte hypertrophy,” Infection and Immunity, vol. 71, no. 8, pp. 4441–4447, 2003. View at Publisher · View at Google Scholar · View at Scopus
  71. O. Flórez, G. Zafra, C. Morillo, J. Martín, and C. I. González, “Interleukin-1 gene cluster polymorphism in chagas disease in a Colombian case-control study,” Human Immunology, vol. 67, no. 9, pp. 741–748, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. D. Cruz-Robles, J. P. Chvez-Gonzlez, M. M. Cavazos-Quero, O. Prez-Mndez, P. A. Reyes, and G. Vargas-Alarcn, “Association between IL-1B and IL-1RN gene polymorphisms and chagas' disease development susceptibility,” Immunological Investigations, vol. 38, no. 3-4, pp. 231–239, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. M. I. Antúnez and R. L. Cardoni, “IL-12 and IFN-gamma production, and NK cell activity, in acute and chronic experimental Trypanosoma cruzi infections,” Immunology Letters, vol. 71, no. 2, pp. 103–109, 2000. View at Publisher · View at Google Scholar · View at Scopus
  74. V. Michailowsky, N. M. Silva, C. D. Rocha, L. Q. Vieira, J. Lannes-Vieira, and R. T. Gazzinelli, “Pivotal role of interleukin-12 and interferon-γ axis in controlling tissue parasitism and inflammation in the heart and central nervous system during Trypanosoma cruzi infection,” The American Journal of Pathology, vol. 159, no. 5, pp. 1723–1733, 2001. View at Publisher · View at Google Scholar · View at Scopus
  75. S. E. B. Graefe, T. Jacobs, I. Gaworski, U. Klauenberg, C. Steeg, and B. Fleischer, “Interleukin-12 but not interleukin-18 is required for immunity to Trypanosoma cruzi in mice,” Microbes and Infection, vol. 5, no. 10, pp. 833–839, 2003. View at Publisher · View at Google Scholar · View at Scopus
  76. G. Zafra, C. Morillo, J. Martín, A. González, and C. I. González, “Polymorphism in the 3′ UTR of the IL12B gene is associated with Chagas' disease cardiomyopathy,” Microbes and Infection, vol. 9, no. 9, pp. 1049–1052, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. L. A. J. O'Neill and A. G. Bowie, “The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling,” Nature Reviews Immunology, vol. 7, no. 5, pp. 353–364, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. R. Ramasawmy, E. Cunha-Neto, K. C. Fae et al., “Heterozygosity for the S180L variant of MAL/TIRAP, a gene expressing an adaptor protein in the toll-like receptor pathway, is associated with lower risk of developing chronic chagas cardiomyopathy,” Journal of Infectious Diseases, vol. 199, no. 12, pp. 1838–1845, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. O. A. Torres, J. E. Calzada, Y. Beraún et al., “Association of the macrophage migration inhibitory factor -173G/C polymorphism with Chagas disease,” Human Immunology, vol. 70, no. 7, pp. 543–546, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. P. Aukrust, T. Ueland, F. Müller et al., “Elevated circulating levels of C-C chemokines in patients with congestive heart failure,” Circulation, vol. 97, no. 12, pp. 1136–1143, 1998. View at Publisher · View at Google Scholar · View at Scopus
  81. A. Talvani, M. O. C. Rocha, L. S. Barcelos, Y. M. Gomes, A. L. Ribeiro, and M. M. Teixeira, “Elevated concentrations of CCL2 and tumor necrosis factor-α in chagasic cardiomyopathy,” Clinical Infectious Diseases, vol. 38, no. 7, pp. 943–950, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. F. Villalta, Y. Zhang, K. E. Bibb, J. C. Kappes, and M. F. Lima, “The cysteine-cysteine family of chemokines RANTES, MIP-1alpha, and MIP-1beta induce trypanocidal activity in human macrophages via nitric oxide,” Infection and Immunity, vol. 66, no. 10, pp. 4690–4695, 1998. View at Google Scholar · View at Scopus
  83. F. S. Machado, N. S. Koyama, V. Carregaro et al., “CCR5 plays a critical role in the development of myocarditis and host protection in mice infected with Trypanosoma cruzi,” Journal of Infectious Diseases, vol. 191, no. 4, pp. 627–636, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. R. Ramasawmy, E. Cunha-Neto, K. C. Faé et al., “The monocyte chemoattractant protein-1 gene polymorphism is associated with cardiomyopathy in human Chagas disease,” Clinical Infectious Diseases, vol. 43, no. 3, pp. 305–311, 2006. View at Publisher · View at Google Scholar · View at Scopus
  85. J. E. Calzada, A. Nieto, Y. Beraún, and J. Martín, “Chemokine receptor CCR5 polymorphisms and Chagas' disease cardiomyopathy,” Tissue Antigens, vol. 58, no. 3, pp. 154–158, 2001. View at Publisher · View at Google Scholar · View at Scopus
  86. M. T. Fernández-Mestre, S. Montagnani, and Z. Layrisse, “Is the CCR5-59029-G/G genotype a protective factor for cardiomyopathy in Chagas disease?” Human Immunology, vol. 65, no. 7, pp. 725–728, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. F. C. Dias, S. Medina Tda, C. T. Mendes-Junior et al., “Polymorphic sites at the immunoregulatory CTLA-4 gene are associated with chronic chagas disease and its clinical manifestations,” PLoS ONE, vol. 8, no. 10, Article ID e78367, 2013. View at Publisher · View at Google Scholar
  88. G. Zafra, O. Flórez, C. A. Morillo, L. E. Echeverría, J. Martín, and C. I. González, “Polymorphisms of toll-like receptor 2 and 4 genes in Chagas disease,” Memórias do Instituto Oswaldo Cruz, vol. 103, no. 1, pp. 27–30, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. G. Robledo, C. I. González, C. Morillo, J. Martín, and A. González, “Association study of PTPN22 C1858T polymorphism in Trypanosoma cruzi infection,” Tissue Antigens, vol. 69, no. 3, pp. 261–264, 2007. View at Publisher · View at Google Scholar · View at Scopus
  90. J. E. Calzada, A. Nieto, M. A. López-Nevot, and J. Martín, “Lack of association between NRAMP1 gene polymorphisms and Trypanosoma cruzi infection,” Tissue Antigens, vol. 57, no. 4, pp. 353–357, 2001. View at Publisher · View at Google Scholar · View at Scopus
  91. C. Pascuzzo-Lima, J. C. Mendible, and R. A. Bonfante-Cabarcas, “Angiotensin-converting enzyme insertion/deletion gene polymorphism and progression of Chagas ' cardiomyopathy,” Revista Espanola de Cardiologia, vol. 62, no. 3, pp. 320–322, 2009. View at Publisher · View at Google Scholar · View at Scopus
  92. J. E. Calzada, M. A. López-Nevot, Y. Beraún, and J. Martín, “No evidence for association of the inducible nitric oxide synthase promoter polymorphism with Trypanosoma cruzi infection,” Tissue Antigens, vol. 59, no. 4, pp. 316–319, 2002. View at Publisher · View at Google Scholar · View at Scopus
  93. O. Flórez, J. Martín, and C. I. González Rugeles, “Interleukin 4, interleukin 4 receptor-α and interleukin 10 gene polymorphisms in Chagas disease,” Parasite Immunology, vol. 33, no. 9, pp. 506–511, 2011. View at Publisher · View at Google Scholar · View at Scopus
  94. O. A. Torres, J. E. Calzada, Y. Beraún et al., “Role of the IFNG +874T/A polymorphism in Chagas disease in a Colombian population,” Infection, Genetics and Evolution, vol. 10, no. 5, pp. 682–685, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. A. F. Frade, C. W. Pissetti, B. M. Ianni et al., “Genetic susceptibility to Chagas disease cardiomyopathy: involvement of several genes of the innate immunity and chemokine-dependent migration pathways,” BMC Infectious Diseases, vol. 13, article 587, 2013. View at Google Scholar
  96. A. F. Frade, P. C. Teixeira, B. M. Ianni et al., “Polymorphism in the alpha cardiac muscle actin 1 gene is associated to susceptibility to chronic inflammatory cardiomyopathy,” PLoS ONE, vol. 8, Article ID e83446, 2013. View at Google Scholar
  97. X. Deng, E. C. Sabino, E. Cunha-Neto et al., “Genome wide association study (GWAS) of Chagas cardiomyopathy in Trypanosoma cruzi seropositive subjects,” PLoS ONE, vol. 8, Article ID e79629, 2013. View at Google Scholar
  98. T. Ishikawa, “Genetic variants in the human SLCO1B1 gene and individual variations in methotrexate clearance,” Pharmacogenomics, vol. 13, no. 9, pp. 993–994, 2012. View at Google Scholar
  99. H. L. Ansorge, X. Meng, G. Zhang et al., “Type XIV collagen regulates fibrillogenesis: premature collagen fibril growth and tissue dysfunction in null mice,” The Journal of Biological Chemistry, vol. 284, no. 13, pp. 8427–8438, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. D. E. Birk, J. M. Fitch, J. P. Babiarz, K. J. Doane, and T. F. Linsenmayer, “Collagen fibrillogenesis in vitro: interaction of types I and V collagen regulates fibril diameter,” Journal of Cell Science, vol. 95, part 4, pp. 649–657, 1990. View at Google Scholar · View at Scopus
  101. C. Depre, M. Hase, V. Gaussin et al., “H11 kinase is a novel mediator of myocardial hypertrophy in vivo,” Circulation Research, vol. 91, no. 11, pp. 1007–1014, 2002. View at Publisher · View at Google Scholar · View at Scopus
  102. A. Sanbe, T. Marunouchi, T. Abe et al., “Phenotype of cardiomyopathy in cardiac-specific heat shock protein B8 K141N transgenic mouse,” The Journal of Biological Chemistry, vol. 288, no. 13, pp. 8910–8921, 2013. View at Publisher · View at Google Scholar · View at Scopus
  103. D. D. Reis, E. M. Jones, S. Tostes et al., “Expression of major histocompatibility complex antigens and adhesion molecules in hearts of patients with chronic Chagas' disease,” The American Journal of Tropical Medicine and Hygiene, vol. 49, no. 2, pp. 192–200, 1993. View at Google Scholar · View at Scopus
  104. J. C. Aliberti, M. A. Cardoso, G. A. Martins, R. T. Gazzinelli, L. Q. Vieira, and J. S. Silva, “Interleukin-12 mediates resistance to Trypanosoma cruzi in mice and is produced by murine macrophages in response to live trypomastigotes,” Infection and Immunity, vol. 64, no. 6, pp. 1961–1967, 1996. View at Google Scholar · View at Scopus
  105. F. Torrico, H. Heremans, M. T. Rivera, E. Van Marck, A. Billiau, and Y. Carlier, “Endogenous IFN-γ is required for resistance to acute Trypanosoma cruzi infection in mice,” Journal of Immunology, vol. 146, no. 10, pp. 3626–3632, 1991. View at Google Scholar · View at Scopus
  106. R. T. Gazzinelli, I. P. Oswald, S. L. James, and A. Sher, “IL-10 inhibits parasite killing and nitrogen oxide production by IFN-γ-activated macrophages,” Journal of Immunology, vol. 148, no. 6, pp. 1792–1796, 1992. View at Google Scholar · View at Scopus
  107. U. Müller, G. Köhler, H. Mossmann et al., “IL-12-independent IFN-γ production by T cells in experimental Chagas' disease is mediated by IL-18,” Journal of Immunology, vol. 167, no. 6, pp. 3346–3353, 2001. View at Publisher · View at Google Scholar · View at Scopus
  108. J. A. S. Gomes, L. M. G. Bahia-Oliveira, M. O. C. Rocha et al., “Type 1 chemokine receptor expression in Chagas' disease correlates with morbidity in cardiac patients,” Infection and Immunity, vol. 73, no. 12, pp. 7960–7966, 2005. View at Publisher · View at Google Scholar · View at Scopus
  109. F. S. Machado, G. A. Martins, J. C. S. Aliberti, F. L. A. C. Mestriner, F. Q. Cunha, and J. S. Silva, “Trypanosoma cruzi-infected cardiomyocytes produce chemokines and cytokines that trigger potent nitric oxide-dependent trypanocidal activity,” Circulation, vol. 102, no. 24, pp. 3003–3008, 2000. View at Publisher · View at Google Scholar · View at Scopus
  110. P. M. M. Guedes, V. M. Veloso, A. Talvani et al., “Increased type 1 chemokine expression in experimental Chagas disease correlates with cardiac pathology in beagle dogs,” Veterinary Immunology and Immunopathology, vol. 138, no. 1-2, pp. 106–113, 2010. View at Publisher · View at Google Scholar · View at Scopus