Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2014 (2014), Article ID 908901, 6 pages
http://dx.doi.org/10.1155/2014/908901
Research Article

Total Adiponectin Is Inversely Associated with Platelet Activation and CHA2DS2-VASc Score in Anticoagulated Patients with Atrial Fibrillation

1Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, 00161 Rome, Italy
2Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
3Department of Cardiovascular, Respiratory, Nephrological, Anesthesiological, and Geriatric Sciences, Policlinico Umberto, Sapienza University of Rome, 00161 Rome, Italy
4Department of AngioCardioNeurology, IRCCS NeuroMed, 86077 Pozzilli, Italy

Received 25 December 2013; Accepted 20 January 2014; Published 26 February 2014

Academic Editor: M. M. Corsi Romanelli

Copyright © 2014 Roberto Carnevale et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Biondi-Zoccai, V. Malavasi, F. D'Ascenzo et al., “Comparative effectiveness of novel oral anticoagulants for atrial fibrillation: evidence from pair-wise and warfarin-controlled network meta-analyses,” HSR Proceedings in Intensive Care and Cardiovascular Anesthesia, vol. 5, no. 1, pp. 40–54, 2013. View at Google Scholar
  2. Y. Guo, G. Y. Lip, and S. Apostolakis, “Inflammation in atrial fibrillation,” Journal of the American College of Cardiology, vol. 60, no. 22, pp. 2263–2270, 2012. View at Publisher · View at Google Scholar
  3. J. H. Choi, J. K. Cha, and J. T. Huh, “Adenosine diphosphate-induced platelet aggregation might contribute to poor outcomes in atrial fibrillation-related ischemic stroke,” Journal of Stroke and Cerebrovascular Diseases, 2013. View at Publisher · View at Google Scholar
  4. G. Y. H. Lip, J. V. Patel, E. Hughes, and R. G. Hart, “High-sensitivity C-reactive protein and soluble CD40 ligand as indices of inflammation and platelet activation in 880 patients with nonvalvular atrial fibrillation: relationship to stroke risk factors, stroke risk stratification schema, and prognosis,” Stroke, vol. 38, no. 4, pp. 1229–1237, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Ferro, L. Loffredo, L. Polimeni et al., “Soluble CD40 ligand predicts ischemic stroke and myocardial infarction in patients with nonvalvular atrial fibrillation,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 12, pp. 2763–2768, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Violi and L. Loffredo, “Thromboembolism or atherothromboembolism in atrial fibrillation?” Circulation: Arrhythmia and Electrophysiology, vol. 5, no. 6, pp. 1053–1055, 2012. View at Publisher · View at Google Scholar
  7. H. S. Abed, G. A. Wittert, D. P. Leong et al., “Effect of weight reduction and cardiometabolic risk factor management on symptom burden and severity in patients with atrial fibrillation: a randomized clinical trial,” The Journal of the American Medical Association, vol. 310, no. 19, pp. 2050–2060, 2013. View at Publisher · View at Google Scholar
  8. E. Cavarretta, G. Casella, B. Cali et al., “Cardiac remodeling in obese patients after laparoscopic sleeve gastrectomy,” World Journal of Surgery, vol. 37, no. 3, pp. 565–572, 2013. View at Publisher · View at Google Scholar
  9. A. H. Berg and P. E. Scherer, “Adipose tissue, inflammation, and cardiovascular disease,” Circulation Research, vol. 96, no. 9, pp. 939–949, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Deng and P. E. Scherer, “Adipokines as novel biomarkers and regulators of the metabolic syndrome,” Annals of the New York Academy of Sciences, vol. 1212, pp. E1–E19, 2010. View at Google Scholar · View at Scopus
  11. H. Kato, H. Kashiwagi, M. Shiraga et al., “Adiponectin acts as an endogenous antithrombotic factor,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 1, pp. 224–230, 2006. View at Publisher · View at Google Scholar
  12. S. H. Han, M. J. Quon, J. Kim, and K. K. Koh, “Adiponectin and cardiovascular disease. Response to therapeutic interventions,” Journal of the American College of Cardiology, vol. 49, no. 5, pp. 531–538, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. B. J. Choi, J. H. Heo, I. S. Choi et al., “Hypoadiponectinemia in patients with paroxysmal atrial fibrillation,” Korean Circulation Journal, vol. 42, no. 10, pp. 668–673, 2012. View at Publisher · View at Google Scholar
  14. M. Shimano, R. Shibata, Y. Tsuji et al., “Circulating adiponectin levels in patients with atrial fibrillation,” Circulation Journal, vol. 72, no. 7, pp. 1120–1124, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Hernandez-Romero, E. Jover, F. Marin et al., “The prognostic role of the adiponectin levels in atrial fibrillation,” European Journal of Clinical Investigation, vol. 43, no. 2, pp. 168–173, 2013. View at Publisher · View at Google Scholar
  16. M. K. Freynhofer, V. Bruno, J. Wojta, and K. Huber, “The role of platelets in athero-thrombotic events,” Current Pharmaceutical Design, vol. 18, no. 33, pp. 5197–5214, 2012. View at Publisher · View at Google Scholar
  17. R. Carnevale, P. Pignatelli, S. Di Santo et al., “Atorvastatin inhibits oxidative stress via adiponectin-mediated NADPH oxidase down-regulation in hypercholesterolemic patients,” Atherosclerosis, vol. 213, no. 1, pp. 225–234, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. W. Q. Wang, H. F. Zhang, G. X. Gao, Q. Bai, R. Li, and X. Wang, “Adiponectin inhibits hyperlipidemia-induced platelet aggregation via attenuating oxidative/nitrative stress,” Physiological Research, vol. 60, no. 2, pp. 347–354, 2011. View at Google Scholar · View at Scopus
  19. A. J. Camm, G. Y. Lip, R. De Caterina et al., “2012 focused update of the ESC guidelines for the management of atrial fibrillation: an update of the 2010 ESC guidelines for the management of atrial fibrillation. Developed with the special contribution of the European heart rhythm association,” European Heart Journal, vol. 33, no. 21, pp. 2719–2747, 2012. View at Publisher · View at Google Scholar
  20. G. Mancia, R. Fagard, K. Narkiewicz et al., “2013 Practice guidelines for the management of arterial hypertension of the European society of hypertension (ESH) and the European society of cardiology (ESC): ESH/ESC task force for the management of arterial hypertension,” Journal of Hypertension, vol. 31, no. 10, pp. 1925–1938, 2013. View at Publisher · View at Google Scholar
  21. L. Rydén, P. J. Grant, S. D. Anker et al., “ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: the task force on diabetes, pre-diabetes, and cardiovascular diseases of the European society of cardiology (ESC) and developed in collaboration with the European association for the study of diabetes (EASD),” European Heart Journal, vol. 34, no. 39, pp. 3035–3087, 2013. View at Publisher · View at Google Scholar
  22. J. J. McMurray, S. Adamopoulos, S. D. Anker et al., “ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European society of cardiology. Developed in collaboration with the heart failure association (HFA) of the ESC,” European Journal of Heart Failure, vol. 14, no. 8, pp. 803–869, 2012. View at Publisher · View at Google Scholar
  23. S. M. Grundy, J. I. Cleeman, S. R. Daniels et al., “Diagnosis and management of the metabolic syndrome: an American heart association/national heart, lung, and blood institute scientific statement,” Circulation, vol. 112, no. 17, pp. 2735–2752, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. World Medical Association, “World medical association declaration of Helsinki. Ethical principles for medical research involving human subjects,” Bulletin of the World Health Organization, vol. 79, no. 4, pp. 373–374, 2001. View at Google Scholar
  25. G. Hao, W. Li, R. Guo et al., “Serum total adiponectin level and the risk of cardiovascular disease in general population: a meta-analysis of 17 prospective studies,” Atherosclerosis, vol. 228, no. 1, pp. 29–35, 2013. View at Publisher · View at Google Scholar
  26. L. Djousse, J. B. Wilk, N. Q. Hanson, R. J. Glynn, M. Y. Tsai, and J. M. Gaziano, “Association between adiponectin and heart failure risk in the physicians' health study,” Obesity, vol. 21, no. 4, pp. 831–834, 2013. View at Publisher · View at Google Scholar
  27. J. V. Patel, A. Abraheem, O. Dotsenko et al., “Circulating serum adiponectin levels in patients with coronary artery disease: relationship to atherosclerotic burden and cardiac function,” Journal of Internal Medicine, vol. 264, no. 6, pp. 593–598, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Kantorova, M. Chomova, E. Kurca et al., “Leptin, adiponectin and ghrelin, new potential mediators of ischemic stroke,” Neuro Endocrinology Letters, vol. 32, no. 5, pp. 716–721, 2011. View at Google Scholar
  29. Y. Okamoto, S. Ishii, K. Croce et al., “Adiponectin inhibits macrophage tissue factor, a key trigger of thrombosis in disrupted atherosclerotic plaques,” Atherosclerosis, vol. 226, no. 2, pp. 373–377, 2013. View at Publisher · View at Google Scholar
  30. A. Missiou, D. Wolf, I. Platzer et al., “CD40L induces inflammation and adipogenesis in adipose cells—a potential link between metabolic and cardiovascular disease,” Thrombosis and Haemostasis, vol. 103, no. 4, pp. 788–796, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Restituto, I. Colina, J. J. Varo, and N. Varo, “Adiponectin diminishes platelet aggregation and sCD40L release. Potential role in the metabolic syndrome,” The American Journal of Physiology—Endocrinology and Metabolism, vol. 298, no. 5, pp. E1072–E1077, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Hara, K. Omori, Y. Sumioka, and Y. Aso, “Spontaneous platelet aggregation evaluated by laser light scatter in patients with type 2 diabetes: effects of short-term improved glycemic control and adiponectin,” Translational Research, vol. 159, no. 1, pp. 15–24, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. P. André, L. Nannizzi-Alaimo, S. K. Prasad, and D. R. Phillips, “Platelet-derived CD40L: the switch-hitting player of cardiovascular disease,” Circulation, vol. 106, no. 8, pp. 896–899, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Antoniades, C. Bakogiannis, D. Tousoulis, A. S. Antonopoulos, and C. Stefanadis, “The CD40/CD40 ligand system. Linking inflammation with atherothrombosis,” Journal of the American College of Cardiology, vol. 54, no. 8, pp. 669–677, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Pignatelli, R. Carnevale, S. Di Santo et al., “Inherited Human gp91phox deficiency is associated with impaired isoprostane formation and platelet dysfunction,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 2, pp. 423–434, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. G. Walford and J. Loscalzo, “Nitric oxide in vascular biology,” Journal of Thrombosis and Haemostasis, vol. 1, no. 10, pp. 2112–2118, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. L. G. Gao, J. Cao, Q. X. Mao, X. C. Lu, X. L. Zhou, and L. Fan, “Influence of omega-3 polyunsaturated fatty acid-supplementation on platelet aggregation in humans: a meta-analysis of randomized controlled trials,” Atherosclerosis, vol. 226, no. 2, pp. 328–334, 2013. View at Publisher · View at Google Scholar
  38. R. Cangemi, P. Pignatelli, R. Carnevale et al., “Cholesterol-adjusted vitamin E serum levels are associated with cardiovascular events in patients with non-valvular atrial fibrillation,” International Journal of Cardiology, vol. 168, no. 4, pp. 3241–3247, 2013. View at Publisher · View at Google Scholar