Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2014 (2014), Article ID 952857, 15 pages
http://dx.doi.org/10.1155/2014/952857
Research Article

Trypanosoma cruzi Infection in Genetically Selected Mouse Lines: Genetic Linkage with Quantitative Trait Locus Controlling Antibody Response

Laboratório de Imunogenética, Instituto Butantan, Avenida Vital Brasil 1500, 05503-900 São Paulo, SP, Brazil

Received 24 April 2014; Revised 15 July 2014; Accepted 16 July 2014; Published 13 August 2014

Academic Editor: Christophe Chevillard

Copyright © 2014 Francisca Vorraro et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Hudson, “Immunobiology of Trypanosoma cruzi infection and Chagas' disease,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 75, no. 4, pp. 493–498, 1981. View at Publisher · View at Google Scholar · View at Scopus
  2. R. T. Gazzinelli and E. Y. Denkers, “Protozoan encounters with Toll-like receptor signalling pathways: implications for host parasitism,” Nature Reviews Immunology, vol. 6, no. 12, pp. 895–906, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. A. C. Oliveira, J. R. Peixoto, L. B. de Arrada et al., “Expression of functional TLR4 confers proinflammatory responsiveness to Trypanosoma cruzi glycoinositolphospholipids and higher resistance to infection with T. cruzi,” The Journal of Immunology, vol. 173, no. 9, pp. 5688–5696, 2004. View at Google Scholar · View at Scopus
  4. C. Ropert, L. R. P. Ferreira, M. A. S. Campos et al., “Macrophage signaling by glycosylphosphatidylinositol-anchored mucin-like glycoproteins derived from Trypanosoma cruzi trypomastigotes,” Microbes and Infection, vol. 4, no. 9, pp. 1015–1025, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. I. C. Almeida, M. M. Camargo, D. O. Procópio et al., “Highly purified glycosylphosphatidylinositols from Trypanosoma cruzi are potent proinflammatory agents,” EMBO Journal, vol. 19, no. 7, pp. 1476–1485, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. M. A. S. Campos, I. C. Almeida, O. Takeuchi et al., “Activation of toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite,” Journal of Immunology, vol. 167, no. 1, pp. 416–423, 2001. View at Google Scholar · View at Scopus
  7. A. Bafica, H. C. Santiago, R. Goldszmid, C. Ropert, R. T. Gazzinelli, and A. Sher, “Cutting edge: TLR9 and TLR2 signaling together account for MyD88-dependent control of parasitemia in Trypanosoma cruzi infection,” Journal of Immunology, vol. 177, no. 6, pp. 3515–3519, 2006. View at Google Scholar · View at Scopus
  8. B. C. Caetano, B. B. Carmo, M. B. Melo et al., “Requirement of UNC93B1 reveals a critical role for TLR7 in host resistance to primary infection with Trypanosoma cruzi,” The Journal of Immunology, vol. 187, no. 4, pp. 1903–1911, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. M. M. Rodrigues, A. C. Oliveira, and M. Bellio, “The immune response to Trypanosoma cruzi: role of toll-like receptors and perspectives for vaccine development,” Journal of Parasitology Research, vol. 2012, Article ID 507874, 12 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. G. K. Silva, F. R. S. Gutierrez, P. M. M. Guedes et al., “Cutting edge: nucleotide-binding oligomerization domain 1-dependent responses account for murine resistance against Trypanosoma cruzi infection,” The Journal of Immunology, vol. 184, no. 3, pp. 1148–1152, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. GK. Silva, RS. Costa, TN. Silveira et al., “Apoptosis-associated speck-like protein containing a caspase recruitment domain inflammasomes mediate IL-1 β response and host resistance to Trypanosoma cruzi infection,” The Journal of Immunology, vol. 191, pp. 3373–3383, 2013. View at Google Scholar
  12. V. M. Gonçalves, K. C. Matteucci, C. L. Buzzo et al., “NLRP3 controls Trypanosoma cruzi infection through a caspase-1-dependent IL-1R-independent NO production,” PLoS Neglected Tropical Diseases, vol. 7, no. 10, Article ID e2469, 2013. View at Google Scholar
  13. C. A. Hunter, T. Slifer, and F. Araujo, “Interleukin-12-mediated resistance to Trypanosoma cruzi is dependent on tumor necrosis factor alpha and gamma interferon,” Infection and Immunity, vol. 64, no. 7, pp. 2381–2386, 1996. View at Google Scholar · View at Scopus
  14. J. C. S. Aliberti, M. A. G. Cardoso, G. A. Martins, R. T. Gazzinelli, L. Q. Vieira, and J. S. Silva, “Interleukin-12 mediates resistance to Trypanosoma cruzi in mice and is produced by murine macrophages in response to live trypomastigotes,” Infection and Immunity, vol. 64, no. 6, pp. 1961–1967, 1996. View at Google Scholar · View at Scopus
  15. F. Cardillo, J. C. Voltarelli, S. G. Reed, and J. S. Silva, “Regulation of Trypanosoma cruzi infection in mice by gamma interferon and interleukin 10: role of NK cells,” Infection and Immunity, vol. 64, no. 1, pp. 128–134, 1996. View at Google Scholar · View at Scopus
  16. J. S. Silva, G. N. R. Vespa, M. A. G. Cardoso, J. C. S. Aliberti, and F. Q. Cunha, “Tumor necrosis factor alpha mediates resistance to Trypanosoma cruzi infection in mice by inducing nitric oxide production in infected gamma interferon-activated macrophages,” Infection and Immunity, vol. 63, no. 12, pp. 4862–4867, 1995. View at Google Scholar · View at Scopus
  17. G. N. R. Vespa, F. Q. Cunha, and J. S. Silva, “Nitric oxide is involved in control of Trypanosoma cruzi-induced parasitemia and directly kills the parasite in vitro,” Infection and Immunity, vol. 62, no. 11, pp. 5177–5182, 1994. View at Google Scholar · View at Scopus
  18. J. S. Silva, F. S. Machado, and G. A. Martins, “The role of nitric oxide in the pathogenesis of chagas disease,” Frontiers in Bioscience, vol. 8, pp. s314–s325, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Russo, N. Starobinas, P. Minoprio, A. Coutinho, and M. Hontebeyrie-Joskowicz, “Parasitic load increases and myocardial inflammation decreases in Trypanosoma cruzi-infected mice after inactivation of helper T cells,” Annales de l'Institut Pasteur/Immunologie, vol. 139, pp. 225–236, 1988. View at Google Scholar
  20. R. L. Tarleton, B. H. Koller, A. Latour, and M. Postan, “Susceptibility of β2-microglobulin-deficient mice to Trypanosoma cruzi infection,” Nature, vol. 356, no. 6367, pp. 338–340, 1992. View at Publisher · View at Google Scholar · View at Scopus
  21. M. E. Rottenberg, A. Riarte, L. Sporrong et al., “Outcome of infection with different strains of Trypanosoma cruzi in mice lacking CD4 and/or CD8,” Immunology Letters, vol. 45, no. 1-2, pp. 53–60, 1995. View at Publisher · View at Google Scholar · View at Scopus
  22. G. A. DosReis, “Evasion of immune responses by Trypanosoma cruzi, the etiological agent of Chagas disease,” Brazilian Journal of Medical and Biological Research, vol. 44, no. 2, pp. 84–90, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Trischmann, H. Tanowitz, M. Wittner, and B. Bloom, “Trypanosoma cruzi: role of the immune response in the natural resistance of inbred strains of mice,” Experimental Parasitology, vol. 45, no. 2, pp. 160–168, 1978. View at Publisher · View at Google Scholar · View at Scopus
  24. T. M. Trischmann and B. R. Bloom, “Genetics of murine resistance to Trypanosoma cruzi,” Infection and Immunity, vol. 35, no. 2, pp. 546–551, 1982. View at Google Scholar · View at Scopus
  25. R. Wrightsman, S. Krassner, and J. Watson, “Genetic control of responses to Trypanosoma cruzi in mice: multiple genes influencing parasitemia and survival,” Infection and Immunity, vol. 36, no. 2, pp. 637–644, 1982. View at Google Scholar · View at Scopus
  26. G. K. Silva, L. D. Cunha, C. V. Horta et al., “A parent-of-origin effect determines the susceptibility of a non-informative F1 population to Trypanosoma cruzi infection in vivo,” PLoS ONE, vol. 8, no. 2, Article ID e56347, pp. 1–10, 2013. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Siqueira, A. Bandieri, M. S. Reis, O. A. Sant'anna, and G. Biozzi, “Selective breeding of mice for antibody responsiveness to flagellar and somatic antigens of Salmonellae,” European Journal of Immunology, vol. 6, no. 4, pp. 241–249, 1976. View at Google Scholar · View at Scopus
  28. M. Siqueira, M. B. Esteves, O. M. Ibanez et al., “Nonspecific genetic regulation of antibody responsiveness in the mouse,” European Journal of Immunology, vol. 7, no. 4, pp. 195–203, 1977. View at Google Scholar · View at Scopus
  29. G. Biozzi, D. Mouton, O. A. Sant'Anna et al., “Genetics of immunoresponsiveness to natural antigens in the mouse,” Current Topics in Microbiology and Immunology, vol. 85, pp. 31–98, 1979. View at Publisher · View at Google Scholar · View at Scopus
  30. C. M. de Souza, L. Morel, W. H. K. Cabrera et al., “Quantitative trait loci in Chromosomes 3, 8, and 9 regulate antibody production against Salmonella flagellar antigens in the mouse,” Mammalian Genome, vol. 15, no. 8, pp. 630–636, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. O. M. Ibañez, D. Mouton, O. G. Ribeiro et al., “Low antibody responsiveness is found to be associated with resistance to chemical skin tumorigenesis in several lines of Biozzi mice,” Cancer Letters, vol. 136, no. 2, pp. 153–158, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. J. R. Jensen, L. C. Peters, A. Borrego et al., “Involvement of antibody production quantitative trait loci in the susceptibility to pristane-induced arthritis in the mouse,” Genes and Immunity, vol. 7, no. 1, pp. 44–50, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Stiffel, O. M. Ibanez, O. G. Ribeiro et al., “Genetic regulation of the specific and non-specific component of immunity,” Immunology Letters, vol. 16, no. 3-4, pp. 205–217, 1987. View at Google Scholar · View at Scopus
  34. C. Stiffel, O. M. Ibanez, O. G. Ribeiro et al., “Genetics of acute inflammation: inflammatory reactions in inbred lines of mice and in their interline crosses,” Experimental and Clinical Immunogenetics, vol. 7, no. 4, pp. 221–233, 1990. View at Google Scholar · View at Scopus
  35. O. M. Ibanez, C. Stiffel, O. G. Ribeiro et al., “Genetics of nonspecific immunity: I. Bidirectional selective breeding of lines of mice endowed with maximal or minimal inflammatory responsiveness,” European Journal of Immunology, vol. 22, no. 10, pp. 2555–2563, 1992. View at Publisher · View at Google Scholar · View at Scopus
  36. G. Biozzi, O. G. Ribeiro, A. Saran et al., “Effect of genetic modification of acute inflammatory responsiveness on tumorigenesis in the mouse,” Carcinogenesis, vol. 19, no. 2, pp. 337–346, 1998. View at Publisher · View at Google Scholar · View at Scopus
  37. N. D. Vigar, W. H. Cabrera, L. M. Araujo et al., “Pristane-induced arthritis in mice selected for maximal or minimal acute inflammatory reaction,” European Journal of Immunology, vol. 30, pp. 431–437, 2000. View at Google Scholar
  38. L. M. M. Araujo, O. G. Ribeiro, M. Siqueira et al., “Innate resistance to infection by intracellular bacterial pathogens differs in mice selected for maximal or minimal acute inflammatory response,” European Journal of Immunology, vol. 28, pp. 2913–2920, 1998. View at Google Scholar
  39. D. A. Maria, G. Manenti, F. Galbiati et al., “Pulmonary adenoma susceptibility 1 (Pas1) locus affects inflammatory response,” Oncogene, vol. 22, no. 3, pp. 426–432, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. J. R. Jensen, A. Galvan, A. Borrego et al., “Genetic control of renal tumorigenesis by the mouse Rtm1 locus,” BMC Genomics, vol. 14, article 724, 2013. View at Google Scholar
  41. R. F. Di Pace, S. Massa, O. G. Ribeiro et al., “Inverse genetic predisposition to colon versus lung carcinogenesis in mouse lines selected based on acute inflammatory responsiveness,” Carcinogenesis, vol. 27, no. 8, pp. 1517–1525, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. M. de Franco, P. D. S. Carneiro, L. C. Peters et al., “Slc11a1 (Nramp1) alleles interact with acute inflammation loci to modulate wound-healing traits in mice,” Mammalian Genome, vol. 18, no. 4, pp. 263–269, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. K. L. Cummings and R. L. Tarleton, “Rapid quantitation of Trypanosoma cruzi in host tissue by real-time PCR,” Molecular and Biochemical Parasitology, vol. 129, no. 1, pp. 53–59, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. K. F. Manly and J. M. Olson, “Overview of QTL mapping software and introduction to map manager QT,” Mammalian Genome, vol. 10, no. 4, pp. 327–334, 1999. View at Publisher · View at Google Scholar · View at Scopus
  45. K. F. Manly, R. H. Cudmore Jr., and J. M. Meer, “Map Manager QTX, cross-platform software for genetic mapping,” Mammalian Genome, vol. 12, no. 12, pp. 930–932, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. E. Lander and L. Kruglyak, “Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results,” Nature Genetics, vol. 11, no. 3, pp. 241–247, 1995. View at Publisher · View at Google Scholar · View at Scopus
  47. G. A. Churchill and R. W. Doerge, “Empirical threshold values for quantitative trait mapping,” Genetics, vol. 138, no. 3, pp. 963–971, 1994. View at Google Scholar · View at Scopus
  48. W. L. Chapman Jr., W. L. Hanson, and V. B. Waits, “The influence of gonadectomy of host on parasitemia and mortality of mice infected with Trypanosoma cruzi,” Journal of Parasitology, vol. 61, no. 2, pp. 213–216, 1975. View at Publisher · View at Google Scholar · View at Scopus
  49. F. Kierszenbaum, E. Knecht, D. B. Budzko, and M. C. Pizzimenti, “Phagocytosis: a defense mechanism against infection with Trypanosoma cruzi,” Journal of Immunology, vol. 112, no. 5, pp. 1839–1844, 1974. View at Google Scholar · View at Scopus
  50. J. Prado Jr., M. P. Leal, J. A. Anselmo-Franci, H. F. Andrade Jr., and J. K. Kloetzel, “Influence of female gonadal hormones on the parasitemia of female Calomys collosus infected with the “Y” strain of Trypanosoma cruz,” Parasitology Research, vol. 84, pp. 100–105, 1998. View at Google Scholar
  51. Jr. do Prado J. C., A. M. A. de Levy, M. de Paula Leal, E. Bernard, and J. K. Kloetzel, “Influence of male gonadal hormones on the parasitemia and humoral response of male Calomys callusus infected with the Y strain of Trypanosoma cruzi,” Parasitology Research, vol. 85, no. 10, pp. 826–829, 1999. View at Publisher · View at Google Scholar · View at Scopus
  52. A. C. Barretto, E. Arteaga, C. Mady, B. M. Ianni, G. Bellotti, and F. Pileggi, “Male sex. Prognostic factor in Chagas' disease,” Arquivos Brasileiros de Cardiologia, vol. 60, no. 4, pp. 225–227, 1993. View at Google Scholar · View at Scopus
  53. R. Espinosa, H. A. Carrasco, F. Belandria et al., “Life expectancy analysis in patients with Chagas' disease: prognosis after one decade (1973–1983),” International Journal of Cardiology, vol. 8, no. 1, pp. 45–56, 1985. View at Publisher · View at Google Scholar · View at Scopus
  54. T. L. M. Sanches, L. D. Cunha, G. K. Silva, P. M. M. Guedes, J. S. Silva, and D. S. Zamboni, “The use of a heterogeneously controlled mouse population reveals a significant correlation of acute phase parasitemia with mortality in Chagas disease,” PLoS ONE, vol. 9, no. 3, Article ID e91640, 2014. View at Google Scholar
  55. L. F. Umekita, H. A. Takehara, and I. Mota, “Role of the antibody Fc in the immune clearance of Trypanosoma cruzi,” Immunology Letters, vol. 17, no. 1, pp. 85–89, 1988. View at Google Scholar · View at Scopus
  56. D. A. Bermejo, M. C. A. Vesely, M. Khan et al., “Trypanosoma cruzi infection induces a massive extrafollicular and follicular splenic B-cell response which is a high source of non-parasite-specific antibodies,” Immunology, vol. 132, no. 1, pp. 123–133, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. M. C. A. Vesely, D. A. Bermejo, C. L. Montes, E. V. Acosta-Rodríguez, and A. Gruppi, “B-cell response during protozoan parasite infections,” Journal of Parasitology Research, vol. 2012, Article ID 362131, 8 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  58. E. N. de Gaspari, E. S. Umezawa, B. Zingales, A. M. Stolf, W. Colli, and I. A. Abrahamsohn, “Trypanosoma cruzi: serum antibody reactivity to the parasite antigens in susceptible and resistant mice.,” Memorias do Instituto Oswaldo Cruz, vol. 85, no. 3, pp. 261–270, 1990. View at Publisher · View at Google Scholar · View at Scopus
  59. T. M. Trischmann, “Non-antibody-mediated control of parasitemia in acute experimental Chagas' disease,” Journal of Immunology, vol. 130, no. 4, pp. 1953–1957, 1983. View at Google Scholar · View at Scopus
  60. C. I. Brodskyn, A. M. M. Silva, H. A. Takehara, and I. Mota, “IgG subclasses responsible for immune clearance in mice infected with Trypanosoma cruzi,” Immunology and Cell Biology, vol. 67, no. 6, pp. 343–348, 1989. View at Publisher · View at Google Scholar · View at Scopus
  61. H. A. Takehara, A. Perini, M. H. da Silva, and I. Mota, “Trypanosoma cruzi: role of different antibody classes in protection against infection in the mouse,” Experimental Parasitology, vol. 52, no. 1, pp. 137–146, 1981. View at Publisher · View at Google Scholar · View at Scopus
  62. M. R. Powell and D. L. Wassom, “Host genetics and resistance to acute Trypanosoma cruzi infection in mice. I. Antibody isotype profiles,” Parasite Immunology, vol. 15, no. 4, pp. 215–221, 1993. View at Google Scholar · View at Scopus
  63. P. Minoprio, A. Coutinho, S. Spinella, and M. Hontebeyrie-Joskowicz, “Xid immunodeficiency imparts increased parasite clearance and resistance to pathology in experimental Chagas' disease,” International Immunology, vol. 3, no. 5, pp. 427–433, 1991. View at Publisher · View at Google Scholar · View at Scopus
  64. P. Minoprio, M. C. El Cheikh, E. Murphy et al., “Xid-associated resistance to experimental Chagas' disease is IFN-γ dependent,” The Journal of Immunology, vol. 151, no. 8, pp. 4200–4208, 1993. View at Google Scholar · View at Scopus
  65. F. Plata, F. Garcia-Pons, and J. Wietzerbin, “Immune resistance to Trypanosoma cruzi: synergy of specific antibodies and recombinant interferon gamma in vivo,” Annales de l'Institut Pasteur—Immunology, vol. 138, no. 3, pp. 397–415, 1987. View at Publisher · View at Google Scholar · View at Scopus
  66. R. T. Gazzinelli, I. P. Oswald, S. Hieny, S. L. James, and A. Sher, “The microbicidal activity of interferon-γ-treated macrophages against Trypanosoma cruzi involves an L-arginine-dependent, nitrogen oxide-mediated mechanism inhibitable by interleukin-10 and transforming growth factor-β,” European Journal of Immunology, vol. 22, no. 10, pp. 2501–2506, 1992. View at Publisher · View at Google Scholar · View at Scopus
  67. S. E. B. Graefe, B. S. Meyer, B. Müller-Myhsok et al., “Murine susceptibility to Chagas' disease maps to chromosomes 5 and 17,” Genes and Immunity, vol. 4, no. 5, pp. 321–325, 2003. View at Publisher · View at Google Scholar · View at Scopus
  68. A. Darvasi, “Experimental strategies for the genetic dissection of complex traits in animal models,” Nature Genetics, vol. 18, no. 1, pp. 19–24, 1998. View at Publisher · View at Google Scholar · View at Scopus
  69. L. A. C. Passos, J. K. Sakurada, A. M. A. Guaraldo, S. C. B. C. Ortiz, H. A. Rangel, and J. L. Guenet, “Chagas Fenômeno da Resistência: Identificação de regiões do Genoma importantes no controle da doença,” Revista Biotecnologia Ciência & Desenvolvimento, vol. 29, 2002. View at Google Scholar
  70. F. Iraqi, S. J. Clapcott, P. Kumari, C. S. Haley, S. J. Kemp, and A. J. Teale, “Fine mapping of trypanosomiasis resistance loci in murine advanced intercross lines,” Mammalian Genome, vol. 11, no. 8, pp. 645–648, 2000. View at Publisher · View at Google Scholar · View at Scopus
  71. A. Galvan, F. Vorraro, W. Cabrera et al., “Association study by genetic clustering detects multiple inflammatory response loci in non-inbred mice,” Genes and Immunity, vol. 12, no. 5, pp. 390–394, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. L. C. Peters, J. R. Jensen, A. Borrego et al., “Slc11a1 (formerly NRAMP1) gene modulates both acute inflammatory reactions and pristane-induced arthritis in mice,” Genes and Immunity, vol. 8, no. 1, pp. 51–56, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. M. De Franco, L. C. Peters, M. A. Correa et al., “Pristane-induced arthritis loci interact with the Slc11a1 gene to determine susceptibility in mice selected for high inflammation,” PLoS ONE, vol. 9, no. 2, Article ID e88302, 2014. View at Publisher · View at Google Scholar
  74. A. G. Trezena, C. M. Souza, A. Borrego et al., “Co-localization of quantitative trait loci regulating resistance to Salmonella typhimurium infection and specific antibody production phenotypes,” Microbes and Infection, vol. 4, no. 14, pp. 1409–1415, 2002. View at Publisher · View at Google Scholar · View at Scopus
  75. J. E. Calzada, A. Nieto, M. A. López-Nevot, and J. Martín, “Lack of association between NRAMP1 gene polymorphisms and Trypanosoma cruzi infection,” Tissue Antigens, vol. 57, no. 4, pp. 353–357, 2001. View at Publisher · View at Google Scholar · View at Scopus
  76. E. M. Silva, L. V. C. Guillermo, F. L. Ribiero-Gomes et al., “Caspase inhibition reduces lymphocyte apoptosis and improves host immune responses to Trypanosoma cruzi infection,” European Journal of Immunology, vol. 37, no. 3, pp. 738–746, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. D. A. Farias-de-Oliveira, D. M. S. Villa-Verde, P. H. N. Panzenhagen et al., “Caspase-8 and caspase-9 mediate thymocyte apoptosis in Trypanosoma cruzi acutely infected mice,” Journal of Leukocyte Biology, vol. 93, no. 2, pp. 227–234, 2013. View at Publisher · View at Google Scholar · View at Scopus
  78. G. A. Martins, A. P. Campanelli, R. B. Silva et al., “CD28 is required for T cell activation and IFN-gamma production by CD4 + and CD8 + T cells in response to Trypanosoma cruzi infection,” Microbes and Infection, vol. 6, no. 13, pp. 1133–1144, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. C. R. F. Marinho, L. N. Nuñez-Apaza, R. Martins-Santos et al., “IFN-γ, but not nitric oxide or specific IgG, is essential for the in vivo control of low-virulence Sylvio X10/4 Trypanosoma cruzi parasites,” Scandinavian Journal of Immunology, vol. 66, no. 2-3, pp. 297–308, 2007. View at Publisher · View at Google Scholar · View at Scopus
  80. W. O. Dutra, O. A. Martins-Filho, J. R. Cançado et al., “Chagasic patients lack CD28 expression on many of their circulating T lymphocytes,” Scandinavian Journal of Immunology, vol. 43, no. 1, pp. 88–93, 1996. View at Publisher · View at Google Scholar · View at Scopus
  81. V. Schmitz, E. Svensjö, R. R. Serra, M. M. Teixeira, and J. Scharfstein, “Proteolytic generation of kinins in tissues infected by Trypanosoma cruzi depends on CXC chemokine secretion by macrophages activated via Toll-like 2 receptors,” Journal of Leukocyte Biology, vol. 85, no. 6, pp. 1005–1014, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. J. Scharfstein, D. Andrade, E. Svensjö, A. C. Oliveira, and C. R. Nascimento, “The kallikrein-kinin system in experimental Chagas disease: a paradigm to investigate the impact of inflammatory edema on GPCR-mediated pathways of host cell invasion by Trypanosoma cruzi,” Frontiers in Immunology, vol. 3, article 396, 2012. View at Publisher · View at Google Scholar · View at Scopus
  83. M. Siqueira, L. S. Drumond, M. Gennari, V. C. Ferreira, M. H. Reis, and G. Biozzi, “Effect of genetic modification of antibody responsiveness on resistance to Toxoplasma gondii infection,” Infection and Immunity, vol. 48, no. 2, pp. 298–302, 1985. View at Google Scholar · View at Scopus
  84. A. C. Corsini, R. Braz, D. B. Ciampi, and M. R. L. Zucato, “Resistance to Trypanosoma cruzi infection in relation to the timing of IgG humoral response,” Zeitschrift fur Parasitenkunde, vol. 68, no. 1, pp. 15–25, 1982. View at Publisher · View at Google Scholar · View at Scopus
  85. P. Minoprio, O. Burlen, P. Pereira et al., “Most B cells in acute Trypanosoma cruzi infection lack parasite specificity,” Scandinavian Journal of Immunology, vol. 28, no. 5, pp. 553–561, 1988. View at Publisher · View at Google Scholar · View at Scopus
  86. P. Minoprio, A. Bandeira, P. Pereira, T. Mota Santos, and A. Coutinho, “Preferential expansion of Ly-1 B and CD4- CD8- T cells in the polyclonal lymphocyte responses to murine T. cruzi infection,” International Immunology, vol. 1, no. 2, pp. 176–184, 1989. View at Google Scholar · View at Scopus
  87. S. E. B. Graefe, T. Streichert, B. S. Budde et al., “Genes from Chagas susceptibility loci that are differentially expressed in T. cruzi-resistant mice are candidates accounting for impaired immunity,” PLoS ONE, vol. 1, no. 1, article e57, 2006. View at Publisher · View at Google Scholar · View at Scopus
  88. O. A. Sant'Anna, V. C. Ferreira, M. H. Reis et al., “Genetic parameters of the polygenic regulation of antibody responsiveness to flagellar and somatic antigens of Salmonellae,” Journal of Immunogenetics, vol. 9, no. 3, pp. 191–205, 1982. View at Publisher · View at Google Scholar · View at Scopus
  89. C. M. Ayo, M. M. O. Dalalio, J. E. L. Visentainer et al., “Genetic susceptibility to chagas disease: an overview about the infection and about the association between disease and the immune response genes,” BioMed Research International, vol. 2013, Article ID 284729, 13 pages, 2013. View at Publisher · View at Google Scholar
  90. A. F. Frade, P. C. Teixeira, B. M. Ianni et al., “Polymorphism in the alpha cardiac muscle actin 1 gene is associated to susceptibility to chronic inflammatory cardiomyopathy,” PLoS ONE, vol. 19, Article ID e83446, 2013. View at Google Scholar
  91. A. F. Frade, C. W. Pissetti, B. M. Ianni et al., “Genetic susceptibility to chagas disease cardiomyopathy: involvement of several genes of the innate immunity and chemokine-dependent migration pathways,” BMC Infectious Diseases, vol. 13, article 587, 2013. View at Publisher · View at Google Scholar