Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2015 (2015), Article ID 254871, 8 pages
http://dx.doi.org/10.1155/2015/254871
Review Article

Looking for Pyroptosis-Modulating miRNAs as a Therapeutic Target for Improving Myocardium Survival

1Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do 210-701, Republic of Korea
2Catholic Kwandong University International St. Mary’s Hospital, Incheon Metropolitan City 404-834, Republic of Korea

Received 11 November 2014; Accepted 15 January 2015

Academic Editor: Elio Ziparo

Copyright © 2015 Seahyoung Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Mathers, D. M. Fat, J. T. Boerma, and World Health Organization, The Global Burden of Disease: 2004 Update, World Health Organization, Geneva, Switzerland, 2008.
  2. L. Duprez, E. Wirawan, T. V. Berghe, and P. Vandenabeele, “Major cell death pathways at a glance,” Microbes and Infection, vol. 11, no. 13, pp. 1050–1062, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Chiong, Z. V. Wang, Z. Pedrozo et al., “Cardiomyocyte death: mechanisms and translational implications,” Cell Death and Disease, vol. 2, article e244, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. B. T. Cookson and M. A. Brennan, “Pro-inflammatory programmed cell death,” Trends in Microbiology, vol. 9, no. 3, pp. 113–114, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Dagenais, A. Skeldon, and M. Saleh, “The inflammasome: in memory of Dr. Jurg Tschopp,” Cell Death and Differentiation, vol. 19, no. 1, pp. 5–12, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. Ø. Sandanger, T. Ranheim, L. E. Vinge et al., “The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischaemia-reperfusion injury,” Cardiovascular Research, vol. 99, no. 1, pp. 164–174, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. D. P. Bartel, “MicroRNAs: genomics, biogenesis, mechanism, and function,” Cell, vol. 116, no. 2, pp. 281–297, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. Z. Wang, “MicroRNA: a matter of life or death,” World Journal of Biological Chemistry, vol. 1, no. 4, pp. 41–54, 2010. View at Google Scholar
  9. C. Sevignani, G. A. Calin, L. D. Siracusa, and C. M. Croce, “Mammalian microRNAs: a small world for fine-tuning gene expression,” Mammalian Genome, vol. 17, no. 3, pp. 189–202, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Ha and V. N. Kim, “Regulation of microRNA biogenesis,” Nature Reviews Molecular Cell Biology, vol. 15, no. 8, pp. 509–524, 2014. View at Publisher · View at Google Scholar
  11. V. N. Kim, “MicroRNA biogenesis: coordinated cropping and dicing,” Nature Reviews Molecular Cell Biology, vol. 6, no. 5, pp. 376–385, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Kim and V. N. Kim, “MicroRNA factory: RISC assembly from precursor microRNAs,” Molecular Cell, vol. 46, no. 4, pp. 384–386, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. M. R. Fabian and N. Sonenberg, “The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC,” Nature Structural & Molecular Biology, vol. 19, no. 6, pp. 586–593, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. R. C. Lee, R. L. Feinbaum, and V. Ambros, “The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14,” Cell, vol. 75, no. 5, pp. 843–854, 1993. View at Publisher · View at Google Scholar · View at Scopus
  15. A. M. Ardekani and M. M. Naeini, “The role of microRNAs in human diseases,” Avicenna Journal of Medical Biotechnology, vol. 2, no. 4, pp. 161–179, 2010. View at Google Scholar · View at Scopus
  16. E. M. Small, R. J. A. Frost, and E. N. Olson, “MicroRNAs add a new dimension to cardiovascular disease,” Circulation, vol. 121, no. 8, pp. 1022–1032, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Condorelli, M. V. G. Latronico, and E. Cavarretta, “MicroRNAs in cardiovascular diseases: current knowledge and the road ahead,” Journal of the American College of Cardiology, vol. 63, no. 21, pp. 2177–2187, 2014. View at Publisher · View at Google Scholar · View at Scopus
  18. W. Du, Z. Pan, X. Chen et al., “By targeting stat3 microRNA-17-5p promotes cardiomyocyte apoptosis in response to ischemia followed by reperfusion,” Cellular Physiology and Biochemistry, vol. 34, no. 3, pp. 955–965, 2014. View at Publisher · View at Google Scholar
  19. C. Xu, Y. Hu, L. Hou et al., “β-Blocker carvedilol protects cardiomyocytes against oxidative stress-induced apoptosis by up-regulating miR-133 expression,” Journal of Molecular and Cellular Cardiology, vol. 75, pp. 111–121, 2014. View at Publisher · View at Google Scholar
  20. Q. Li, J. Xie, R. Li et al., “Overexpression of microRNA-99a attenuates heart remodelling and improves cardiac performance after myocardial infarction,” Journal of Cellular and Molecular Medicine, vol. 18, no. 5, pp. 919–928, 2014. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Huang, W. Sun, H. Huang et al., “MiR-34a modulates angiotensin II-induced myocardial hypertrophy by direct inhibition of ATG9A Expression and Autophagic Activity,” PLoS ONE, vol. 9, no. 4, Article ID e94382, 2014. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Latz, T. S. Xiao, and A. Stutz, “Activation and regulation of the inflammasomes,” Nature Reviews Immunology, vol. 13, no. 6, pp. 397–411, 2013. View at Publisher · View at Google Scholar · View at Scopus
  23. J. G. Walsh, D. A. Muruve, and C. Power, “Inflammasomes in the CNS,” Nature Reviews Neuroscience, vol. 15, no. 2, pp. 84–97, 2014. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Schroder and J. Tschopp, “The Inflammasomes,” Cell, vol. 140, no. 6, pp. 821–832, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Proell, S. J. Riedl, J. H. Fritz, A. M. Rojas, and R. Schwarzenbacher, “The Nod-Like Receptor (NLR) family: a tale of similarities and differences,” PLoS ONE, vol. 3, no. 4, Article ID e2119, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. N. A. Thornberry, H. G. Bull, J. R. Calaycay et al., “A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes,” Nature, vol. 356, no. 6372, pp. 768–774, 1992. View at Publisher · View at Google Scholar · View at Scopus
  27. D. R. McIlwain, T. Berger, and T. W. Mak, “Caspase functions in cell death and disease,” Cold Spring Harbor perspectives in biology, vol. 5, no. 4, 2013. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Merkle, S. Frantz, M. P. Schön et al., “A role for caspase-1 in heart failure,” Circulation Research, vol. 100, no. 5, pp. 645–653, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. S. B. Bratton and G. S. Salvesen, “Regulation of the Apaf-1-caspase-9 apoptosome,” Journal of Cell Science, vol. 123, part 19, pp. 3209–3214, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. J. P.-Y. Ting, S. B. Willingham, and D. T. Bergstralh, “NLRs at the intersection of cell death and immunity,” Nature Reviews Immunology, vol. 8, no. 5, pp. 372–379, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. S. M. Srinivasula, J.-L. Poyet, M. Razmara, P. Datta, Z. Zhang, and E. S. Alnemri, “The PYRIN-CARD protein ASC is an activating adaptor for caspase-1,” The Journal of Biological Chemistry, vol. 277, no. 24, pp. 21119–21122, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. B. K. Davis, H. Wen, and J. P.-Y. Ting, “The Inflammasome NLRs in immunity, inflammation, and associated diseases,” Annual Review of Immunology, vol. 29, pp. 707–735, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. S. L. Fink and B. T. Cookson, “Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages,” Cellular Microbiology, vol. 8, no. 11, pp. 1812–1825, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Newton and V. M. Dixit, “Signaling in innate immunity and inflammation,” Cold Spring Harbor Perspectives in Biology, vol. 4, no. 3, 2012. View at Google Scholar
  35. B. Raupach, S. K. Peuschel, D. M. Monack, and A. Zychlinsky, “Caspase-1-mediated activation of interleukin-1beta (IL-1beta) and IL-18 contributes to innate immune defenses against Salmonella enterica serovar Typhimurium infection,” Infection and Immunity, vol. 74, no. 8, pp. 4922–4926, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Sarkar, M. W. Hall, M. Exline et al., “Caspase-1 regulates Escherichia coli sepsis and splenic B cell apoptosis independently of interleukin-1β and interleukin-18,” American Journal of Respiratory and Critical Care Medicine, vol. 174, no. 9, pp. 1003–1010, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. B. W. van Tassell, J. M. Raleigh, and A. Abbate, “Targeting interleukin-1 in heart failure and inflammatory heart disease,” Current Heart Failure Reports, vol. 12, no. 1, pp. 33–41, 2015. View at Publisher · View at Google Scholar
  38. B. W. van Tassell, S. Toldo, E. Mezzaroma, and A. Abbate, “Targeting interleukin-1 in heart disease,” Circulation, vol. 128, no. 17, pp. 1910–1923, 2013. View at Publisher · View at Google Scholar · View at Scopus
  39. B. J. M. H. Jefferis, O. Papacosta, C. G. Owen et al., “Interleukin 18 and coronary heart disease: prospective study and systematic review,” Atherosclerosis, vol. 217, no. 1, pp. 227–233, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. D. P. Bartel, “MicroRNAs: target recognition and regulatory functions,” Cell, vol. 136, no. 2, pp. 215–233, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. H. Dweep, C. Sticht, P. Pandey, and N. Gretz, “miRWalk—database: prediction of possible miRNA binding sites by ‘walking’ the genes of three genomes,” Journal of Biomedical Informatics, vol. 44, no. 5, pp. 839–847, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. F. Bauernfeind, A. Rieger, F. A. Schildberg, P. A. Knolle, J. L. Schmid-Burgk, and V. Hornung, “NLRP3 inflammasome activity is negatively controlled by miR-223,” Journal of Immunology, vol. 189, no. 8, pp. 4175–4181, 2012. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Haneklaus, M. Gerlic, M. Kurowska-Stolarska et al., “Cutting edge: miR-223 and EBV miR-BART15 regulate the NLRP3 inflammasome and IL-1δ production,” Journal of Immunology, vol. 189, no. 8, pp. 3795–3799, 2012. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Greco, P. Fasanaro, S. Castelvecchio et al., “MicroRNA dysregulation in diabetic ischemic heart failure patients,” Diabetes, vol. 61, no. 6, pp. 1633–1641, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Ikeda, S. W. Kong, J. Lu et al., “Altered microRNA expression in human heart disease,” Physiological Genomics, vol. 31, no. 3, pp. 367–373, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. Y. Kuwabara, K. Ono, T. Horie et al., “Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage,” Circulation: Cardiovascular Genetics, vol. 4, no. 4, pp. 446–454, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Carè, D. Catalucci, F. Felicetti et al., “MicroRNA-133 controls cardiac hypertrophy,” Nature Medicine, vol. 13, no. 5, pp. 613–618, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. E. Mezzaroma, S. Toldo, D. Farkas et al., “The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 49, pp. 19725–19730, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Chen and B. Sun, “Negative regulation of NLRP3 inflammasome signaling,” Protein & Cell, vol. 4, no. 4, pp. 251–258, 2013. View at Publisher · View at Google Scholar · View at Scopus
  50. N. Mizushima and M. Komatsu, “Autophagy: renovation of cells and tissues,” Cell, vol. 147, no. 4, pp. 728–741, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. K. Cadwell, J. Y. Liu, S. L. Brown et al., “A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells,” Nature, vol. 456, no. 7219, pp. 259–263, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. T. Saitoh, N. Fujita, M. H. Jang et al., “Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production,” Nature, vol. 456, no. 7219, pp. 264–268, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. E.-L. Eskelinen and P. Saftig, “Autophagy: a lysosomal degradation pathway with a central role in health and disease,” Biochimica et Biophysica Acta, vol. 1793, no. 4, pp. 664–673, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. K. Nakahira, J. A. Haspel, V. A. K. Rathinam et al., “Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome,” Nature Immunology, vol. 12, no. 3, pp. 222–230, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. C. D. Krause, W. He, S. Kotenko, and S. Pestka, “Modulation of the activation of Stat1 by the interferon-gamma receptor complex,” Cell Research, vol. 16, no. 1, pp. 113–123, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. G. Guarda, M. Braun, F. Staehli et al., “Type I interferon inhibits interleukin-1 production and inflammasome activation,” Immunity, vol. 34, no. 2, pp. 213–223, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. X. Li, N. Du, Q. Zhang et al., “MicroRNA-30d regulates cardiomyocyte pyroptosis by directly targeting foxo3a in diabetic cardiomyopathy,” Cell Death and Disease, vol. 5, no. 10, Article ID e1479, 2014. View at Publisher · View at Google Scholar
  58. D. Lu, J. Liu, J. Jiao et al., “Transcription factor Foxo3a prevents apoptosis by regulating calcium through the apoptosis repressor with caspase recruitment domain,” Journal of Biological Chemistry, vol. 288, no. 12, pp. 8491–8504, 2013. View at Publisher · View at Google Scholar · View at Scopus
  59. J. Wang, W. Huang, R. Xu et al., “MicroRNA-24 regulates cardiac fibrosis after myocardial infarction,” Journal of Cellular and Molecular Medicine, vol. 16, no. 9, pp. 2150–2160, 2012. View at Publisher · View at Google Scholar · View at Scopus
  60. J. Fiedler, V. Jazbutyte, B. C. Kirchmaier et al., “MicroRNA-24 regulates vascularity after myocardial infarction,” Circulation, vol. 124, no. 6, pp. 720–730, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. S. Dong, Y. Cheng, J. Yang et al., “MicroRNA expression signature and the role of MicroRNA-21 in the early phase of acute myocardial infarction,” The Journal of Biological Chemistry, vol. 284, no. 43, pp. 29514–29525, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. N. Zidar, E. Boštjančič, D. Glavač, and D. Štajer, “MicroRNAs, innate immunity and ventricular rupture in human myocardial infarction,” Disease Markers, vol. 31, no. 5, pp. 259–265, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. H. Y. Seok, J. Chen, M. Kataoka et al., “Loss of MicroRNA-155 protects the heart from pathological cardiac hypertrophy,” Circulation Research, vol. 114, no. 10, pp. 1585–1595, 2014. View at Publisher · View at Google Scholar · View at Scopus
  64. S. V. Naga Prasad, Z.-H. Duan, M. K. Gupta et al., “Unique MicroRNA profile in end-stage heart failure indicates alterations in specific cardiovascular signaling networks,” The Journal of Biological Chemistry, vol. 284, no. 40, pp. 27487–27499, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. D. Sayed, C. Hong, I.-Y. Chen, J. Lypowy, and M. Abdellatif, “MicroRNAs play an essential role in the development of cardiac hypertrophy,” Circulation Research, vol. 100, no. 3, pp. 416–424, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. E. van Rooij, L. B. Sutherland, N. Liu et al., “A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 48, pp. 18255–18260, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. K. Mao, S. Chen, M. Chen et al., “Nitric oxide suppresses NLRP3 inflammasome activation and protects against LPS-induced septic shock,” Cell Research, vol. 23, no. 2, pp. 201–212, 2013. View at Publisher · View at Google Scholar · View at Scopus
  68. R. Zamora, Y. Vodovotz, and T. R. Billiar, “Inducible nitric oxide synthase and inflammatory diseases,” Molecular Medicine, vol. 6, no. 5, pp. 347–373, 2000. View at Google Scholar · View at Scopus
  69. E. Hernandez-Cuellar, K. Tsuchiya, H. Hara et al., “Cutting edge: nitric oxide inhibits the NLRP3 inflammasome,” The Journal of Immunology, vol. 189, no. 11, pp. 5113–5117, 2012. View at Publisher · View at Google Scholar · View at Scopus