Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2015, Article ID 274314, 11 pages
http://dx.doi.org/10.1155/2015/274314
Research Article

Astragaloside IV Inhibits NF-κB Activation and Inflammatory Gene Expression in LPS-Treated Mice

Linus Pauling Institute and Department of Biochemistry and Biophysics, Oregon State University, 307 Linus Pauling Science Center, Corvallis, OR 97331, USA

Received 16 December 2014; Revised 27 February 2015; Accepted 28 February 2015

Academic Editor: Yi Fu Yang

Copyright © 2015 Wei-Jian Zhang and Balz Frei. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. C. Aird, “The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome,” Blood, vol. 101, no. 10, pp. 3765–3777, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. J. E. Parrillo, “Pathogenetic mechanisms of septic shock,” The New England Journal of Medicine, vol. 328, no. 20, pp. 1471–1477, 1993. View at Publisher · View at Google Scholar · View at Scopus
  3. D. G. Remick, “Pathophysiology of sepsis,” The American Journal of Pathology, vol. 170, no. 5, pp. 1435–1444, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Collins, M. A. Read, A. S. Neish, M. Z. Whitley, D. Thanos, and T. Maniatis, “Transcriptional regulation of endothelial cell adhesion molecules: NF-κB and cytokine-inducible enhancers,” The FASEB Journal, vol. 9, no. 10, pp. 899–909, 1995. View at Google Scholar · View at Scopus
  5. S. F. Liu and A. B. Malik, “NF-κB activation as a pathological mechanism of septic shock and inflammation,” American Journal of Physiology: Lung Cellular and Molecular Physiology, vol. 290, no. 4, pp. L622–L645, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. W.-J. Zhang, P. Hufnagl, B. R. Binder, and J. Wojta, “Antiinflammatory activity of astragaloside IV is mediated by inhibition of NF-κB activation and adhesion molecule expression,” Thrombosis and Haemostasis, vol. 90, no. 5, pp. 904–914, 2003. View at Google Scholar · View at Scopus
  7. C. Weber, W. Erl, A. Pietsch, M. Strobel, H. W. L. Ziegler-Heitbrock, and P. C. Weber, “Antioxidants inhibit monocyte adhesion by suppressing nuclear factor-κB mobilization and induction of vascular cell adhesion molecule-1 in endothelial cells stimulated to generate radicals,” Arteriosclerosis and Thrombosis, vol. 14, no. 10, pp. 1665–1673, 1994. View at Publisher · View at Google Scholar · View at Scopus
  8. W.-J. Zhang and B. Frei, “α-Lipoic acid inhibits TNF-α-induced NF-κB activation and adhesion molecule expression in human aortic endothelial cells,” The FASEB Journal, vol. 15, no. 13, pp. 2423–2432, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. W. J. Zhang, H. Wei, T. Hagen, and B. Frei, “α-Lipoic acid attenuates LPS-induced inflammatory responses by activating the phosphoinositide 3-kinase/Akt signaling pathway,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 10, pp. 4077–4082, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Chu, L.-W. Qi, E.-H. Liu, B. Li, W. Gao, and P. Li, “Radix astragali (Astragalus): latest advancements and trends in chemistry, analysis, pharmacology and pharmacokinetics,” Current Organic Chemistry, vol. 14, no. 16, pp. 1792–1807, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. W. C. S. Cho and K. N. Leung, “In vitro and in vivo immunomodulating and immunorestorative effects of Astragalus membranaceus,” Journal of Ethnopharmacology, vol. 113, no. 1, pp. 132–141, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. K. L. Denzler, R. Waters, B. L. Jacobs, Y. Rochon, and J. O. Langland, “Regulation of inflammatory gene expression in PBMCs by immunostimulatory botanicals,” PloS ONE, vol. 5, no. 9, Article ID e12561, 2010. View at Google Scholar · View at Scopus
  13. X. J. Chen, Z.-P. Bian, S. Lu et al., “Cardiac protective effect of Astragalus on viral myocarditis mice: comparison with Perindopril,” The American Journal of Chinese Medicine, vol. 34, no. 3, pp. 493–502, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. X.-L. Xu, H. Ji, S.-Y. Gu, Q. Shao, Q.-J. Huang, and Y.-P. Cheng, “Cardioprotective effects of Astragali Radix against isoproterenol-induced myocardial injury in rats and its possible mechanism,” Phytotherapy Research, vol. 22, no. 3, pp. 389–394, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Fu, J. Zhang, F. Menniti-Ippolito et al., “Huangqi injection (a traditional chinese patent medicine) for chronic heart failure: a systematic review,” PLoS ONE, vol. 6, no. 5, Article ID e19604, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Ryu, E. H. Kim, M. Chun et al., “Astragali Radix elicits anti-inflammation via activation of MKP-1, concomitant with attenuation of p38 and Erk,” Journal of Ethnopharmacology, vol. 115, no. 2, pp. 184–193, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. X.-H. Gao, X.-X. Xu, R. Pan et al., “Saponin fraction from Astragalus membranaceus roots protects mice against polymicrobial sepsis induced by cecal ligation and puncture by inhibiting inflammation and upregulating protein C pathway,” Journal of Natural Medicines, vol. 63, no. 4, pp. 421–429, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. J. B. Jiang, J. D. Qiu, L. H. Yang, J. P. He, G. W. Smith, and H. Q. Li, “Therapeutic effects of astragalus polysaccharides on inflammation and synovial apoptosis in rats with adjuvant-induced arthritis,” International Journal of Rheumatic Diseases, vol. 13, no. 4, pp. 396–405, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. S.-Y. Gui, W. Wei, H. Wang et al., “Effects and mechanisms of crude astragalosides fraction on liver fibrosis in rats,” Journal of Ethnopharmacology, vol. 103, no. 2, pp. 154–159, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Wang, J. Li, H. Huang et al., “Anti-hepatitis B virus activities of astragaloside IV isolated from Radix Astragali,” Biological and Pharmaceutical Bulletin, vol. 32, no. 1, pp. 132–135, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Li, W. Wang, J. Xue, Y. Gu, and S. Lin, “Meta-analysis of the clinical value of Astragalus membranaceus in diabetic nephropathy,” Journal of Ethnopharmacology, vol. 133, no. 2, pp. 412–419, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. W. C. S. Cho and K. N. Leung, “In vitro and in vivo anti-tumor effects of Astragalus membranaceus,” Cancer Letters, vol. 252, no. 1, pp. 43–54, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Tohda, T. Tamura, S. Matsuyama, and K. Komatsu, “Promotion of axonal maturation and prevention of memory loss in mice by extracts of Astragalus mongholicus,” British Journal of Pharmacology, vol. 149, no. 5, pp. 532–541, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. J.-Z. Song, H. H. W. Yiu, C.-F. Qiao, Q.-B. Han, and H.-X. Xu, “Chemical comparison and classification of Radix Astragali by determination of isoflavonoids and astragalosides,” Journal of Pharmaceutical and Biomedical Analysis, vol. 47, no. 2, pp. 399–406, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. I. Kitagawa, H. K. Wang, M. Saito, A. Takagi, and M. Yoshikawa, “Saponin and sapogenol. XXXV. Chemical constituents of astragali radix, the root of Astragalus membranaceus Bunge. 2. Astragalosides I, II, and IV, acetylastragaloside I and isoastragaloside I and II,” Chemical and Pharmaceutical Bulletin, vol. 31, no. 2, pp. 698–708, 1983. View at Publisher · View at Google Scholar · View at Scopus
  26. W.-D. Zhang, C. Zhang, X. H. Wang et al., “Astragaloside IV from Astragalus membranaceus shows cardioprotection during myocardial ischemia in vivo and in vitro,” Planta Medica, vol. 72, no. 1, pp. 4–8, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. X.-L. Xu, H. Ji, S.-Y. Gu, Q. Shao, Q.-J. Huang, and Y.-P. Cheng, “Modification of alterations in cardiac function and sarcoplasmic reticulum by astragaloside IV in myocardial injury in vivo,” European Journal of Pharmacology, vol. 568, no. 1–3, pp. 203–212, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. W. J. Zhang, J. Wojta, and B. R. Binder, “Regulation of the fibrinolytic potential of cultured human umbilical vein endothelial cells: astragaloside IV downregulates plasminogen activator inhibitor-1 and upregulates tissue-type plasminogen activator expression,” Journal of Vascular Research, vol. 34, no. 4, pp. 273–280, 1997. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Zhang, Q. Liu, L. Lu, X. Zhao, X. Gao, and Y. Wang, “Astragaloside IV stimulates angiogenesis and increases hypoxia-inducible factor-1α accumulation via phosphatidylinositol 3-kinase/akt pathway,” Journal of Pharmacology and Experimental Therapeutics, vol. 338, no. 2, pp. 485–491, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Zhao, P. Yang, F. Li et al., “Therapeutic effects of astragaloside IV on myocardial injuries: multi-target identification and network analysis,” PLoS ONE, vol. 7, no. 9, Article ID e44938, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. W. J. Zhang, H. Wei, and B. Frei, “Genetic deficiency of NADPH oxidase does not diminish, but rather enhances, LPS-induced acute inflammatory responses in vivo,” Free Radical Biology and Medicine, vol. 46, no. 6, pp. 791–798, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. S. S. Awad, “State-of-the-art therapy for severe sepsis and multisystem organ dysfunction,” The American Journal of Surgery, vol. 186, supplement 1, no. 5, pp. 23S–30S, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. W.-J. Zhang, H. Wei, Y.-T. Tien, and B. Frei, “Genetic ablation of phagocytic NADPH oxidase in mice limits TNFα-induced inflammation in the lungs but not other tissues,” Free Radical Biology and Medicine, vol. 50, no. 11, pp. 1517–1525, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. J. E. Juskewitch, J. L. Platt, B. E. Knudsen, K. L. Knutson, G. J. Brunn, and J. P. Grande, “Disparate roles of marrow-and parenchymal cell-derived TLR4 signaling in murine LPS-induced systemic inflammation,” Scientific Reports, vol. 2, article 918, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Böhrer, F. Qiu, T. Zimmermann et al., “Role of NFκB in the mortality of sepsis,” The Journal of Clinical Investigation, vol. 100, no. 5, pp. 972–985, 1997. View at Publisher · View at Google Scholar · View at Scopus
  36. E. M. Pålsson-McDermott and L. A. J. O'Neill, “Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4,” Immunology, vol. 113, no. 2, pp. 153–162, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Schabbauer, M. Tencati, B. Pedersen, R. Pawlinski, and N. Mackman, “PI3K-Akt pathway suppresses coagulation and inflammation in endotoxemic mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 10, pp. 1963–1969, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. D. L. Williams, C. Li, T. Ha et al., “Modulation of the phosphoinositide 3-kinase pathway alters innate resistance to polymicrobial sepsis,” Journal of Immunology, vol. 172, no. 1, pp. 449–456, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. D. Gui, Y. Guo, F. Wang et al., “Astragaloside IV, a novel antioxidant, prevents glucose-induced podocyte apoptosis in vitro and in vivo,” PLoS ONE, vol. 7, no. 6, Article ID e39824, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. He, M. Du, Y. Gao et al., “Astragaloside IV attenuates experimental autoimmune encephalomyelitis of mice by counteracting oxidative stress at multiple levels,” PLoS ONE, vol. 8, no. 10, Article ID e76495, 2013. View at Publisher · View at Google Scholar · View at Scopus
  41. Q. Zhang, L.-L. Zhu, G.-G. Chen, and Y. Du, “Pharmacokinetics of astragalosideiv in beagle dogs,” European Journal of Drug Metabolism and Pharmacokinetics, vol. 32, no. 2, pp. 75–79, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. Du, Q. Zhang, G. G. Chen, P. Wei, and C. Y. Tu, “Pharmacokinetics of Astragaloside IV in rats by liquid chromatography coupled with tandem mass spectrometry,” European Journal of Drug Metabolism and Pharmacokinetics, vol. 30, no. 4, pp. 269–273, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. C. R. Huang, G. J. Wang, X. L. Wu et al., “Absorption enhancement study of astragaloside IV based on its transport mechanism in Caco-2 cells,” European Journal of Drug Metabolism and Pharmacokinetics, vol. 31, no. 1, pp. 5–10, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. Gu, G. Wang, G. Pan, J. P. Fawcett, J. A, and J. Sun, “Transport and bioavailability studies of astragaloside IV, an active ingredient in Radix astragali,” Basic and Clinical Pharmacology and Toxicology, vol. 95, no. 6, pp. 295–298, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. W. D. Zhang, C. Zhang, R.-H. Liu et al., “Preclinical pharmacokinetics and tissue distribution of a natural cardioprotective agent astragaloside IV in rats and dogs,” Life Sciences, vol. 79, no. 8, pp. 808–815, 2006. View at Publisher · View at Google Scholar · View at Scopus