Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2015 (2015), Article ID 801685, 7 pages
http://dx.doi.org/10.1155/2015/801685
Review Article

Contribution of Neuroinflammation to the Pathogenesis of Cancer Cachexia

Department of Clinical Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy

Received 26 February 2015; Accepted 10 June 2015

Academic Editor: Philip Bufler

Copyright © 2015 Alessio Molfino et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Laviano, M. M. Meguid, A. Inui, M. Muscaritoli, and F. Rossi-Fanelli, “Therapy insight: cancer anorexia-cachexia syndrome: when all you can eat is yourself,” Nature Clinical Practice Oncology, vol. 2, no. 3, pp. 158–165, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Muscaritoli, M. Bossola, Z. Aversa, R. Bellantone, and F. Rossi Fanelli, “Prevention and treatment of cancer cachexia: new insights into an old problem,” European Journal of Cancer, vol. 42, no. 1, pp. 31–41, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. M. M. M. Caro, A. Laviano, and C. Pichard, “Impact of nutrition on quality of life during cancer,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 10, no. 4, pp. 480–487, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. K. C. Fearon, A. C. Voss, and D. S. Hustead, “Definition of cancer cachexia: effect of weight loss, reduced food intake, and systemic inflammation on functional status and prognosis,” The American Journal of Clinical Nutrition, vol. 83, no. 6, pp. 1345–1350, 2006. View at Google Scholar · View at Scopus
  5. M. B. Pepys, G. M. Hirschfield, G. A. Tennent et al., “Targeting C-reactive protein for the treatment of cardiovascular disease,” Nature, vol. 440, no. 7088, pp. 1217–1221, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. C. H. C. Dejong, S. Busquets, A. G. W. Moses et al., “Systemic inflammation correlates with increased expression of skeletal muscle ubiquitin but not uncoupling proteins in cancer cachexia,” Oncology Reports, vol. 14, no. 1, pp. 257–263, 2005. View at Google Scholar · View at Scopus
  7. C. R. Plata-Salamán, S. E. Ilyin, and D. Gayle, “Brain cytokine mRNAs in anorectic rats bearing prostate adenocarcinoma tumor cells,” The American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 275, no. 2, pp. R566–R573, 1998. View at Google Scholar · View at Scopus
  8. A. Guijarro, A. Laviano, and M. M. Meguid, “Hypothalamic integration of immune function and metabolism,” in Hypothalamic Integration of Energy Metabolism, A. Kalsbeek, E. Fliers, M. A. Hofman, D. F. Swaab, E. J. W. van Someren, and R. M. Buijs, Eds., vol. 153 of Progress in Brain Research, pp. 367–405, Elsevier, Amsterdam, The Netherlands, 2006. View at Publisher · View at Google Scholar
  9. A. Laviano, A. Molfino, M. Seelaender et al., “Carnitine administration reduces cytokine levels, improves food intake, and ameliorates body composition in tumor-bearing rats,” Cancer Investigation, vol. 29, no. 10, pp. 696–700, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Molfino, F. Logorelli, G. Citro et al., “Stimulation of the nicotine antiinflammatory pathway improves food intake and body composition in tumor-bearing rats,” Nutrition and Cancer, vol. 63, no. 2, pp. 295–299, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Molfino, S. De Luca, M. Muscaritoli et al., “Timing of antioxidant supplementation is critical in improving anorexia in an experimental model of cancer,” International Journal of Food Sciences and Nutrition, vol. 64, no. 5, pp. 570–574, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. G. F. Torelli, M. M. Meguid, L. L. Moldawer et al., “Use of recombinant human soluble TNF receptor in anorectic tumor-bearing rats,” The American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 277, no. 3, pp. R850–R855, 1999. View at Google Scholar · View at Scopus
  13. A. Laviano, J. R. Gleason, M. M. Meguid, Z.-J. Yang, C. Cangiano, and F. R. Fanelli, “Effects of intra-VMN mianserin and IL-1ra on meal number in anorectic tumor-bearing rats,” Journal of Investigative Medicine, vol. 48, no. 1, pp. 40–48, 2000. View at Google Scholar · View at Scopus
  14. Z.-J. Yang, V. Blaha, M. M. Meguid, A. Laviano, A. Oler, and Z. Zadak, “Interleukin-1α injection into ventromedial hypothalamic nucleus of normal rats depresses food intake and increases release of dopamine and serotonin,” Pharmacology Biochemistry and Behavior, vol. 62, no. 1, pp. 61–65, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Jatoi, K. Rowland, C. L. Loprinzi et al., “An eicosapentaenoic acid supplement versus megestrol acetate versus both for patients with cancer-associated wasting: a North Central Cancer Treatment Group and National Cancer Institute of Canada collaborative effort,” Journal of Clinical Oncology, vol. 22, no. 12, pp. 2469–2476, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Pappalardo, A. Almeida, and P. Ravasco, “Eicosapentaenoic acid in cancer improves body composition and modulates metabolism,” Nutrition, vol. 31, no. 4, pp. 549–555, 2015. View at Publisher · View at Google Scholar
  17. A. Laviano, M. M. Meguid, I. Preziosa, and F. R. Fanelli, “Oxidative stress and wasting in cancer,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 10, no. 4, pp. 449–456, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. E. I. Opara, A. Laviano, M. M. Meguid, and Z.-J. Yang, “Correlation between food intake and CSF IL-1alpha in anorectic tumor bearing rats,” NeuroReport, vol. 6, no. 5, pp. 750–752, 1995. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Laviano, J. R. Gleason, M. M. Meguid, Z. J. Yang, C. Cangiano, and F. R. Fanelli, “Effects of intra-VMN mianserin and IL-1ra on meal number in anorectic tumor-bearing rats,” Journal of Investigative Medicine, vol. 48, no. 1, pp. 40–48, 2000. View at Google Scholar · View at Scopus
  20. H. D. McCarthy, R. E. Crowder, S. Dryden, and G. Williams, “Megestrol acetate stimulates food and water intake in the rat: effects on regional hypothalamic neuropeptide Y concentrations,” European Journal of Pharmacology, vol. 265, no. 1-2, pp. 99–102, 1994. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Mantovani, A. Macciò, P. Lai, E. Massa, M. Ghiani, and M. C. Santona, “Cytokine involvement in cancer anorexia/cachexia: role of megestrol acetate and medroxyprogesterone acetate on cytokine downregulation and improvement of clinical symptoms,” Critical Reviews in Oncogenesis, vol. 9, no. 2, pp. 99–106, 1998. View at Publisher · View at Google Scholar · View at Scopus
  22. J. M. Scarlett, E. E. Jobst, P. J. Enriori et al., “Regulation of central melanocortin signaling by interleukin-1 β,” Endocrinology, vol. 148, no. 9, pp. 4217–4225, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. M. M. Meguid, S. O. Fetissov, M. Varma et al., “Hypothalamic dopamine and serotonin in the regulation of food intake,” Nutrition, vol. 16, no. 10, pp. 843–857, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. L. H. Tecott, “Serotonin and the orchestration of energy balance,” Cell Metabolism, vol. 6, no. 5, pp. 352–361, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. V. Bláha, Z. J. Yang, M. M. Meguid, J. K. Chai, A. Oler, and Z. Zadák, “Ventromedial nucleus of hypothalamis is related to the development of cancer induced anorexia: in vivo microdialysis study,” Acta Medica, vol. 41, no. 1, pp. 3–11, 1998. View at Google Scholar · View at Scopus
  26. I. G. Makarenko, M. M. Meguid, L. Gatto et al., “Normalization of hypothalamic serotonin (5-HT1B) receptor and NPY in cancer anorexia after tumor resection: an immunocytochemical study,” Neuroscience Letters, vol. 383, no. 3, pp. 322–327, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. A. C. F. Ferreira, E. Martins Jr., S. C. Afeche, J. Cipolla-Neto, and L. F. B. P. Costa Rosa, “The profile of melatonin production in tumour-bearing rats,” Life Sciences, vol. 75, no. 19, pp. 2291–2302, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Bartsch, H. Bartsch, S.-H. Fluchter, D. Mecke, and T. H. Lippert, “Diminished pineal function coincides with disturbed circadian endocrine rhythmicity in untreated primary cancer patients: consequence of premature aging or of tumor growth?” Annals of the New York Academy of Sciences, vol. 719, pp. 502–525, 1994. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Cangiano, A. Cascino, F. Ceci et al., “Plasma and CSF tryptophan in cancer anorexia,” Journal of Neural Transmission: General Section, vol. 81, no. 3, pp. 225–233, 1990. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Laviano, M. M. Meguid, I. Preziosa, and F. R. Fanelli, “Oxidative stress and wasting in cancer,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 10, no. 4, pp. 449–456, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. J. J. S. Freitas, C. Pompéia, C. K. Miyasaka, and R. Curi, “Walker-256 tumor growth causes oxidative stress in rat brain,” Journal of Neurochemistry, vol. 77, no. 2, pp. 655–663, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. E. Del Fabbro, R. Dev, D. Hui, L. Palmer, and E. Bruera, “Effects of melatonin on appetite and other symptoms in patients with advanced cancer and cachexia: a double-blind placebo-controlled trial,” Journal of Clinical Oncology, vol. 31, no. 10, pp. 1271–1276, 2013. View at Publisher · View at Google Scholar · View at Scopus
  33. L. K. Heisler, M. A. Cowley, L. H. Tecott et al., “Activation of central melanocortin pathways by fenfluramine,” Science, vol. 297, no. 5581, pp. 609–611, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. L. K. Heisler, E. E. Jobst, G. M. Sutton et al., “Serotonin reciprocally regulates melanocortin neurons to modulate food intake,” Neuron, vol. 51, no. 2, pp. 239–249, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. L. Zhou, G. M. Sutton, J. J. Rochford et al., “Serotonin 2C receptor agonists improve type 2 diabetes via melanocortin-4 receptor signaling pathways,” Cell Metabolism, vol. 6, no. 5, pp. 398–405, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Sato, A. Laviano, M. M. Meguid, C. Chen, F. Rossi-Fanelli, and K. Hatakeyama, “Involvement of plasma leptin, insulin and free tryptophan in cytokine-induced anorexia,” Clinical Nutrition, vol. 22, no. 2, pp. 139–146, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. C.-B. Zhu, R. D. Blakely, and W. A. Hewlett, “The proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha activate serotonin transporters,” Neuropsychopharmacology, vol. 31, no. 10, pp. 2121–2131, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Taherzadeh, S. Sharma, V. Chhajlani et al., “α-MSH and its receptors in regulation of tumor necrosis factor-α production by human monocyte/macrophages,” The American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 276, no. 5, pp. R1289–R1294, 1999. View at Google Scholar · View at Scopus
  39. D. M. Ignar, J. L. Andrews, M. Jansen et al., “Regulation of TNF-alpha secretion by a specific melanocortin-1 receptor peptide agonist,” Peptides, vol. 24, no. 5, pp. 709–716, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Könnecke and I. Bechmann, “The role of microglia and matrix metalloproteinases involvement in neuroinflammation and gliomas,” Clinical and Developmental Immunology, vol. 2013, Article ID 914104, 15 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Olah, K. Biber, J. Vinet, and H. W. G. M. Boddeke, “Microglia phenotype diversity,” CNS & Neurological Disorders—Drug Targets, vol. 10, no. 1, pp. 108–118, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. J. M. Argilés, S. Busquets, and F. J. López-Soriano, “Cytokines in the pathogenesis of cancer cachexia,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 6, no. 4, pp. 401–406, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. A. J. Staal-van den Brekel, M. A. Dentener, A. M. W. J. Schols, W. A. Buurman, and E. F. M. Wouters, “Increased resting energy expenditure and weight loss are related to a systemic inflammatory response in lung cancer patients,” Journal of Clinical Oncology, vol. 13, no. 10, pp. 2600–2605, 1995. View at Google Scholar · View at Scopus
  44. C. Scheede-Bergdahl, H. L. Watt, B. Trutschnigg et al., “Is IL-6 the best pro-inflammatory biomarker of clinical outcomes of cancer cachexia?” Clinical Nutrition, vol. 31, no. 1, pp. 85–88, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. O. Kayacan, D. Karnak, S. Beder et al., “Impact of TNF-α and IL-6 levels on development of cachexia in newly diagnosed NSCLC patients,” The American Journal of Clinical Oncology, vol. 29, no. 4, pp. 328–335, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Laviano, A. Inui, D. L. Marks et al., “Neural control of the anorexia-cachexia syndrome,” The American Journal of Physiology—Endocrinology and Metabolism, vol. 295, no. 5, pp. E1000–E1008, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. K. C. H. Fearon and A. G. W. Moses, “Cancer cachexia,” International Journal of Cardiology, vol. 85, no. 1, pp. 73–81, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. G. Strassmann, M. Fong, J. S. Kenney, and C. O. Jacob, “Evidence for the involvement of interleukin 6 in experimental cancer cachexia,” The Journal of Clinical Investigation, vol. 89, no. 5, pp. 1681–1684, 1992. View at Publisher · View at Google Scholar · View at Scopus
  49. L. Horvathova, A. Tillinger, I. Sivakova, L. Mikova, B. Mravec, and M. Bucova, “Chemical sympathectomy increases neutrophil-to-lymphocyte ratio in tumor-bearing rats but does not influence cancer progression,” Journal of Neuroimmunology, vol. 278, pp. 255–261, 2015. View at Publisher · View at Google Scholar
  50. C. Magnon, S. J. Hall, J. Lin et al., “Autonomic nerve development contributes to prostate cancer progression,” Science, vol. 341, no. 6142, Article ID 1236361, 2013. View at Publisher · View at Google Scholar · View at Scopus
  51. I. Rana, E. Badoer, E. Alahmadi, C. H. Leo, O. L. Woodman, and M. J. Stebbing, “Microglia are selectively activated in endocrine and cardiovascular control centres in streptozotocin-induced diabetic rats,” Journal of Neuroendocrinology, vol. 26, no. 7, pp. 413–425, 2014. View at Publisher · View at Google Scholar
  52. A. Molfino, F. Rossi-Fanelli, and A. Laviano, “The interaction between pro-inflammatory cytokines and the nervous system,” Nature Reviews Cancer, vol. 9, no. 3, p. 224, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Laviano, A. Molfino, S. Rianda, and F. R. Fanelli, “The growth hormone secretagogue receptor (GHs-R),” Current Pharmaceutical Design, vol. 18, no. 31, pp. 4749–4754, 2012. View at Publisher · View at Google Scholar · View at Scopus
  54. C. N. Serhan, R. Yang, K. Martinod et al., “Maresins: novel macrophage mediators with potent antiinflammatory and proresolving actions,” Journal of Experimental Medicine, vol. 206, no. 1, pp. 15–23, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. P. K. Mukherjee, V. L. Marcheselli, C. N. Serhan, and N. G. Bazan, “Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 22, pp. 8491–8496, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. N. G. Bazan, “The docosanoid neuroprotectin D1 induces homeostatic regulation of neuroinflammation and cell survival,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 88, no. 1, pp. 127–129, 2013. View at Publisher · View at Google Scholar · View at Scopus
  57. R. Broekhuizen, R. F. Grimble, W. M. Howell et al., “Pulmonary cachexia, systemic inflammatory profile, and the interleukin 1β-511 single nucleotide polymorphism,” The American Journal of Clinical Nutrition, vol. 82, no. 5, pp. 1059–1064, 2005. View at Google Scholar · View at Scopus