Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2015, Article ID 964131, 19 pages
http://dx.doi.org/10.1155/2015/964131
Review Article

Matrix Metalloproteinases in Inflammatory Bowel Disease: An Update

School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland

Received 4 July 2014; Accepted 7 September 2014

Academic Editor: H. Barbaros Oral

Copyright © 2015 Shane O’Sullivan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. C. Baumgart, C. N. Bernstein, Z. Abbas et al., “IBD Around the world: comparing the epidemiology, diagnosis, and treatment: proceedings of the World Digestive Health Day 2010—inflammatory bowel disease task force meeting,” Inflammatory Bowel Diseases, vol. 17, no. 2, pp. 639–644, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Cosnes, S. Cattan, A. Blain et al., “Long-term evolution of disease behavior of Crohn's disease,” Inflammatory Bowel Diseases, vol. 8, no. 4, pp. 244–250, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. N. A. Molodecky, I. S. Soon, D. M. Rabi et al., “Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review,” Gastroenterology, vol. 142, no. 1, pp. 46.e42–54.e42, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Ravikumara and B. K. Sandhu, “Epidemiology of inflammatory bowel diseases in childhood,” Indian Journal of Pediatrics, vol. 73, no. 8, pp. 717–721, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Medina and M. W. Radomski, “Role of matrix metalloproteinases in intestinal inflammation,” Journal of Pharmacology and Experimental Therapeutics, vol. 318, no. 3, pp. 933–938, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. R. J. Xavier and D. K. Podolsky, “Unravelling the pathogenesis of inflammatory bowel disease,” Nature, vol. 448, no. 7152, pp. 427–434, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Egeblad and Z. Werb, “New functions for the matrix metalloproteinases in cancer progression,” Nature Reviews Cancer, vol. 2, no. 3, pp. 161–174, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Rodríguez, C. J. Morrison, and C. M. Overall, “Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteomics,” Biochimica et Biophysica Acta, vol. 1803, no. 1, pp. 39–54, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. M. D. Sternlicht and Z. Werb, “How matrix metalloproteinases regulate cell behavior,” Annual Review of Cell and Developmental Biology, vol. 17, pp. 463–516, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. D. K. Podolsky, “The current future understanding of inflammatory bowel disease,” Bailliere's Best Practice and Research in Clinical Gastroenterology, vol. 16, no. 6, pp. 933–943, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. A. D. Kostic, R. J. Xavier, and D. Gevers, “The microbiome in inflammatory bowel disease: current status and the future ahead,” Gastroenterology, vol. 146, no. 6, pp. 1489–1499, 2014. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Hu, P. E. Van den Steen, Q.-X. A. Sang, and G. Opdenakker, “Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases,” Nature Reviews Drug Discovery, vol. 6, no. 6, pp. 480–498, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Andoh, S. Bamba, M. Brittan, Y. Fujiyama, and N. A. Wright, “Role of intestinal subepithelial myofibroblasts in inflammation and regenerative response in the gut,” Pharmacology & Therapeutics, vol. 114, no. 1, pp. 94–106, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. I. Drygiannakis, V. Valatas, O. Sfakianaki et al., “Proinflammatory cytokines induce crosstalk between colonic epithelial cells and subepithelial myofibroblasts: implication in intestinal fibrosis,” Journal of Crohn's and Colitis, vol. 7, no. 4, pp. 286–300, 2013. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Yoo, C. E. R. Perez, W. Nie, J. Sinnett-Smith, and E. Rozengurt, “Protein kinase D1 mediates synergistic MMP-3 expression induced by TNF-α and bradykinin in human colonic myofibroblasts,” Biochemical and Biophysical Research Communications, vol. 413, no. 1, pp. 30–35, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Pedersen, T. Saermark, T. Kirkegaard, and J. Brynskov, “Spontaneous and cytokine induced expression and activity of matrix metalloproteinases in human colonic epithelium,” Clinical and Experimental Immunology, vol. 155, no. 2, pp. 257–265, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Rath, M. Roderfeld, J. M. Halwe, A. Tschuschner, E. Roeb, and J. Graf, “Cellular sources of MMP-7, MMP-13 and MMP-28 in ulcerative colitis,” Scandinavian Journal of Gastroenterology, vol. 45, no. 10, pp. 1186–1196, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. P. J. Koelink, S. A. Overbeek, S. Braber et al., “Collagen degradation and neutrophilic infiltration: a vicious circle in inflammatory bowel disease,” Gut, vol. 63, pp. 578–587, 2014. View at Publisher · View at Google Scholar
  19. F. L. Koller, E. A. Dozier, K. T. Nam et al., “Lack of MMP10 exacerbates experimental colitis and promotes development of inflammation-associated colonic dysplasia,” Laboratory Investigation, vol. 92, no. 12, pp. 1749–1759, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. J. N. Gordon, K. M. Pickard, A. Di Sabatino et al., “Matrix metalloproteinase-3 production by gut IgG plasma cells in chronic inflammatory bowel disease,” Inflammatory Bowel Diseases, vol. 14, no. 2, pp. 195–203, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Vandooren, P. E. van den Steen, and G. Opdenakker, “Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9): the next decade,” Critical Reviews in Biochemistry and Molecular Biology, vol. 48, no. 3, pp. 222–272, 2013. View at Publisher · View at Google Scholar · View at Scopus
  22. M. J. W. Meijer, M. A. C. Mieremet-Ooms, A. M. van der Zon et al., “Increased mucosal matrix metalloproteinase-1, -2, -3 and -9 activity in patients with inflammatory bowel disease and the relation with Crohn's disease phenotype,” Digestive and Liver Disease, vol. 39, no. 8, pp. 733–739, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Lakatos, I. Hritz, M. Z. Varga et al., “The impact of matrix metalloproteinases and their tissue inhibitors in inflammatory bowel diseases,” Digestive Diseases, vol. 30, no. 3, pp. 289–295, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. Z. Varga, L. Herszényi, I. Hritz, M. Juhász, P. Miheller, and Z. Tulassay, “The behavior of serum MMP-2, MMP-7, MMP-9, TIMP-1 AND TIMP-2 concentrations in inflammatory bowel diseases,” Zeitschrift für Gastroenterologie, vol. 49, p. A93, 2011. View at Google Scholar
  25. T. Rath, M. Roderfeld, J. Graf et al., “Enhanced expression of MMP-7 and MMP-13 in inflammatory bowel disease: a precancerous potential?” Inflammatory Bowel Diseases, vol. 12, no. 11, pp. 1025–1035, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Gillberg, M. Varsanyi, M. Sjöström, M. Lördal, J. Lindholm, and P. M. Hellström, “Nitric oxide pathway-related gene alterations in inflammatory bowel disease,” Scandinavian Journal of Gastroenterology, vol. 47, no. 11, pp. 1283–1297, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. C. L. Noble, A. R. Abbas, J. Cornelius et al., “Regional variation in gene expression in the healthy colon is dysregulated in ulcerative colitis,” Gut, vol. 57, no. 10, pp. 1398–1405, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Lakatos, F. Sipos, P. Miheller et al., “The behavior of matrix metalloproteinase-9 in lymphocytic colitis, collagenous colitis and ulcerative colitis,” Pathology & Oncology Research, vol. 18, no. 1, pp. 85–91, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. W. H. Sim, J. Wagner, D. J. Cameron, A. G. Catto-Smith, R. F. Bishop, and C. D. Kirkwood, “Expression profile of genes involved in pathogenesis of pediatric Crohn's disease,” Journal of Gastroenterology and Hepatology, vol. 27, no. 6, pp. 1083–1093, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. J.-W. Mao, H.-Y. Tang, X.-Y. Tan, and Y.-D. Wang, “Effect of Etiasa on the expression of matrix metalloproteinase-2 and tumor necrosis factor-α in a rat model of ulcerative colitis,” Molecular Medicine Reports, vol. 6, no. 5, pp. 996–1000, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. M. D. Baugh, M. J. Perry, A. P. Hollander et al., “Matrix metalloproteinase levels are elevated in inflammatory bowel disease,” Gastroenterology, vol. 117, no. 4, pp. 814–822, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Matsuno, Y. Adachi, H. Yamamoto et al., “The expression of matrix metalloproteinase matrilysin indicates the degree of inflammation in ulcerative colitis,” Journal of Gastroenterology, vol. 38, no. 4, pp. 348–354, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Suzuki, X. Sun, M. Nagata et al., “Analysis of intestinal fibrosis in chronic colitis in mice induced by dextran sulfate sodium,” Pathology International, vol. 61, no. 4, pp. 228–238, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Medina, A. Santana, M. C. Paz-Cabrera et al., “Increased activity and expression of gelatinases in ischemic colitis,” Digestive Diseases and Sciences, vol. 51, no. 12, pp. 2393–2399, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Garg, M. Vijay-Kumar, L. Wang, A. T. Gewirtz, D. Merlin, and S. V. Sitaraman, “Matrix metalloproteinase-9-mediated tissue injury overrides the protective effect of matrix metalloproteinase-2 during colitis,” American Journal of Physiology: Gastrointestinal and Liver Physiology, vol. 296, no. 2, pp. G175–G184, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. A. J. León, E. Gómez, J. A. Garrote et al., “High levels of proinflammatory cytokines, but not markers of tissue injury, in unaffected intestinal areas from patients with IBD,” Mediators of Inflammation, vol. 2009, Article ID 580450, 10 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. L. Mäkitalo, K.-L. Kolho, R. Karikoski, H. Anthoni, and U. Saarialho-Kere, “Expression profiles of matrix metalloproteinases and their inhibitors in colonic inflammation related to pediatric inflammatory bowel disease,” Scandinavian Journal of Gastroenterology, vol. 45, no. 7-8, pp. 862–871, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. K. Kobayashi, Y. Arimura, A. Goto et al., “Therapeutic implications of the specific inhibition of causative matrix metalloproteinases in experimental colitis induces by dextran sulphate sodium,” Journal of Pathology, vol. 209, no. 3, pp. 376–383, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. Y.-D. Wang and J.-W. Mao, “Expression of matrix metalloproteinase-1 and tumor necrosis factor-α in ulcerative colitis,” World Journal of Gastroenterology, vol. 13, no. 44, pp. 5926–5932, 2007. View at Google Scholar · View at Scopus
  40. Y.-D. Wang, X.-Y. Tan, and K. Zhang, “Correlation of plasma MMP-1 and TIMP-1 levels and the colonic mucosa expressions in patients with ulcerative colitis,” Mediators of Inflammation, vol. 2009, Article ID 275072, 5 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. Y.-D. Wang and P.-Y. Yan, “Expression of matrix metalloproteinase-1 and tissue inhibitor of metalloproteinase-1 in ulcerative colitis,” World Journal of Gastroenterology, vol. 12, no. 37, pp. 6050–6053, 2006. View at Google Scholar · View at Scopus
  42. D. Laubitz, C. B. Larmonier, A. Bai et al., “Colonic gene expression profile in NHE3-deficient mice: evidence for spontaneous distal colitis,” The American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 295, no. 1, pp. G63–G77, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. F. J. Vizoso, L. O. González, M. D. Corte et al., “Collagenase-3 (MMP-13) expression by inflamed mucosa in inflammatory bowel disease,” Scandinavian Journal of Gastroenterology, vol. 41, no. 9, pp. 1050–1055, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. S. L. Pender, C. K. Li, A. Di Sabatino, T. T. Macdonald, and M. G. Buckley, “Role of macrophage metalloelastase in gut inflammation,” Annals of the New York Academy of Sciences, vol. 1072, pp. 386–388, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. L. Mäkitalo, M. Piekkala, M. Ashorn et al., “Matrix metalloproteinases in the restorative proctocolectomy pouch of pediatric ulcerative colitis,” World Journal of Gastroenterology, vol. 18, no. 30, pp. 4028–4036, 2012. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Orholm, P. Munkholm, E. Langholz, O. Haagen Nielsen, T. I. A. Sorensen, and V. Binder, “Familial occurrence of inflammatory bowel disease,” The New England Journal of Medicine, vol. 324, no. 2, pp. 84–88, 1991. View at Publisher · View at Google Scholar · View at Scopus
  47. V. Binder and M. Orholm, “Familial occurrence and inheritance studies in inflammatory bowel disease,” Netherlands Journal of Medicine, vol. 48, no. 2, pp. 53–56, 1996. View at Publisher · View at Google Scholar · View at Scopus
  48. J. B. Park, S.-K. Yang, J.-S. Byeon et al., “Familial occurrence of inflammatory bowel disease in Korea,” Inflammatory Bowel Diseases, vol. 12, no. 12, pp. 1146–1151, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. J.-P. Hugot, M. Chamaillard, H. Zouali et al., “Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease,” Nature, vol. 411, no. 6837, pp. 599–603, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. J. H. Cho, “The Nod2 gene in Crohn's disease: implications for future research into the genetics and immunology of Crohn's disease,” Inflammatory Bowel Diseases, vol. 7, no. 3, pp. 271–275, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. Y. Ogura, D. K. Bonen, N. Inohara et al., “A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease,” Nature, vol. 411, no. 6837, pp. 603–606, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. J.-P. Hugot, P. Laurent-Puig, C. Gower-Rousseau et al., “Mapping of a susceptibility locus for Crohn's disease on chromosome 16,” Nature, vol. 379, no. 6568, pp. 821–823, 1996. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. Ma, J. D. Ohmen, Z. Li et al., “A genome-wide search identifies potential new susceptibility loci for Crohn's disease,” Inflammatory Bowel Diseases, vol. 5, no. 4, pp. 271–278, 1999. View at Google Scholar
  54. J. D. Rioux, M. S. Silverberg, M. J. Daly et al., “Genomewide search in Canadian families with inflammatory bowel disease reveals two novel susceptibility loci,” The American Journal of Human Genetics, vol. 66, no. 6, pp. 1863–1870, 2000. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Satsangi, M. Parkes, E. Louis et al., “Two stage genome-wide search in inflammatory bowel disease provides evidence for susceptibility loci on chromosomes 3, 7 and 12,” Nature Genetics, vol. 14, no. 2, pp. 199–202, 1996. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Vermeire, J. Satsangi, M. Peeters et al., “Evidence for inflammatory bowel disease of a susceptibility locus on the X chromosome,” Gastroenterology, vol. 120, no. 4, pp. 834–840, 2001. View at Publisher · View at Google Scholar · View at Scopus
  57. H. Yang, S. E. Plevy, K. Taylor et al., “Linkage of Crohn's disease to the major histocompatibility complex region is detected by multiple non-parametric analyses,” Gut, vol. 44, no. 4, pp. 519–526, 1999. View at Publisher · View at Google Scholar · View at Scopus
  58. R. H. Duerr, K. D. Taylor, S. R. Brant et al., “A genome-wide association study identifies IL23R as an inflammatory bowel disease gene,” Science, vol. 314, no. 5804, pp. 1461–1463, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. J. Hampe, A. Franke, P. Rosenstiel et al., “A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1,” Nature Genetics, vol. 39, no. 2, pp. 207–211, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. M. S. Silverberg, R. H. Duerr, S. R. Brant et al., “Refined genomic localization and ethnic differences observed for the IBD5 association with Crohn's disease,” European Journal of Human Genetics, vol. 15, no. 3, pp. 328–335, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. A. R. Morgan, D.-Y. Han, W.-J. Lam et al., “Genetic variations in matrix metalloproteinases may be associated with increased risk of ulcerative colitis,” Human Immunology, vol. 72, no. 11, pp. 1117–1127, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. T. H. Karlsen, E. Schrumpf, and K. M. Boberg, “Update on primary sclerosing cholangitis,” Digestive and Liver Disease, vol. 42, no. 6, pp. 390–400, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. K. Wiencke, A. S. Louka, A. Spurkland, M. Vatn, E. Schrumpf, and K. M. Boberg, “Association of matrix metalloproteinase-1 and -3 promoter polymorphisms with clinical subsets of Norwegian primary sclerosing cholangitis patients,” Journal of Hepatology, vol. 41, no. 2, pp. 209–214, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. J. Satsangi, R. W. G. Chapman, N. Haldar et al., “A functional polymorphism of the stromelysin gene (MMP-3) influences susceptibility to primary sclerosing cholangitis,” Gastroenterology, vol. 121, no. 1, pp. 124–130, 2001. View at Publisher · View at Google Scholar · View at Scopus
  65. B. D. Juran, E. J. Atkinson, E. M. Schlicht et al., “Genetic polymorphisms of matrix metalloproteinase 3 in primary sclerosing cholangitis,” Liver International, vol. 31, no. 6, pp. 785–791, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. M. J. W. Meijer, M. A. C. Mieremet-Ooms, R. A. van Hogezand, C. B. H. W. Lamers, D. W. Hommes, and H. W. Verspaget, “Role of matrix metalloproteinase, tissue inhibitor of metalloproteinase and tumor necrosis factor-α single nucleotide gene polymorphisms in inflammatory bowel disease,” World Journal of Gastroenterology, vol. 13, no. 21, pp. 2960–2966, 2007. View at Google Scholar · View at Scopus
  67. A. Madisch, S. Hellmig, S. Schreiber, B. Bethke, M. Stolte, and S. Miehlke, “Allelic variation of the matrix metalloproteinase-9 gene is associated with collagenous colitis,” Inflammatory Bowel Diseases, vol. 17, no. 11, pp. 2295–2298, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. P. Gionchetti, F. Rizzello, U. Helwig et al., “Prophylaxis of pouchitis onset with probiotic therapy: a double-blind, placebo-controlled trial,” Gastroenterology, vol. 124, no. 5, pp. 1202–1209, 2003. View at Publisher · View at Google Scholar · View at Scopus
  69. L. Sutherland, J. Singleton, J. Sessions et al., “Double blind, placebo controlled trial of metronidazole in Crohn's disease,” Gut, vol. 32, no. 9, pp. 1071–1075, 1991. View at Publisher · View at Google Scholar · View at Scopus
  70. C. O. Elson, Y. Cong, V. J. McCracken, R. A. Dimmitt, R. G. Lorenz, and C. T. Weaver, “Experimental models of inflammatory bowel disease reveal innate, adaptive, and regulatory mechanisms of host dialogue with the microbiota,” Immunological Reviews, vol. 206, pp. 260–276, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. A. B. Onderdonk, J. A. Hermos, and J. G. Bartlett, “The role of the intestinal microflora in experimental colitis,” American Journal of Clinical Nutrition, vol. 30, no. 11, pp. 1819–1825, 1977. View at Google Scholar · View at Scopus
  72. D. Low, D. D. Nguyen, and E. Mizoguchi, “Animal models of ulcerative colitis and their application in drug research,” Drug Design, Development and Therapy, vol. 7, pp. 1341–1356, 2013. View at Publisher · View at Google Scholar · View at Scopus
  73. A. E. Torrence, T. Brabb, J. L. Viney et al., “Serum biomarkers in a mouse model of bacterial-induced inflammatory bowel disease,” Inflammatory Bowel Diseases, vol. 14, no. 4, pp. 480–490, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. A. Burich, R. Hershberg, K. Waggie et al., “Helicobacter-induced inflammatory bowel disease in IL-10- and T cell-deficient mice,” The American Journal of Physiology: Gastrointestinal and Liver Physiology, vol. 281, no. 3, pp. G764–G778, 2001. View at Google Scholar · View at Scopus
  75. W. C. Davis and S. A. Madsen-Bouterse, “Crohn's disease and Mycobacterium avium subsp. paratuberculosis: the need for a study is long overdue,” Veterinary Immunology and Immunopathology, vol. 145, no. 1-2, pp. 1–6, 2012. View at Publisher · View at Google Scholar · View at Scopus
  76. J. C. Uzoigwe, M. L. Khaitsa, and P. S. Gibbs, “Epidemiological evidence for Mycobacterium avium subspecies paratuberculosis as a cause of Crohn's disease,” Epidemiology and Infection, vol. 135, no. 7, pp. 1057–1068, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. K. Over, P. G. Crandall, C. A. O'Bryan, and S. C. Ricke, “Current perspectives on Mycobacterium avium subsp. paratuberculosis, Johne's disease, and Crohn's disease: a review,” Critical Reviews in Microbiology, vol. 37, no. 2, pp. 141–156, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. R. Robertson, B. Hill, O. Cerf, K. Jordan, and P. Venter, “A commentary on current perspectives on Mycobacterium avium subsp. paratuberculosis, Johne's disease and Crohn's disease: a review by over et al. (2011),” Critical Reviews in Microbiology, vol. 38, no. 3, pp. 183–184, 2012. View at Publisher · View at Google Scholar · View at Scopus
  79. I. Abubakar, D. Myhill, S. H. Aliyu, and P. R. Hunter, “Detection of Mycobacterium avium subspecies paratubercubsis from patients with Crohn's disease using nucleic acid-based techniques: a systematic review and meta-analysis,” Inflammatory Bowel Diseases, vol. 14, no. 3, pp. 401–410, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. J. L. Mendoza, R. Lana, and M. Díaz-Rubio, “Mycobacterium avium subspecies paratuberculosis and its relationship with Cronh's disease,” World Journal of Gastroenterology, vol. 15, no. 4, pp. 417–422, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Feller, K. Huwiler, R. Stephan et al., “Mycobacterium avium subspecies paratuberculosis and Crohn's disease: a systematic review and meta-analysis,” The Lancet Infectious Diseases, vol. 7, no. 9, pp. 607–613, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. W. Chamberlin, D. Y. Graham, K. Hulten et al., “Review article: Mycobacterium avium subsp. paratuberculosis as one cause of Crohn's disease,” Alimentary Pharmacology and Therapeutics, vol. 15, no. 3, pp. 337–346, 2001. View at Publisher · View at Google Scholar · View at Scopus
  83. K. Cirone, C. Morsella, M. Romano, and F. Paolicchi, “Mycobacterium avium subsp. paratuberculosis in food and its relationship with Crohn's disease,” Revista Argentina de Microbiologia, vol. 39, no. 1, pp. 57–68, 2007. View at Google Scholar · View at Scopus
  84. R. J. Greenstein, “Is Crohn's disease caused by a mycobacterium? Comparisons with leprosy, tuberculosis, and Johne's disease,” The Lancet Infectious Diseases, vol. 3, no. 8, pp. 507–514, 2003. View at Publisher · View at Google Scholar · View at Scopus
  85. P. M. Coussens, C. J. Colvin, G. J. M. Rosa, J. Perez Laspiur, and M. D. Elftman, “Evidence for a novel gene expression program in peripheral blood mononuclear cells from Mycobacterium avium subsp. paratuberculosis-infected cattle,” Infection and Immunity, vol. 71, no. 11, pp. 6487–6498, 2003. View at Publisher · View at Google Scholar · View at Scopus
  86. P. M. Coussens, C. B. Pudrith, K. Skovgaard et al., “Johne's disease in cattle is associated with enhanced expression of genes encoding IL-5, GATA-3, tissue inhibitors of matrix metalloproteinases 1 and 2, and factors promoting apoptosis in peripheral blood mononuclear cells,” Veterinary Immunology and Immunopathology, vol. 105, no. 3-4, pp. 221–234, 2005. View at Publisher · View at Google Scholar · View at Scopus
  87. M. Quiding-Järbrink, D. A. Smith, and G. J. Bancroft, “Production of matrix metalloproteinases in response to mycobacterial infection,” Infection and Immunity, vol. 69, no. 9, pp. 5661–5670, 2001. View at Publisher · View at Google Scholar · View at Scopus
  88. T. Rath, M. Roderfeld, S. Blöcher et al., “Presence of intestinal Mycobacterium avium subspecies paratuberculosis (MAP) DNA is not associated with altered MMP expression in ulcerative colitis,” BMC Gastroenterology, vol. 11, article 34, 2011. View at Publisher · View at Google Scholar · View at Scopus
  89. M. Roderfeld, A. Koc, T. Rath et al., “Induction of matrix metalloproteinases and TLR2 and 6 in murine colon after oral exposure to Mycobacterium avium subsp. paratuberculosis,” Microbes and Infection, vol. 14, no. 6, pp. 545–553, 2012. View at Publisher · View at Google Scholar · View at Scopus
  90. N. Garrido-Mesa, P. Utrilla, M. Comalada et al., “The association of minocycline and the probiotic Escherichia coli Nissle 1917 results in an additive beneficial effect in a DSS model of reactivated colitis in mice,” Biochemical Pharmacology, vol. 82, no. 12, pp. 1891–1900, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. D. M. Rodrigues, A. J. Sousa, S. P. Hawley et al., “Matrix metalloproteinase 9 contributes to gut microbe homeostasis in a model of infectious colitis,” BMC Microbiology, vol. 12, article 105, 2012. View at Publisher · View at Google Scholar · View at Scopus
  92. C. S. Weeks, H. Tanabe, J. E. Cummings et al., “Matrix metalloproteinase-7 activation of mouse paneth cell pro-alpha-defensins: SER43 down arrow ILE44 proteolysis enables membrane-disruptive activity,” Journal of Biological Chemistry, vol. 281, no. 39, pp. 28932–28942, 2006. View at Publisher · View at Google Scholar · View at Scopus
  93. K. Masuda, N. Sakai, K. Nakamura, S. Yoshioka, and T. Ayabe, “Bactericidal activity of mouse α-defensin cryptdin-4 predominantly affects noncommensal bacteria,” Journal of Innate Immunity, vol. 3, no. 3, pp. 315–326, 2011. View at Publisher · View at Google Scholar · View at Scopus
  94. A. M. Houghton, W. O. Hartzell, C. S. Robbins, F. X. Gomis-Rüth, and S. D. Shapiro, “Macrophage elastase kills bacteria within murine macrophages,” Nature, vol. 460, no. 7255, pp. 637–641, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. Y. Yagi, A. Andoh, O. Inatomi, T. Tsujikawa, and Y. Fujiyama, “Inflammatory responses induced by interleukin-17 family members in human colonic subepithelial myofibroblasts,” Journal of Gastroenterology, vol. 42, no. 9, pp. 746–753, 2007. View at Publisher · View at Google Scholar · View at Scopus
  96. G. Monteleone, R. Caruso, D. Fina et al., “Control of matrix metalloproteinase production in human intestinal fibroblasts by interleukin 21,” Gut, vol. 55, no. 12, pp. 1774–1780, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. T. Dohi, A. Borodovsky, P. Wu et al., “TWEAK/Fn14 pathway: a nonredundant role in intestinal damage in mice through a TWEAK/intestinal epithelial cell axis,” Gastroenterology, vol. 136, no. 3, pp. 912.e8–923.e8, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. M. Shinoda, M. Shin-Ya, Y. Naito et al., “Early-stage blocking of Notch signaling inhibits the depletion of goblet cells in dextran sodium sulfate-induced colitis in mice,” Journal of Gastroenterology, vol. 45, no. 6, pp. 608–617, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. R. C. Dutra, M. Cola, D. F. P. Leite et al., “Inhibitor of PI3Kγ ameliorates TNBS-induced colitis in mice by affecting the functional activity of CD4+CD25+FoxP3+ regulatory T cells,” British Journal of Pharmacology, vol. 163, no. 2, pp. 358–374, 2011. View at Publisher · View at Google Scholar · View at Scopus
  100. M. Yadav, M.-C. Huang, and E. J. Goetzl, “VPAC1 (vasoactive intestinal peptide (VIP) receptor type 1) G protein-coupled receptor mediation of VIP enhancement of murine experimental colitis,” Cellular Immunology, vol. 267, no. 2, pp. 124–132, 2011. View at Publisher · View at Google Scholar · View at Scopus
  101. I. Monteleone, M. Federici, M. Sarra et al., “Tissue inhibitor of metalloproteinase-3 regulates inflammation in human and mouse intestine,” Gastroenterology, vol. 143, no. 5, pp. 1277.e4–1287.e4, 2012. View at Publisher · View at Google Scholar · View at Scopus
  102. K. Ishida, S. Takai, M. Murano et al., “Role of chymase-dependent matrix metalloproteinase-9 activation in mice with dextran sodium sulfate-induced colitis,” Journal of Pharmacology and Experimental Therapeutics, vol. 324, no. 2, pp. 422–426, 2008. View at Publisher · View at Google Scholar · View at Scopus
  103. M. J. Hamilton, M. J. Sinnamon, G. D. Lyng et al., “Essential role for mast cell tryptase in acute experimental colitis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 1, pp. 290–295, 2011. View at Publisher · View at Google Scholar · View at Scopus
  104. Y. Shirafuji, H. Tanabe, D. P. Satchell, A. Henschen-Edman, C. L. Wilson, and A. J. Ouellette, “Structural determinants of procryptdin recognition and cleavage by matrix metalloproteinase-7,” The Journal of Biological Chemistry, vol. 278, no. 10, pp. 7910–7919, 2003. View at Publisher · View at Google Scholar · View at Scopus
  105. J. Shi, S. Aono, W. Lu et al., “A novel role for defensins in intestinal homeostasis: regulation of IL-1β secretion,” Journal of Immunology, vol. 179, no. 2, pp. 1245–1253, 2007. View at Publisher · View at Google Scholar · View at Scopus
  106. M. Swee, C. L. Wilson, Y. Wang, J. K. McGuire, and W. C. Parks, “Matrix metalloproteinase-7 (matrilysin) controls neutrophil egress by generating chemokine gradients,” Journal of Leukocyte Biology, vol. 83, no. 6, pp. 1404–1412, 2008. View at Publisher · View at Google Scholar · View at Scopus
  107. H. Liu, N. R. Patel, L. Walter, S. Ingersoll, S. V. Sitaraman, and P. Garg, “Constitutive expression of MMP9 in intestinal epithelium worsens murine acute colitis and is associated with increased levels of proinflammatory cytokine Kc,” American Journal of Physiology: Gastrointestinal and Liver Physiology, vol. 304, no. 9, pp. G793–G803, 2013. View at Publisher · View at Google Scholar · View at Scopus
  108. A. Gaggar, P. L. Jackson, B. D. Noerager et al., “A novel proteolytic cascade generates an extracellular matrix-derived chemoattractant in Chronic neutrophilic inflammation,” Journal of Immunology, vol. 180, no. 8, pp. 5662–5669, 2008. View at Publisher · View at Google Scholar · View at Scopus
  109. J. Pedersen, M. Coskun, C. Soendergaard, M. Salem, and O. H. Nielsen, “Inflammatory pathways of importance for management of inflammatory bowel disease,” World Journal of Gastroenterology, vol. 20, no. 1, pp. 64–77, 2014. View at Publisher · View at Google Scholar · View at Scopus
  110. C. Becker-Pauly and S. Rose-John, “TNFα cleavage beyond TACE/ADAM17: matrix metalloproteinase 13 is a potential therapeutic target in sepsis and colitis,” EMBO Molecular Medicine, vol. 5, no. 7, pp. 902–904, 2013. View at Publisher · View at Google Scholar · View at Scopus
  111. R. E. Vandenbroucke, E. Dejonckheere, F. van Hauwermeiren et al., “Matrix metalloproteinase 13 modulates intestinal epithelial barrier integrity in inflammatory diseases by activating TNF,” EMBO Molecular Medicine, vol. 5, no. 7, pp. 932–948, 2013. View at Publisher · View at Google Scholar · View at Scopus
  112. J. H. Chidlow Jr., D. Shukla, M. B. Grisham, and C. G. Kevil, “Pathogenic angiogenesis in IBD and experimental colitis: new ideas and therapeutic avenues,” American Journal of Physiology: Gastrointestinal and Liver Physiology, vol. 293, no. 1, pp. G5–G18, 2007. View at Publisher · View at Google Scholar · View at Scopus
  113. T. Kalebic, S. Garbisa, B. Glaser, and L. A. Liotta, “Basement membrane collagen: degradation by migrating endothelial cells,” Science, vol. 221, no. 4607, pp. 281–283, 1983. View at Publisher · View at Google Scholar · View at Scopus
  114. J. M. Whitelock, A. D. Murdoch, R. V. Iozzo, and P. A. Underwood, “The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases,” The Journal of Biological Chemistry, vol. 271, no. 17, pp. 10079–10086, 1996. View at Publisher · View at Google Scholar · View at Scopus
  115. Q. Yu and I. Stamenkovic, “Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis,” Genes and Development, vol. 14, no. 2, pp. 163–176, 2000. View at Google Scholar · View at Scopus
  116. M. D'Angelo, D. P. Sarment, P. C. Billings, and M. Pacifici, “Activation of transforming growth factor β in chondrocytes undergoing endochondral ossification,” Journal of Bone and Mineral Research, vol. 16, no. 12, pp. 2339–2347, 2001. View at Publisher · View at Google Scholar · View at Scopus
  117. D. Mu, S. Cambier, L. Fjellbirkeland et al., “The integrin ανβ8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-β1,” The Journal of Cell Biology, vol. 157, no. 3, pp. 493–507, 2002. View at Publisher · View at Google Scholar · View at Scopus
  118. R. Heljasvaara, P. Nyberg, J. Luostarinen et al., “Generation of biologically active endostatin fragments from human collagen XVIII by distinct matrix metalloproteases,” Experimental Cell Research, vol. 307, no. 2, pp. 292–304, 2005. View at Publisher · View at Google Scholar · View at Scopus
  119. X. Deng, G. Tolstanova, T. Khomenko et al., “Mesalamine restores angiogenic balance in experimental ulcerative colitis by reducing expression of endostatin and angiostatin: novel molecular mechanism for therapeutic action of mesalamine,” The Journal of Pharmacology and Experimental Therapeutics, vol. 331, no. 3, pp. 1071–1078, 2009. View at Publisher · View at Google Scholar · View at Scopus
  120. J. H. Chidlow Jr., W. Langston, J. J. M. Greer et al., “Differential angiogenic regulation of experimental colitis,” The American Journal of Pathology, vol. 169, no. 6, pp. 2014–2030, 2006. View at Publisher · View at Google Scholar · View at Scopus
  121. S. Danese, M. Sans, C. de la Motte et al., “Angiogenesis as a novel component of inflammatory bowel disease pathogenesis,” Gastroenterology, vol. 130, no. 7, pp. 2060–2073, 2006. View at Publisher · View at Google Scholar · View at Scopus
  122. F. Scaldaferri, S. Vetrano, M. Sans et al., “VEGF-A links angiogenesis and inflammation in inflammatory bowel disease pathogenesis,” Gastroenterology, vol. 136, no. 2, pp. 585.e5–595.e5, 2009. View at Publisher · View at Google Scholar · View at Scopus
  123. S. Danese, M. Sans, D. M. Spencer et al., “Angiogenesis blockade as a new therapeutic approach to experimental colitis,” Gut, vol. 56, no. 6, pp. 855–862, 2007. View at Publisher · View at Google Scholar · View at Scopus
  124. G. Tolstanova, X. Deng, T. Khomenko et al., “Role of anti-angiogenic factor endostatin in the pathogenesis of experimental ulcerative colitis,” Life Sciences, vol. 88, no. 1-2, pp. 74–81, 2011. View at Publisher · View at Google Scholar · View at Scopus
  125. S. Lee, S. M. Jilan, G. V. Nikolova, D. Carpizo, and M. L. Iruela-Arispe, “Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors,” The Journal of Cell Biology, vol. 169, no. 4, pp. 681–691, 2005. View at Publisher · View at Google Scholar · View at Scopus
  126. G. Bergers, R. Brekken, G. McMahon et al., “Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis,” Nature Cell Biology, vol. 2, no. 10, pp. 737–744, 2000. View at Publisher · View at Google Scholar · View at Scopus
  127. M. Matusiewicz, K. Neubauer, M. Mierzchala-Pasierb, A. Gamian, and M. Krzystek-Korpacka, “Matrix metalloproteinase-9: its interplay with angiogenic factors in inflammatory bowel diseases,” Disease Markers, vol. 2014, Article ID 643645, 8 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  128. S. Balzan, C. de Almeida Quadros, R. de Cleva, B. Zilberstein, and I. Cecconello, “Bacterial translocation: overview of mechanisms and clinical impact,” Journal of Gastroenterology and Hepatology, vol. 22, no. 4, pp. 464–471, 2007. View at Publisher · View at Google Scholar · View at Scopus
  129. M. Ailenberg and M. V. Sefton, “Effect of a matrix metalloproteinase sequestering biomaterial on Caco-2 epithelial cell barrier integrity in vitro,” Acta Biomaterialia, vol. 5, no. 6, pp. 1898–1904, 2009. View at Publisher · View at Google Scholar · View at Scopus
  130. E. Huet, B. Vallée, J. Delbé et al., “EMMPRIN modulates epithelial barrier function through a MMP-mediated occludin cleavage: implications in dry eye disease,” The American Journal of Pathology, vol. 179, no. 3, pp. 1278–1286, 2011. View at Publisher · View at Google Scholar · View at Scopus
  131. R. E. Vandenbroucke, E. Dejonckheere, P. Van Lint et al., “Matrix metalloprotease 8-dependent extracellular matrix cleavage at the blood-CSF barrier contributes to lethality during systemic inflammatory diseases,” Journal of Neuroscience, vol. 32, no. 29, pp. 9805–9816, 2012. View at Publisher · View at Google Scholar · View at Scopus
  132. P. Garg, A. Ravi, N. R. Patel et al., “Sitaraman, Matrix metalloproteinase-9 regulates MUC-2 expression through its effect on goblet cell differentiation,” Gastroenterology, vol. 132, no. 5, pp. 1877–1889, 2007. View at Publisher · View at Google Scholar · View at Scopus
  133. T. Kinugasa, Y. Akagi, T. Yoshida et al., “Increased claudin-1 protein expression contributes to tumorigenesis in ulcerative colitis-associated colorectal cancer,” Anticancer Research, vol. 30, no. 8, pp. 3181–3186, 2010. View at Google Scholar · View at Scopus
  134. J. L. Pope, A. A. Bhat, A. Sharma et al., “Claudin-1 regulates intestinal epithelial homeostasis through the modulation of Notch-signalling,” Gut, vol. 63, pp. 622–634, 2014. View at Publisher · View at Google Scholar
  135. P. Garg, M. Rojas, A. Ravi et al., “Selective ablation of matrix metalloproteinase-2 exacerbates experimental colitis: contrasting role of gelatinases in the pathogenesis of colitis,” Journal of Immunology, vol. 177, no. 6, pp. 4103–4112, 2006. View at Publisher · View at Google Scholar · View at Scopus
  136. D. M. Hayden, C. Forsyth, and A. Keshavarzian, “The role of matrix metalloproteinases in intestinal epithelial wound healing during normal and inflammatory states,” Journal of Surgical Research, vol. 168, no. 2, pp. 315–324, 2011. View at Publisher · View at Google Scholar · View at Scopus
  137. M. Puthenedam, F. Wu, A. Shetye, A. Michaels, K.-J. Rhee, and J. H. Kwon, “Matrilysin-1 (MMP7) cleaves galectin-3 and inhibits wound healing in intestinal epithelial cells,” Inflammatory Bowel Diseases, vol. 17, no. 1, pp. 260–267, 2011. View at Publisher · View at Google Scholar · View at Scopus
  138. G. Latella, G. Rogler, G. Bamias et al., “Results of the 4th scientific workshop of the ECCO (I): pathophysiology of intestinal fibrosis in IBD,” Journal of Crohn's and Colitis, 2014. View at Publisher · View at Google Scholar · View at Scopus
  139. J. P. Burke, J. J. Mulsow, C. O'Keane, N. G. Docherty, R. W. G. Watson, and P. R. O'Connell, “Fibrogenesis in Crohn's disease,” The American Journal of Gastroenterology, vol. 102, no. 2, pp. 439–448, 2007. View at Publisher · View at Google Scholar · View at Scopus
  140. A. Di Sabatino, C. L. Jackson, K. M. Pickard et al., “Transforming growth factor β signalling and matrix metalloproteinases in the mucosa overlying Crohn's disease strictures,” Gut, vol. 58, no. 6, pp. 777–789, 2009. View at Publisher · View at Google Scholar · View at Scopus
  141. C. Medina, M. J. Santos-Martinez, A. Santana et al., “Transforming growth factor-beta type 1 receptor (ALK5) and Smad proteins mediate TIMP-1 and collagen synthesis in experimental intestinal fibrosis,” Journal of Pathology, vol. 224, no. 4, pp. 461–472, 2011. View at Publisher · View at Google Scholar · View at Scopus
  142. B. San-Miguel, I. Crespo, N. A. Kretzmann et al., “Glutamine prevents fibrosis development in rats with colitis induced by 2,4,6-trinitrobenzene sulfonic acid,” Journal of Nutrition, vol. 140, no. 6, pp. 1065–1071, 2010. View at Publisher · View at Google Scholar · View at Scopus
  143. A. Leonardi, R. Cortivo, I. Fregona, M. Plebani, A. G. Secchi, and G. Abatangelo, “Effects of Th2 cytokines on expression of collagen, MMP-1, and TIMP-1 in conjunctival fibroblasts,” Investigative Ophthalmology & Visual Science, vol. 44, no. 1, pp. 183–189, 2003. View at Publisher · View at Google Scholar · View at Scopus
  144. X. Zhou, H. Hu, M.-L. N. Huynh et al., “Mechanisms of tissue inhibitor of metalloproteinase 1 augmentation by IL-13 on TGF-β1-stimulated primary human fibroblasts,” Journal of Allergy and Clinical Immunology, vol. 119, no. 6, pp. 1388–1397, 2007. View at Publisher · View at Google Scholar · View at Scopus
  145. J. R. Bailey, P. W. Bland, J. F. Tarlton et al., “IL-13 promotes collagen accumulation in Crohn's disease fibrosis by down-regulation of fibroblast MMP synthesis: a role for innate lymphoid cells?” PLoS ONE, vol. 7, no. 12, Article ID e52332, 2012. View at Publisher · View at Google Scholar · View at Scopus
  146. M. Lukas, “Inflammatory bowel disease as a risk factor for colorectal cancer,” Digestive Diseases, vol. 28, no. 4-5, pp. 619–624, 2010. View at Publisher · View at Google Scholar · View at Scopus
  147. T. Jess, E. V. Loftus Jr., F. S. Velayos et al., “Risk of intestinal cancer in inflammatory bowel disease: a population-based study from olmsted county, Minnesota,” Gastroenterology, vol. 130, no. 4, pp. 1039–1046, 2006. View at Publisher · View at Google Scholar · View at Scopus
  148. O. R. F. Mook, W. M. Frederiks, and C. J. F. Van Noorden, “The role of gelatinases in colorectal cancer progression and metastasis,” Biochimica et Biophysica Acta: Reviews on Cancer, vol. 1705, no. 2, pp. 69–89, 2004. View at Publisher · View at Google Scholar · View at Scopus
  149. A. Z. Gimeno-García, A. Santana-Rodríguez, A. Jiménez et al., “Up-regulation of gelatinases in the colorectal adenoma-carcinoma sequence,” European Journal of Cancer, vol. 42, no. 18, pp. 3246–3252, 2006. View at Publisher · View at Google Scholar · View at Scopus
  150. S. H. Itzkowitz and X. Yio, “Inflammation and cancer, IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation,” The American Journal of Physiology: Gastrointestinal and Liver Physiology, vol. 287, no. 1, pp. G7–G17, 2004. View at Publisher · View at Google Scholar · View at Scopus
  151. P. Garg, D. Sarma, S. Jeppsson et al., “Matrix metalloproteinase-9 functions as a tumor suppressor in colitis-associated cancer,” Cancer Research, vol. 70, no. 2, pp. 792–801, 2010. View at Publisher · View at Google Scholar · View at Scopus
  152. P. Garg, S. Jeppsson, G. Dalmasso et al., “Notch1 regulates the effects of matrix metalloproteinase-9 on colitis-associated cancer in mice,” Gastroenterology, vol. 141, no. 4, pp. 1381–1392, 2011. View at Publisher · View at Google Scholar · View at Scopus
  153. K. Shang, Y.-P. Bai, C. Wang et al., “Crucial involvement of tumor-associated neutrophils in the regulation of chronic colitis-associated carcinogenesis in mice,” PLoS ONE, vol. 7, no. 12, Article ID e51848, 2012. View at Publisher · View at Google Scholar · View at Scopus
  154. K. Assi, J. Mills, D. Owen et al., “Integrin-linked kinase regulates cell proliferation and tumour growth in murine colitis-associated carcinogenesis,” Gut, vol. 57, no. 7, pp. 931–940, 2008. View at Publisher · View at Google Scholar · View at Scopus
  155. Y. J. Kim, K. S. Hong, J. W. Chung, J. H. Kim, and K. B. Hahm, “Prevention of colitis-associated carcinogenesis with infliximab,” Cancer Prevention Research, vol. 3, no. 10, pp. 1314–1333, 2010. View at Publisher · View at Google Scholar · View at Scopus
  156. Y. J. Kim, J. S. Lee, K. S. Hong, J. W. Chung, J. H. Kim, and K. B. Hahm, “Novel application of proton pump inhibitor for the prevention of colitis-induced colorectal carcinogenesis beyond acid suppression,” Cancer Prevention Research, vol. 3, no. 8, pp. 963–974, 2010. View at Publisher · View at Google Scholar · View at Scopus
  157. S. Setia, B. Nehru, and S. N. Sanyal, “The PI3K/Akt pathway in colitis associated colon cancer and its chemoprevention with celecoxib, a Cox-2 selective inhibitor,” Biomedicine & Pharmacotherapy, 2014. View at Publisher · View at Google Scholar
  158. K. J. Newell, L. M. Matrisian, and D. K. Driman, “Matrilysin (matrix metalloproteinase-7) expression in ulcerative colitis-related tumorigenesis,” Molecular Carcinogenesis, vol. 34, no. 2, pp. 59–63, 2002. View at Publisher · View at Google Scholar · View at Scopus
  159. L. M. Coussens, B. Fingleton, and L. M. Matrisian, “Matrix metalloproteinase inhibitors and cancer: trials and tribulations,” Science, vol. 295, no. 5564, pp. 2387–2392, 2002. View at Publisher · View at Google Scholar · View at Scopus
  160. C. M. Overall and C. López-Otín, “Strategies for MMP inhibition in cancer: innovations for the post-trial era,” Nature Reviews Cancer, vol. 2, no. 9, pp. 657–672, 2002. View at Publisher · View at Google Scholar · View at Scopus
  161. J. Wang, S. O'Sullivan, S. Harmon et al., “Design of barbiturate-nitrate hybrids that inhibit MMP-9 activity and secretion,” Journal of Medicinal Chemistry, vol. 55, no. 5, pp. 2154–2162, 2012. View at Publisher · View at Google Scholar · View at Scopus
  162. S. O'Sullivan, C. Medina, M. Ledwidge, M. W. Radomski, and J. F. Gilmer, “Nitric oxide-matrix metaloproteinase-9 interactions: biological and pharmacological significance: NO and MMP-9 interactions,” Biochimica et Biophysica Acta: Molecular Cell Research, vol. 1843, no. 3, pp. 603–617, 2014. View at Publisher · View at Google Scholar · View at Scopus
  163. M. M. Heimesaat, I. R. Dunay, D. Fuchs et al., “Selective gelatinase blockage ameliorates acute DSS colitis,” European Journal of Microbiology and Immunology, vol. 1, pp. 228–236, 2011. View at Publisher · View at Google Scholar
  164. R. M. Claramunt, L. Bouissane, M. P. Cabildo et al., “Synthesis and biological evaluation of curcuminoid pyrazoles as new therapeutic agents in inflammatory bowel disease: effect on matrix metalloproteinases,” Bioorganic and Medicinal Chemistry, vol. 17, no. 3, pp. 1290–1296, 2009. View at Publisher · View at Google Scholar · View at Scopus
  165. J. N. Gordon, J. D. Prothero, C. A. Thornton et al., “CC-10004 but not thalidomide or lenalidomide inhibits lamina propria mononuclear cell TNF-α and MMP-3 production in patients with inflammatory bowel disease,” Journal of Crohn's and Colitis, vol. 3, no. 3, pp. 175–182, 2009. View at Publisher · View at Google Scholar · View at Scopus
  166. C. Daniel, H. H. Radeke, N. A. Sartory et al., “The new low calcemic vitamin D analog 22-ene-25-oxa-vitamin D prominently ameliorates T helper cell type 1-mediated colitis in mice,” Journal of Pharmacology and Experimental Therapeutics, vol. 319, no. 2, pp. 622–631, 2006. View at Publisher · View at Google Scholar · View at Scopus
  167. M. Martinesi, C. Treves, A. G. Bonanomi et al., “Down-regulation of adhesion molecules and matrix metalloproteinases by ZK 156979 in inflammatory bowel diseases,” Clinical Immunology, vol. 136, no. 1, pp. 51–60, 2010. View at Publisher · View at Google Scholar · View at Scopus
  168. U. Zügel, A. Steinmeyer, C. Giesen, and K. Asadullah, “A novel immunosuppressive 1α,25-dihydroxyvitamin D3 analog with reduced hypercalcemic activity,” Journal of Investigative Dermatology, vol. 119, no. 6, pp. 1434–1442, 2002. View at Publisher · View at Google Scholar · View at Scopus
  169. T. Nijenhuis, B. C. J. van der Eerden, U. Zügel et al., “The novel vitamin D analog ZK191784 as an intestine-specific vitamin D antagonist,” The FASEB Journal, vol. 20, no. 12, pp. 2171–2173, 2006. View at Publisher · View at Google Scholar · View at Scopus
  170. U. G. Strauch, F. Obermeier, N. Grunwald et al., “Calcitriol analog ZK191784 ameliorates acute and chronic dextran sodium sulfate-induced colitis by modulation of intestinal dendritic cell numbers and phenotype,” World Journal of Gastroenterology, vol. 13, no. 48, pp. 6529–6537, 2007. View at Google Scholar · View at Scopus
  171. M. Martinesi, S. Ambrosini, C. Treves et al., “Role of vitamin D derivatives in intestinal tissue of patients with inflammatory bowel diseases,” Journal of Crohn's and Colitis, vol. 8, no. 9, pp. 1062–1071, 2014. View at Publisher · View at Google Scholar · View at Scopus
  172. T.-Y. Huang, H.-C. Chu, Y.-L. Lin et al., “Minocycline attenuates experimental colitis in mice by blocking expression of inducible nitric oxide synthase and matrix metalloproteinases,” Toxicology and Applied Pharmacology, vol. 237, no. 1, pp. 69–82, 2009. View at Publisher · View at Google Scholar · View at Scopus
  173. Y.-D. Wang and W. Wang, “Protective effect of ilomastat on trinitrobenzenesulfonic acid-induced ulcerative colitis in rats,” World Journal of Gastroenterology, vol. 14, no. 37, pp. 5683–5688, 2008. View at Publisher · View at Google Scholar · View at Scopus
  174. Q. Gao, M. J. W. Meijer, U. G. Schlüter et al., “Infliximab treatment influences the serological expression of matrix metalloproteinase (MMP)-2 and -9 in Crohn's disease,” Inflammatory Bowel Diseases, vol. 13, no. 6, pp. 693–702, 2007. View at Publisher · View at Google Scholar · View at Scopus
  175. A. Di Sabatino, U. Saarialho-Kere, M. G. Buckley et al., “Stromelysin-1 and macrophage metalloelastase expression in the intestinal mucosa of Crohn's disease patients treated with infliximab,” European Journal of Gastroenterology & Hepatology, vol. 21, no. 9, pp. 1049–1055, 2009. View at Publisher · View at Google Scholar · View at Scopus
  176. M. J. Meijer, M. A. C. Mieremet-Ooms, W. van Duijn et al., “Effect of the anti-tumor necrosis factor-α antibody infliximab on the ex vivo mucosal matrix metalloproteinase-proteolytic phenotype in inflammatory bowel disease,” Inflammatory Bowel Diseases, vol. 13, no. 2, pp. 200–210, 2007. View at Publisher · View at Google Scholar · View at Scopus
  177. L. Mäkitalo, T. Sipponen, P. Kärkkäinen, K.-L. Kolho, and U. Saarialho-Kere, “Changes in matrix metalloproteinase (MMP) and tissue inhibitors of metalloproteinases (TIMP) expression profile in Crohn's disease after immunosuppressive treatment correlate with histological score and calprotectin values,” International Journal of Colorectal Disease, vol. 24, no. 10, pp. 1157–1167, 2009. View at Publisher · View at Google Scholar · View at Scopus
  178. L. Mäkitalo, H. Rintamäki, T. Tervahartiala, T. Sorsa, and K.-L. Kolho, “Serum MMPs 7-9 and their inhibitors during glucocorticoid and anti-TNF-α therapy in pediatric inflammatory bowel disease,” Scandinavian Journal of Gastroenterology, vol. 47, no. 7, pp. 785–794, 2012. View at Publisher · View at Google Scholar · View at Scopus
  179. M. de Bruyn, K. Machiels, J. Vandooren et al., “Infliximab restores the dysfunctional matrix remodeling protein and growth factor gene expression in patients with inflammatory bowel disease,” Inflammatory Bowel Diseases, vol. 20, no. 2, pp. 339–352, 2014. View at Publisher · View at Google Scholar · View at Scopus
  180. K. Kawabata, A. Murakami, and H. Ohigashi, “Auraptene decreases the activity of matrix metalloproteinases in dextran sulfate sodium-induced ulcerative colitis in ICR mice,” Bioscience, Biotechnology and Biochemistry, vol. 70, no. 12, pp. 3062–3065, 2006. View at Publisher · View at Google Scholar · View at Scopus
  181. A. Witaicenis, A. C. Luchini, C. A. Hiruma-Lima et al., “Suppression of TNBS-induced colitis in rats by 4-methylesculetin, a natural coumarin: comparison with prednisolone and sulphasalazine,” Chemico-Biological Interactions, vol. 195, no. 1, pp. 76–85, 2012. View at Publisher · View at Google Scholar · View at Scopus
  182. S. H. Lee, D. H. Sohn, X. Y. Jin, S. W. Kim, S. C. Choi, and G. S. Seo, “2′,4′,6′-Tris(methoxymethoxy) chalcone protects against trinitrobenzene sulfonic acid-induced colitis and blocks tumor necrosis factor-α-induced intestinal epithelial inflammation via heme oxygenase 1-dependent and independent pathways,” Biochemical Pharmacology, vol. 74, no. 6, pp. 870–880, 2007. View at Publisher · View at Google Scholar · View at Scopus
  183. J. Epstein, G. Docena, T. T. MacDonald, and I. R. Sanderson, “Curcumin suppresses p38 mitogen-activated protein kinase activation, reduces IL-1β and matrix metalloproteinase-3 and enhances IL-10 in the mucosa of children and adults with inflammatory bowel disease,” British Journal of Nutrition, vol. 103, no. 6, pp. 824–832, 2010. View at Publisher · View at Google Scholar · View at Scopus
  184. R. Di Paola, E. Esposito, E. Mazzon et al., “Teupolioside, a phenylpropanoid glycosides of Ajuga reptans, biotechnologically produced by IRBN22 plant cell line, exerts beneficial effects on a rodent model of colitis,” Biochemical Pharmacology, vol. 77, no. 5, pp. 845–857, 2009. View at Publisher · View at Google Scholar · View at Scopus
  185. E. Mazzon, E. Esposito, R. Di Paola et al., “Effects of verbascoside biotechnologically produced by Syringa vulgaris plant cell cultures in a rodent model of colitis,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 380, no. 1, pp. 79–94, 2009. View at Publisher · View at Google Scholar · View at Scopus
  186. G. Batist, F. Patenaude, P. Champagne et al., “Neovastat (Æ-941) in refractory renal cell carcinoma patients: report of a phase II trial with two dose levels,” Annals of Oncology, vol. 13, no. 8, pp. 1259–1263, 2002. View at Publisher · View at Google Scholar · View at Scopus
  187. D. N. Sauder, J. DeKoven, P. Champagne, D. Croteau, and É. Dupont, “Neovastat (Æ-941), an inhibitor of angiogenesis: Randomized phase I/II clinical trial results in patients with plaque psoriasis,” Journal of the American Academy of Dermatology, vol. 47, no. 4, pp. 535–541, 2002. View at Publisher · View at Google Scholar · View at Scopus
  188. J.-W. Mao, X.-M. He, H.-Y. Tang, and Y.-D. Wang, “Protective role of metalloproteinase inhibitor (AE-941) on ulcerative colitis in rats,” World Journal of Gastroenterology, vol. 18, no. 47, pp. 7063–7069, 2012. View at Publisher · View at Google Scholar · View at Scopus
  189. D. K. Park and H.-J. Park, “Ethanol extract of Cordyceps militaris grown on germinated soybeans attenuates dextran-sodium-sulfate-(DSS) induced colitis by suppressing the expression of matrix metalloproteinases and inflammatory mediators,” BioMed Research International, vol. 2013, Article ID 102918, 10 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  190. M. A. A. Schepens, A. J. Schonewille, C. Vink et al., “Supplemental calcium attenuates the colitis-related increase in diarrhea, intestinal permeability, and extracellular matrix breakdown in HLA-B27 transgenic rats,” Journal of Nutrition, vol. 139, no. 8, pp. 1525–1533, 2009. View at Publisher · View at Google Scholar · View at Scopus
  191. S. Cuzzocrea, E. Mazzon, I. Serraino et al., “Melatonin reduces dinitrobenzene sulfonic acid-induced colitis,” Journal of Pineal Research, vol. 30, no. 1, pp. 1–12, 2001. View at Publisher · View at Google Scholar · View at Scopus
  192. E. Esposito, E. Mazzon, L. Riccardi, R. Caminiti, R. Meli, and S. Cuzzocrea, “Matrix metalloproteinase-9 and metalloproteinase-2 activity and expression is reduced by melatonin during experimental colitis,” Journal of Pineal Research, vol. 45, no. 2, pp. 166–173, 2008. View at Publisher · View at Google Scholar · View at Scopus
  193. P. P. Trivedi and G. B. Jena, “Melatonin reduces ulcerative colitis-associated local and systemic damage in mice: investigation on possible mechanisms,” Digestive Diseases and Sciences, vol. 58, no. 12, pp. 3460–3474, 2013. View at Publisher · View at Google Scholar · View at Scopus
  194. E. Talero, S. Garcia-Maurino, and V. Motilva, “Melatonin, autophagy and intestinal bowel disease,” Current Pharmaceutical Design, vol. 20, no. 30, pp. 4816–4827, 2013. View at Google Scholar
  195. A. Berton, V. Rigot, E. Huet et al., “Involvement of fibronectin type II repeats in the efficient inhibition of gelatinases A and B by long-chain unsaturated fatty acids,” Journal of Biological Chemistry, vol. 276, no. 23, pp. 20458–20465, 2001. View at Publisher · View at Google Scholar · View at Scopus
  196. C. Gravaghi, K. M. D. la Perle, P. Ogrodwski et al., “Cox-2 expression, PGE2 and cytokines production are inhibited by endogenously synthesized n-3 PUFAs in inflamed colon of fat-1 mice,” Journal of Nutritional Biochemistry, vol. 22, no. 4, pp. 360–365, 2011. View at Publisher · View at Google Scholar · View at Scopus
  197. J. Y. Cho, S.-G. Chi, and H. S. Chun, “Oral administration of docosahexaenoic acid attenuates colitis induced by dextran sulfate sodium in mice,” Molecular Nutrition and Food Research, vol. 55, no. 2, pp. 239–246, 2011. View at Publisher · View at Google Scholar · View at Scopus
  198. A. Annaházi, T. Molnár, K. Farkas et al., “Fecal MMP-9: a new noninvasive differential diagnostic and activity marker in ulcerative colitis,” Inflammatory Bowel Diseases, vol. 19, no. 2, pp. 316–320, 2013. View at Publisher · View at Google Scholar · View at Scopus
  199. K. Farkas, Z. Sarodi, A. Bálint et al., “The diagnostic value of a new fecal marker matrix metalloprotease-9 in different types of inflammatory bowel diseases,” Journal of Crohn's and Colitis, vol. 8, pp. S111–S112, 2014. View at Google Scholar
  200. A. Balint, M. Szucs, K. Farkas et al., “P112 The triggering role of Clostridium difficile infection in the relapse of IBD and the clinical utility of fecal calprotectin and matrix-metalloproteinase-9 in case of Clostridium-induced relapse,” Journal of Crohn's and Colitis, vol. 8, pp. S108–S109, 2014. View at Google Scholar
  201. P. Devarajan, “Neutrophil gelatinase-associated lipocalin (NGAL): a new marker of kidney disease,” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 68, no. 241, pp. 89–94, 2008. View at Publisher · View at Google Scholar · View at Scopus
  202. M. de Bruyn, I. Arijs, W. J. Wollants et al., “Neutrophil gelatinase B-associated lipocalin and matrix metalloproteinase-9 complex as a surrogate serum marker of mucosal healing in ulcerative colitis,” Inflammatory Bowel Diseases, vol. 20, no. 7, pp. 1198–1207, 2014. View at Google Scholar
  203. M. Piekkala, J. Hagström, M. Tanskanen, R. Rintala, C. Haglund, and K.-L. Kolho, “Low trypsinogen-1 expression in pediatric ulcerative colitis patients who undergo surgery,” World Journal of Gastroenterology, vol. 19, no. 21, pp. 3272–3280, 2013. View at Publisher · View at Google Scholar · View at Scopus
  204. M. A. Manfredi, D. Zurakowski, P. A. Rufo, T. R. Walker, V. L. Fox, and M. A. Moses, “Increased incidence of urinary matrix metalloproteinases as predictors of disease in pediatric patients with inflammatory bowel disease,” Inflammatory Bowel Diseases, vol. 14, no. 8, pp. 1091–1096, 2008. View at Publisher · View at Google Scholar · View at Scopus
  205. A. Kofla-Dłubacz, M. Matusiewicz, E. Krzesiek, L. Noga, and B. Iwańczak, “Metalloproteinase-3 and -9 as novel markers in the evaluation of ulcerative colitis activity in children,” Advances in Clinical and Experimental Medicine, vol. 23, no. 1, pp. 103–110, 2014. View at Google Scholar · View at Scopus
  206. B. Kabakchiev, D. Turner, J. Hyams et al., “Gene expression changes associated with resistance to intravenous corticosteroid therapy in children with severe ulcerative colitis,” PLoS ONE, vol. 5, no. 9, Article ID e13085, 2010. View at Publisher · View at Google Scholar · View at Scopus
  207. F. Sipos, O. Galamb, B. Wichmann et al., “Peripheral blood based discrimination of ulcerative colitis and Crohn's disease from non-IBD colitis by genome-wide gene expression profiling,” Disease Markers, vol. 30, no. 1, pp. 1–17, 2011. View at Publisher · View at Google Scholar · View at Scopus
  208. W. A. Faubion, J. G. Fletcher, S. O'Byrne et al., “EMerging BiomARKers in Inflammatory Bowel Disease (EMBARK) study identifies fecal calprotectin, serum MMP9, and serum IL-22 as a novel combination of biomarkers for Crohn's disease activity: role of cross-sectional imaging,” American Journal of Gastroenterology, vol. 109, no. 5, p. 780, 2014. View at Publisher · View at Google Scholar · View at Scopus
  209. H. Yamaguchi, K. Suzuki, M. Nagata et al., “Irsogladine maleate ameliorates infl ammation and fi brosis in mice with chronic colitis induced by dextran sulfate sodium,” Medical Molecular Morphology, vol. 45, no. 3, pp. 140–151, 2012. View at Publisher · View at Google Scholar · View at Scopus
  210. P. P. Trivedi and G. B. Jena, “Role of α-lipoic acid in dextran sulfate sodium-induced ulcerative colitis in mice: studies on inflammation, oxidative stress, DNA damage and fibrosis,” Food and Chemical Toxicology, vol. 59, pp. 339–355, 2013. View at Publisher · View at Google Scholar · View at Scopus