Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2017, Article ID 3102737, 11 pages
https://doi.org/10.1155/2017/3102737
Review Article

Cigarette Smoking and Adipose Tissue: The Emerging Role in Progression of Atherosclerosis

Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China

Correspondence should be addressed to Yi Wang; moc.liamtoh@cilbupiygnaw

Received 9 June 2017; Revised 8 November 2017; Accepted 27 November 2017; Published 27 December 2017

Academic Editor: Arbi Pecani

Copyright © 2017 Zhiyan Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Ezzati, S. J. Henley, M. J. Thun, and A. D. Lopez, “Role of smoking in global and regional cardiovascular mortality,” Circulation, vol. 112, no. 4, pp. 489–497, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Dratva, N. Probst-Hensch, A. Schmidt-Trucksäss et al., “Atherogenesis in youth--early consequence of adolescent smoking,” Atherosclerosis, vol. 230, no. 2, pp. 304–309, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. M. M. Finucane, G. A. Stevens, M. J. Cowan et al., “National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants,” The Lancet, vol. 377, no. 9765, pp. 557–567, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. Q. Huynh, L. Blizzard, J. Sharman et al., “Relative contributions of adiposity in childhood and adulthood to vascular health of young adults,” Atherosclerosis, vol. 228, no. 1, pp. 259–264, 2013. View at Publisher · View at Google Scholar · View at Scopus
  5. D. M. Freedman, A. J. Sigurdson, P. Rajaraman, M. M. Doody, M. S. Linet, and E. Ron, “The mortality risk of smoking and obesity combined,” American Journal of Preventive Medicine, vol. 31, no. 5, pp. 355–362, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Koster, M. F. Leitzmann, A. Schatzkin et al., “The combined relations of adiposity and smoking on mortality,” American Journal of Clinical Nutrition, vol. 88, no. 5, pp. 1206–1212, 2008. View at Google Scholar
  7. R. Chatkin, J. M. Chatkin, L. Spanemberg, D. Casagrande, M. Wagner, and C. Mottin, “Smoking is associated with more abdominal fat in morbidly obese patients,” PLoS One, vol. 10, no. 5, article e0126146, 2015. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Wu, P. Song, W. Zhang et al., “Activation of AMPKalpha2 in adipocytes is essential for nicotine-induced insulin resistance in vivo,” Nature Medicine, vol. 21, no. 4, pp. 373–382, 2015. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Shimokata, D. C. Muller, and R. Andres, “Studies in the distribution of body fat. III. Effects of cigarette smoking,” JAMA, vol. 261, no. 8, pp. 1169–1173, 1989. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Akbartabartoori, M. E. Lean, and C. R. Hankey, “Relationships between cigarette smoking, body size and body shape,” International Journal of Obesity, vol. 29, no. 2, pp. 236–243, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. I. Tabas, K. J. Williams, and J. Borén, “Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications,” Circulation, vol. 116, no. 16, pp. 1832–1844, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. A. J. Lusis, “Atherosclerosis,” Nature, vol. 407, no. 6801, pp. 233–241, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. V. Bobryshev, “Monocyte recruitment and foam cell formation in atherosclerosis,” Micron, vol. 37, no. 3, pp. 208–222, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. K. A. Campbell, M. J. Lipinski, A. C. Doran, M. D. Skaflen, V. Fuster, and C. A. McNamara, “Lymphocytes and the adventitial immune response in atherosclerosis,” Circulation Research, vol. 110, no. 6, pp. 889–900, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. G. A. Payne, M. C. Kohr, and J. D. Tune, “Epicardial perivascular adipose tissue as a therapeutic target in obesity-related coronary artery disease,” British Journal of Pharmacology, vol. 165, no. 3, pp. 659–669, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Préfontaine, A. Morin, C. Jumarie, and A. Porter, “In vitro bioactivity of combustion products from 12 tobacco constituents,” Food and Chemical Toxicology, vol. 44, no. 5, pp. 724–738, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Lee and J. P. Cooke, “The role of nicotine in the pathogenesis of atherosclerosis,” Atherosclerosis, vol. 215, no. 2, pp. 281–283, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. R. D. Egleton, K. C. Brown, and P. Dasgupta, “Angiogenic activity of nicotinic acetylcholine receptors: implications in tobacco-related vascular diseases,” Pharmacology & Therapeutics, vol. 121, no. 2, pp. 205–223, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Li, S. R. Srinivasan, W. Chen, J. H. Xu, S. Li, and G. S. Berenson, “Vascular abnormalities in asymptomatic, healthy young adult smokers without other major cardiovascular risk factors: the Bogalusa Heart Study,” American Journal of Hypertension, vol. 18, no. 3, pp. 319–324, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. H. L. Luo, W. J. Zang, J. Lu, X. J. Yu, Y. X. Lin, and Y. X. Cao, “The protective effect of captopril on nicotine-induced endothelial dysfunction in rat,” Basic & Clinical Pharmacology & Toxicology, vol. 99, no. 3, pp. 237–245, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Heeschen, M. Weis, and J. P. Cooke, “Nicotine promotes arteriogenesis,” Journal of the American College of Cardiology, vol. 41, no. 3, pp. 489–496, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. M. S. Zhou, K. Chadipiralla, A. J. Mendez et al., “Nicotine potentiates proatherogenic effects of oxLDL by stimulating and upregulating macrophage CD36 signaling,” American Journal of Physiology: Heart and Circulatory Physiology, vol. 305, no. 4, pp. H563–H574, 2013. View at Publisher · View at Google Scholar · View at Scopus
  23. P. P. Lau, L. Li, A. J. Merched, A. L. Zhang, K. W. Ko, and L. Chan, “Nicotine induces proinflammatory responses in macrophages and the aorta leading to acceleration of atherosclerosis in low-density lipoprotein receptor-/- mice,” Arteriosclerosis Thrombosis & Vascular Biology, vol. 26, no. 1, pp. 143–149, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Cucina, P. Sapienza, V. Corvino et al., “Nicotine induces platelet-derived growth factor release and cytoskeletal alteration in aortic smooth muscle cells,” Surgery, vol. 127, no. 1, pp. 72–78, 2000. View at Publisher · View at Google Scholar
  25. A. Csordas and D. Bernhard, “The biology behind the atherothrombotic effects of cigarette smoke,” Nature Reviews Cardiology, vol. 10, no. 4, pp. 219–230, 2013. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Iwano, M. Nukaya, T. Saito, F. Asanuma, and T. Kamataki, “A possible mechanism for atherosclerosis induced by polycyclic aromatic hydrocarbons,” Biochemical and Biophysical Research Communications, vol. 335, no. 1, pp. 220–226, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Siasos, V. Tsigkou, E. Kokkou et al., “Smoking and atherosclerosis: mechanisms of disease and new therapeutic approaches,” Current Medicinal Chemistry, vol. 21, no. 34, pp. 3936–3948, 2014. View at Publisher · View at Google Scholar
  28. D. C. Lau, B. Dhillon, H. Yan, P. E. Szmitko, and S. Verma, “Adipokines: molecular links between obesity and atheroslcerosis,” American Journal of Physiology Heart & Circulatory Physiology, vol. 288, no. 5, pp. H2031–H2041, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. J. J. Fuster, N. Ouchi, N. Gokce, and K. Walsh, “Obesity-induced changes in adipose tissue microenvironment and their impact on cardiovascular disease,” Circulation Research, vol. 118, no. 11, pp. 1786–1807, 2016. View at Publisher · View at Google Scholar · View at Scopus
  30. B. Klop, J. W. Elte, and M. C. Cabezas, “Dyslipidemia in obesity: mechanisms and potential targets,” Nutrients, vol. 5, no. 4, pp. 1218–1240, 2013. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Zhang, R. Proenca, M. Maffei, M. Barone, L. Leopold, and J. M. Friedman, “Positional cloning of the mouse obese gene and its human homologue,” Nature, vol. 372, no. 6505, pp. 425–432, 1994. View at Publisher · View at Google Scholar · View at Scopus
  32. M. W. Rajala, Y. Qi, H. R. Patel et al., “Regulation of resistin expression and circulating levels in obesity, diabetes, and fasting,” Diabetes, vol. 53, no. 7, pp. 1671–1679, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. G. S. Hotamisligil, N. S. Shargill, and B. M. Spiegelman, “Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance,” Science, vol. 259, no. 5091, pp. 87–91, 1993. View at Publisher · View at Google Scholar
  34. Y. Arita, S. Kihara, N. Ouchi et al., “Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity,” Biochemical & Biophysical Research Communications, vol. 257, no. 1, pp. 79–83, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. D. S. B. Cm, R. Z. Yang, M. J. Lee et al., “Omentin plasma levels and gene expression are decreased in obesity,” Diabetes, vol. 56, no. 6, pp. 1655–1661, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. K. H. Cheng, C. S. Chu, K. T. Lee et al., “Adipocytokines and proinflammatory mediators from abdominal and epicardial adipose tissue in patients with coronary artery disease,” International Journal of Obesity, vol. 32, no. 2, pp. 268–274, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. H. Jin, Y. J. Park, M. Ham, and J. B. Kim, “Crosstalk between adipocytes and immune cells in adipose tissue inflammation and metabolic dysregulation in obesity,” Molecules and Cells, vol. 37, no. 5, pp. 365–371, 2014. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. J. Gao, “Dual modulation of vascular function by perivascular adipose tissue and its potential correlation with adiposity/lipoatrophy-related vascular dysfunction,” Current Pharmaceutical Design, vol. 13, no. 21, pp. 2185–2192, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. K. Rittig, J. H. Dolderer, B. Balletshofer et al., “The secretion pattern of perivascular fat cells is different from that of subcutaneous and visceral fat cells,” Diabetologia, vol. 55, no. 5, pp. 1514–1525, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Gotti, E. Carbonnelle, M. Moretti, R. Zwart, and F. Clementi, “Drugs selective for nicotinic receptor subtypes: a real possibility or a dream?” Behavioural Brain Research, vol. 113, no. 1-2, pp. 183–192, 2000. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Cancello, A. Zulian, S. Maestrini et al., “The nicotinic acetylcholine receptor α7 in subcutaneous mature adipocytes: downregulation in human obesity and modulation by diet-induced weight loss,” International Journal of Obesity, vol. 36, no. 12, pp. 1552–1557, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. K. Andersson and P. Arner, “Systemic nicotine stimulates human adipose tissue lipolysis through local cholinergic and catecholaminergic receptors,” International Journal of Obesity, vol. 25, no. 8, pp. 1225–1232, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. V. Narayanaswami, S. S. Somkuwar, D. B. Horton, L. A. Cassis, and L. P. Dwoskin, “Angiotensin AT1 and AT2 receptor antagonists modulate nicotine-evoked [3H]dopamine and [3H]norepinephrine release,” Biochemical Pharmacology, vol. 86, no. 5, pp. 656–665, 2013. View at Publisher · View at Google Scholar · View at Scopus
  44. L. Azam and J. M. McIntosh, “Characterization of nicotinic acetylcholine receptors that modulate nicotine-evoked [3H]norepinephrine release from mouse hippocampal synaptosomes,” Molecular Pharmacology, vol. 70, no. 3, pp. 967–976, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. H. M. Schuller, P. K. Tithof, M. Williams, and H. Plummer 3rd, “The tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone is a β-adrenergic agonist and stimulates DNA synthesis in lung adenocarcinoma via β-adrenergic receptor-mediated release of arachidonic acid,” Cancer Research, vol. 59, no. 18, p. 4510, 1999. View at Google Scholar
  46. M. Alexandre, A. K. Uduman, S. Minervini et al., “Tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone initiates and enhances pancreatitis responses,” American Journal of Physiology Gastrointestinal and Liver Physiology, vol. 303, no. 6, pp. G696–G704, 2012. View at Publisher · View at Google Scholar · View at Scopus
  47. P. K. Tithof, M. Elgayyar, H. M. Schuller, M. Barnhill, and R. Andrews, “4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone, a nicotine derivative, induces apoptosis of endothelial cells,” American Journal of Physiology: Heart and Circulatory Physiology, vol. 281, no. 5, pp. H1946–H1954, 2001. View at Google Scholar
  48. W. Cao, A. V. Medvedev, K. W. Daniel, and S. Collins, “β-Adrenergic activation of p38 MAP kinase in adipocytes: cAMP induction of the uncoupling protein 1 (UCP1) gene requires p38 MAP kinase,” Journal of Biological Chemistry, vol. 276, no. 29, pp. 27077–27082, 2001. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Fasshauer, J. Klein, S. Neumann, M. Eszlinger, and R. Paschke, “Adiponectin gene expression is inhibited by β-adrenergic stimulation via protein kinase A in 3T3-L1 adipocytes,” FEBS Letters, vol. 507, no. 2, pp. 142–146, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Chiolero, D. Faeh, F. Paccaud, and J. Cornuz, “Consequences of smoking for body weight, body fat distribution, and insulin resistance,” The American Journal of Clinical Nutrition, vol. 87, no. 4, pp. 801–809, 2008. View at Google Scholar
  51. E. de Oliveira, E. G. Moura, A. P. Santos-Silva et al., “Neonatal nicotine exposure causes insulin and leptin resistance and inhibits hypothalamic leptin signaling in adult rat offspring,” Journal of Endocrinology, vol. 206, no. 1, pp. 55–63, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. E. Somm, V. M. Schwitzgebel, D. M. Vauthay et al., “Prenatal nicotine exposure alters early pancreatic islet and adipose tissue development with consequences on the control of body weight and glucose metabolism later in life,” Endocrinology, vol. 149, no. 12, pp. 6289–6299, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. T. Yamauchi, J. Kamon, H. Waki et al., “The mechanisms by which both heterozygous peroxisome proliferator-activated receptor γ (PPARγ) deficiency and PPARγ agonist improve insulin resistance,” Journal of Biological Chemistry, vol. 276, no. 44, pp. 41245–41254, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. P. D. G. Miles, Y. Barak, W. He, R. M. Evans, and J. M. Olefsky, “Improved insulin-sensitivity in mice heterozygous for PPAR-γ deficiency,” Journal of Clinical Investigation, vol. 105, no. 3, pp. 287–292, 2000. View at Publisher · View at Google Scholar
  55. D. Ren, T. N. Collingwood, E. J. Rebar, A. P. Wolffe, and H. S. Camp, “PPARγ knockdown by engineered transcription factors: exogenous PPARγ2 but not PPARγ1 reactivates adipogenesis,” Genes & Development, vol. 16, no. 1, pp. 27–32, 2002. View at Publisher · View at Google Scholar · View at Scopus
  56. Z. An, H. Wang, P. Song, M. Zhang, X. Geng, and M. H. Zou, “Nicotine-induced activation of AMP-activated protein kinase inhibits fatty acid synthase in 3T3L1 adipocytes: a role for oxidant stress,” Journal of Biological Chemistry, vol. 282, no. 37, pp. 26793–26801, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Itoh, T. Tsuji, H. Nakamura et al., “Systemic effects of acute cigarette smoke exposure in mice,” Inhalation Toxicology, vol. 26, no. 8, pp. 464–473, 2014. View at Publisher · View at Google Scholar · View at Scopus
  58. H. Lee, Y. J. Lee, H. Choi, E. H. Ko, and J. Kim, “Reactive oxygen species facilitate adipocyte differentiation by accelerating mitotic clonal expansion,” Journal of Biological Chemistry, vol. 284, no. 16, pp. 10601–10609, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. P. A. Hosick, A. A. AlAmodi, M. V. Storm et al., “Chronic carbon monoxide treatment attenuates development of obesity and remodels adipocytes in mice fed a high-fat diet,” International Journal of Obesity, vol. 38, no. 1, pp. 132–139, 2014. View at Publisher · View at Google Scholar · View at Scopus
  60. P. Irigaray, S. Lacomme, L. Mejean, and D. Belpomme, “Ex vivo study of incorporation into adipocytes and lipolysis-inhibition effect of polycyclic aromatic hydrocarbons,” Toxicology Letters, vol. 187, no. 1, pp. 35–39, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. J. H. Kim, K. Yamaguchi, S. H. Lee et al., “Evaluation of polycyclic aromatic hydrocarbons in the activation of early growth response-1 and peroxisome proliferator activated receptors,” Toxicological Sciences, vol. 85, no. 1, pp. 585–593, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. H. E. Bays, “Adiposopathy is “sick fat” a cardiovascular disease?” Journal of the American College of Cardiology, vol. 57, no. 25, pp. 2461–2473, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. D. Langin, “Adipose tissue lipolysis as a metabolic pathway to define pharmacological strategies against obesity and the metabolic syndrome,” Pharmacological Research, vol. 53, no. 6, pp. 482–491, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. Y. Iwashima, T. Katsuya, K. Ishikawa et al., “Association of hypoadiponectinemia with smoking habit in men,” Hypertension, vol. 45, no. 6, pp. 1094–1100, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. S. Bergmann and R. Siekmeier, “Influence of smoking and body weight on adipokines in middle aged women,” European Journal of Medical Research, vol. 14, Supplement 4, pp. 21–26, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. K. Parisi, L. Tzanoumis, and A. Kafouri, “Smoking cessation increases serum adiponectin levels in an apparently healthy Greek population,” Atherosclerosis, vol. 205, no. 2, pp. 632–636, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Li, C. Li, Y. Liu et al., “Decreased secretion of adiponectin through its intracellular accumulation in adipose tissue during tobacco smoke exposure,” Nutrition & Metabolism, vol. 12, no. 1, p. 15, 2014. View at Publisher · View at Google Scholar · View at Scopus
  68. K. Merz-Atalik, “Tnfα, Cox2 and AdipoQ adipokine gene expression levels are modulated in murine adipose tissues by both nicotine and nACh receptors containing the β2 subunit,” Molecular Genetics & Metabolism, vol. 107, no. 3, pp. 561–570, 2012. View at Publisher · View at Google Scholar · View at Scopus
  69. M. L. Delporte, T. Funahashi, M. Takahashi, Y. Matsuzawa, and S. M. Brichard, “Pre- and post-translational negative effect of β-adrenoceptor agonists on adiponectin secretion: in vitro and in vivo studies,” Biochemical Journal, vol. 367, Part 3, pp. 677–685, 2002. View at Publisher · View at Google Scholar · View at Scopus
  70. N. Maeda, I. Shimomura, K. Kishida et al., “Diet-induced insulin resistance in mice lacking adiponection/ACRP30,” Nature Medicine, vol. 8, no. 7, pp. 731–737, 2002. View at Publisher · View at Google Scholar · View at Scopus
  71. L. Mach, H. Bedanova, M. Soucek, M. Karpisek, P. Nemec, and M. Orban, “Tobacco smoking and cytokine levels in human epicardial adipose tissue: impact of smoking cessation,” Atherosclerosis, vol. 255, pp. 37–42, 2016. View at Publisher · View at Google Scholar · View at Scopus
  72. M. Ryden, A. Dicker, V. van Harmelen et al., “Mapping of early signaling events in tumor necrosis factor-α-mediated lipolysis in human fat cells,” Journal of Biological Chemistry, vol. 277, no. 2, pp. 1085–1091, 2002. View at Publisher · View at Google Scholar · View at Scopus
  73. R. H. Liu, M. Mizuta, and S. Matsukura, “The expression and functional role of nicotinic acetylcholine receptors in rat adipocytes,” The Journal of Pharmacology and Experimental Therapeutics, vol. 310, no. 1, pp. 52–58, 2004. View at Publisher · View at Google Scholar · View at Scopus
  74. J. L. Nobre, P. C. Lisboa, A. P. Santos-Silva et al., “Calcium supplementation reverts central adiposity, leptin, and insulin resistance in adult offspring programed by neonatal nicotine exposure,” Journal of Endocrinology, vol. 210, no. 3, pp. 349–359, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. G. Targher, L. Zenari, G. Faccini, G. Falezza, M. Muggeo, and G. Zoppini, “Serum leptin concentrations in young smokers with type 1 diabetes,” Diabetes Care, vol. 24, no. 4, pp. 793-794, 2001. View at Publisher · View at Google Scholar
  76. J. E. Reseland, H. H. Mundal, K. Hollung et al., “Cigarette smoking may reduce plasma leptin concentration via catecholamines,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 73, no. 1, pp. 43–49, 2005. View at Publisher · View at Google Scholar · View at Scopus
  77. K. A. Perkins and C. Fonte, “Effects of smoking status and smoking cessation on leptin levels,” Nicotine & Tobacco Research, vol. 4, no. 4, pp. 459–466, 2002. View at Publisher · View at Google Scholar · View at Scopus
  78. C. Rossi, E. Santini, M. Chiarugi et al., “The complex P2X7 receptor/inflammasome in perivascular fat tissue of heavy smokers,” European Journal of Clinical Investigation, vol. 44, no. 3, pp. 295–302, 2013. View at Publisher · View at Google Scholar · View at Scopus
  79. K. Karimi, H. Sarir, E. Mortaz et al., “Toll-like receptor-4 mediates cigarette smoke-induced cytokine production by human macrophages,” Respiratory Research, vol. 7, no. 1, p. 66, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. K. Ohashi, J. L. Parker, N. Ouchi et al., “Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype,” Journal of Biological Chemistry, vol. 285, no. 9, pp. 6153–6160, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. G. M. Lord, G. Matarese, J. K. Howard, R. J. Baker, S. R. Bloom, and R. I. Lechler, “Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression,” Nature, vol. 394, no. 6696, pp. 897–901, 1998. View at Publisher · View at Google Scholar · View at Scopus
  82. K. Rahmouni, D. A. Morgan, G. M. Morgan, A. L. Mark, and W. G. Haynes, “Role of selective leptin resistance in diet-induced obesity hypertension,” Diabetes, vol. 54, no. 7, pp. 2012–2018, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. C. L. Yun and J. R. Zierath, “AMP-activated protein kinase signaling in metabolic regulation,” Journal of Clinical Investigation, vol. 116, no. 7, pp. 1776–1783, 2006. View at Publisher · View at Google Scholar · View at Scopus
  84. A. Bouloumié, T. Marumo, M. Lafontan, and R. Busse, “Leptin induces oxidative stress in human endothelial cells,” Faseb Journal, vol. 13, no. 13, pp. 1231–1238, 1999. View at Google Scholar
  85. S. Hongo, T. Watanabe, S. Arita et al., “Leptin modulates ACAT1 expression and cholesterol efflux from human macrophages,” American Journal of Physiology Endocrinology & Metabolism, vol. 297, no. 2, pp. E474–E482, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. L. O'Rourke, L. M. Grønning, S. J. Yeaman, and P. R. Shepherd, “Glucose-dependent regulation of cholesterol ester metabolism in macrophages by insulin and leptin,” Journal of Biological Chemistry, vol. 277, no. 45, pp. 42557–42562, 2002. View at Publisher · View at Google Scholar · View at Scopus
  87. L. Li, J. C. Mamputu, N. Wiernsperger, and G. Renier, “Signaling pathways involved in human vascular smooth muscle cell proliferation and matrix metalloproteinase-2 expression induced by leptin: inhibitory effect of metformin,” Diabetes, vol. 54, no. 7, pp. 2227–2234, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. N. Kiguchi, T. Maeda, Y. Kobayashi, Y. Fukazawa, and S. Kishioka, “Leptin enhances CC-chemokine ligand expression in cultured murine macrophage,” Biochemical & Biophysical Research Communications, vol. 384, no. 3, pp. 311–315, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. T. Kadowaki and T. Yamauchi, “Adiponectin and adiponectin receptors,” Endocrine Reviews, vol. 26, no. 3, pp. 439–451, 2005. View at Publisher · View at Google Scholar · View at Scopus
  90. H. Kobayashi, N. Ouchi, S. Kihara et al., “Selective suppression of endothelial cell apoptosis by the high molecular weight form of adiponectin,” Circulation Research, vol. 94, no. 4, pp. e27–e31, 2004. View at Publisher · View at Google Scholar
  91. N. Ouchi, S. Kihara, Y. Arita et al., “Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-ĸB signaling through a cAMP-dependent pathway,” Circulation, vol. 102, no. 11, pp. 1296–1301, 2000. View at Publisher · View at Google Scholar
  92. N. Ouchi, S. Kihara, Y. Arita et al., “Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages,” Circulation, vol. 103, no. 8, pp. 1057–1063, 2001. View at Publisher · View at Google Scholar
  93. Y. Arita, S. Kihara, N. Ouchi et al., “Adipocyte-derived plasma protein adiponectin acts as a platelet-derived growth factor-BB-binding protein and regulates growth factor-induced common postreceptor signal in vascular smooth muscle cell,” Circulation, vol. 105, no. 24, pp. 2893–2898, 2002. View at Publisher · View at Google Scholar · View at Scopus
  94. G. S. Hotamisligil, A. Budavari, D. Murray, and B. M. Spiegelman, “Reduced tyrosine kinase activity of the insulin receptor in obesity-diabetes. Central role of tumor necrosis factor-alpha,” Journal of Clinical Investigation, vol. 94, no. 4, pp. 1543–1549, 1994. View at Publisher · View at Google Scholar
  95. P. Kleinbongard, G. Heusch, and R. Schulz, “TNFα in atherosclerosis, myocardial ischemia/reperfusion and heart failure,” Pharmacology & Therapeutics, vol. 127, no. 3, pp. 295–314, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. J. J. Boyle, P. L. Weissberg, and M. R. Bennett, “Tumor necrosis factor-α promotes macrophage-induced vascular smooth muscle cell apoptosis by direct and autocrine mechanisms,” Arteriosclerosis Thrombosis & Vascular Biology, vol. 23, no. 9, pp. 1553–1558, 2003. View at Publisher · View at Google Scholar · View at Scopus
  97. H. Yamawaki, J. Kuramoto, S. Kameshima, T. Usui, M. Okada, and Y. Hara, “Omentin, a novel adipocytokine inhibits TNF-induced vascular inflammation in human endothelial cells,” Biochemical and Biophysical Research Communications, vol. 408, no. 2, pp. 339–343, 2011. View at Publisher · View at Google Scholar · View at Scopus
  98. S. Maruyama, R. Shibata, R. Kikuchi et al., “Fat-derived factor omentin stimulates endothelial cell function and ischemia-induced revascularization via endothelial nitric oxide synthase-dependent mechanism,” Journal of Biological Chemistry, vol. 287, no. 1, pp. 408–417, 2012. View at Publisher · View at Google Scholar · View at Scopus
  99. J. M. Northcott, A. Yeganeh, C. G. Taylor, P. Zahradka, and J. T. Wigle, “Adipokines and the cardiovascular system: mechanisms mediating health and disease,” Canadian Journal of Physiology and Pharmacology, vol. 90, no. 8, pp. 1029–1059, 2012. View at Publisher · View at Google Scholar · View at Scopus
  100. H. Yamawaki, N. Tsubaki, M. Mukohda, M. Okada, and Y. Hara, “Omentin, a novel adipokine, induces vasodilation in rat isolated blood vessels,” Biochemical and Biophysical Research Communications, vol. 393, no. 4, pp. 668–672, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. M. S. Burnett, C. W. Lee, T. D. Kinnaird et al., “The potential role of resistin in atherogenesis,” Atherosclerosis, vol. 182, no. 2, pp. 241–248, 2005. View at Publisher · View at Google Scholar · View at Scopus
  102. D. Kawanami, K. Maemura, N. Takeda et al., “Direct reciprocal effects of resistin and adiponectin on vascular endothelial cells: a new insight into adipocytokine-endothelial cell interactions,” Biochemical and Biophysical Research Communications, vol. 314, no. 2, pp. 415–419, 2004. View at Publisher · View at Google Scholar · View at Scopus
  103. T. S. Lee, C. Y. Lin, J. Y. Tsai et al., “Resistin increases lipid accumulation by affecting class A scavenger receptor, CD36 and ATP-binding cassette transporter-A1 in macrophages,” Life Sciences, vol. 84, no. 3-4, pp. 97–104, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. J. B. Boord, K. Maeda, L. Makowski et al., “Combined adipocyte-macrophage fatty acid-binding protein deficiency improves metabolism, atherosclerosis, and survival in apolipoprotein E-deficient mice,” Circulation, vol. 110, no. 11, pp. 1492–1498, 2004. View at Publisher · View at Google Scholar · View at Scopus
  105. L. Makowski, J. B. Boord, K. Maeda et al., “Lack of macrophage fatty-acid-binding protein aP2 protects mice deficient in apolipoprotein E against atherosclerosis,” Nature Medicine, vol. 7, no. 6, pp. 699–705, 2001. View at Publisher · View at Google Scholar · View at Scopus
  106. R. Hart and D. R. Greaves, “Chemerin contributes to inflammation by promoting macrophage adhesion to VCAM-1 and fibronectin through clustering of VLA-4 and VLA-5,” The Journal of Immunology, vol. 185, no. 6, pp. 3728–3739, 2010. View at Publisher · View at Google Scholar · View at Scopus