Mathematical Problems in Engineering

Mathematical Problems in Engineering / 2012 / Article

Research Article | Open Access

Volume 2012 |Article ID 243758 | https://doi.org/10.1155/2012/243758

M. Li, "Nonlinear Vibration of a Multirotor System Connected by a Flexible Coupling Subjected to the Holonomic Constraint of Dynamic Angular Misalignment", Mathematical Problems in Engineering, vol. 2012, Article ID 243758, 15 pages, 2012. https://doi.org/10.1155/2012/243758

Nonlinear Vibration of a Multirotor System Connected by a Flexible Coupling Subjected to the Holonomic Constraint of Dynamic Angular Misalignment

Academic Editor: Alex Elias-Zuniga
Received01 Sep 2011
Revised28 Nov 2011
Accepted13 Dec 2011
Published07 Mar 2012

Abstract

This paper proposes a mathematical model of the multirotor system with a flexible coupling on spring supports on Lagrange's approach, which has taken into account the effects of dynamic angular misalignment and mass unbalance. Then its nonlinear dynamic behaviors of the system are discussed based on the method of multiple scales and numerical technique, respectively. The results show that the responses of the system in lateral directions contain a similar component to that of the mass unbalanced system on both the vibrating frequency and amplitude and involve the typical nonlinear components such as the ones from some combined frequencies; the results also reveal that the numerical agreements on the above-mentioned methods are perfect for the transient responses.

1. Introduction

The misalignment of rotor system is one of the most common mechanical faults in rotating machinery, which can cause excessive vibrations, produce bothering noises, and create damaging forces on rotors, bearings, and couplings. For large-scale rotating system, there are several reasons that lead to the misalignments such as the various deformations of rotors, uncoaxiality of bearings and couplings. According to the geometric relationship between the two rotors, the types of misalignment may be divided into the parallel and angle ones or their combination. In practical engineering, generally the misalignment appears in some main form, for example, the ground subsidence or looseness and improper assembly of the rotor system can induce the faults of angle misalignment. In fact, even a multirotor system is well aligned in static equilibrium state; it still presents the dynamic misalignment or offset in a rotor system which couples by a flexible coupling.

During the past decades, the dynamics of effects on the rotor misalignments has been studied in a variety of aspects, that is, firstly Gibbons [1] established a model to predict the additional forces due to the misalignment of the gear coupling, Dewell and Mitchell [2] analyzed the lateral vibration frequencies for a misaligned rotor system which were based on the experiment, and Li and Yu [3] discussed the coupled lateral and torsional vibration of a rotor-bearing system with the misalignment by a gear coupling. In paper [4], Al-Hussain and Redmond studied the effect of parallel misalignment on the lateral and torsional responses of two-rotor system, and in [5], Al-Hussain considered the effect of angular misalignment on the stability of rotors connected by a flexible mechanical coupling. Prabhakar et al. [6] dealt with the transient responses of a rotor system with a rotor misalignment by using the finite element method. Recently, Hili et al. [7] established a linear dynamic model of a multirotor system which couples a Cardan joint by using the finite element method, in which both of the faults misalignment and unbalance were considered. Lees [8] studied the misalignment of a rigidly coupled rotor which mounted on idealized linear bearings with a linear time-varying stiffness. Li [9] developed a mathematical model of a multirotor system by taking into account the effects of parallel misalignment and unbalance of rotors, in which the misalignment was dealt with as a holonomic constraint, and Slim et al. [10] paid attention to the dynamic behaviors of misaligned rotor system mounted on two journal bearings. Patel and Darpe [11] investigated vibrating responses of misaligned rotors modeled by using Timoshenko beam elements with six degrees of freedom, and in paper [12], they studied the frequency spectra of the system supported on rolling element bearings by experiment. In 2010, Redmond [13] developed a dynamic modal of misaligned shafts, which included both the static angular and parallel misalignment.

For the multirotor system, flexible couplings are commonly used to transmit torque from one rotor to another when the adjacent shafts are slightly misaligned. And yet it is required coaxially during the installation for avoiding the additional forces on bearings, for example, the force is not permitted to be produced for a flexible coupling under static conditions; however, it is aligned or coaxial in this state, the coupling still appears a dynamic misalignment at work [14], that is, a dynamic angular deformation is generated on the flexible coupling duo to the dynamic load. In the above discussions, while much work has been done on the dynamics of the system that an initial or static misalignment exists, the little attention has been paid to the dynamic one. Accordingly, the purpose of the present paper is to explain the vibration mechanism and dynamic characteristics of rotor system with a flexible coupling after considering the effect on the dynamic angular misalignment.

2. Motion Equations

The proposed model of the multirotor system connected by a flexible coupling is shown in Figure 1, in which š‘š1 and š‘š2denote the lumped masses, respectively; š‘˜1 and š‘˜2 represent the stiffness of the bearings; š‘˜š‘” is the equivalent angular stiffness for the flexible couple. For simplification, the following assumptions upon the system of concern will be used hereinafter: (1) the two rotors are rigid; (2) the bearings are isotropic on dynamic performances; (3) the misaligned angle between the adjacent rotors is small.

The coordinate system š‘œš‘„š‘¦š‘§ is set up in the static equilibrium position of rotor system as shown in Figure 1. Let š‘‚1(š‘„1,š‘¦1,0) and š‘‚2(š‘„2,š‘¦2,š‘§2) be the coordinates of the mass centers of disc 1 and disc 2, respectively, then they yieldš‘„1=š‘„+š‘’1š‘¦cos(Ī©š‘”),1=š‘¦+š‘’1š‘§sin(Ī©š‘”),1š‘„=0,(2.1)2=š‘„+š‘™sinšœƒcos(Ī©š‘”)+š‘’2š‘¦cosšœƒcos(Ī©š‘”+š›¾),2=š‘¦+š‘™sinšœƒsin(Ī©š‘”)+š‘’2š‘§cosšœƒsin(Ī©š‘”+š›¾),2=š‘™+š‘™cosšœƒ,(2.2) where š‘„ and š‘¦ are the displacements of disc 1 at the geometric center š¶1; šœƒ is the angle between adjacent rotors; Ī© is the rotating speed; š›¾ is the initial phase angle; š‘™is the rotor length; š‘’1, š‘’2 are the mass unbalances. If the generalized coordinates š‘„, š‘¦, and šœƒ are introduced, then (2.2) describes a nonstationary holonomic constraint because the displacement varies with time š‘”. Generally, the offset ā„Ž of disc 2 is larger than š‘’2; therefore, the terms related to š‘’2 are ignored in the paper.

The kinetic energy of the system can be written asš‘‡=2ī“š‘–=112š‘šš‘–ī€·Ģ‡š‘„2š‘–+Ģ‡š‘¦2š‘–+Ģ‡š‘§2š‘–ī€ø,(2.3) and the potential energy isš‘ˆ=2ī“š‘–=112š‘˜š‘–ī€·š‘„2š‘–+š‘¦2š‘–ī€ø+12š‘˜š‘”šœƒ2.(2.4) For simplifying the representation furthermore, let š‘š1=š‘š2=š‘š,š‘˜1=š‘˜2=š‘˜, and š‘’1=š‘’, then substituting (2.1) and (2.2) into (2.3) and (2.4), and based on Lagrangeā€™s equationš‘‘ī‚µš‘‘š‘”šœ•š‘‡šœ•Ģ‡š‘žš‘—ī‚¶āˆ’šœ•š‘‡šœ•š‘žš‘—+šœ•š‘ˆšœ•š‘žš‘—=0,š‘žš‘—=ī‚ƒī‚„š‘„š‘¦šœƒš‘‡,(2.5) the motion equation in the generalized coordinates becomes ĢˆĢ‡šœƒ2š‘šĢˆš‘„+š‘šš‘™šœƒcosšœƒcosĪ©š‘”āˆ’š‘šš‘™2Ģ‡sinšœƒcosĪ©š‘”āˆ’2š‘šš‘™Ī©šœƒcosšœƒsinĪ©š‘”āˆ’š‘šš‘™Ī©2sinšœƒcosĪ©š‘”+2š‘˜š‘„+š‘˜š‘™sinšœƒcosĪ©š‘”=š‘šš‘’Ī©2ĢˆĢ‡šœƒcosĪ©š‘”,2š‘šĢˆš‘¦+š‘šš‘™šœƒcosšœƒsinĪ©š‘”āˆ’š‘šš‘™2Ģ‡sinšœƒsinĪ©š‘”+2š‘šš‘™Ī©šœƒcosšœƒcosĪ©š‘”āˆ’š‘šš‘™Ī©2sinšœƒsinĪ©š‘”+2š‘˜š‘¦+š‘˜š‘™sinšœƒsinĪ©š‘”=š‘šš‘’Ī©2sinĪ©š‘”,š‘šš‘™2Ģˆšœƒ+š‘šš‘™Ģˆš‘„cosšœƒcosĪ©š‘”+š‘šš‘™Ģˆš‘¦cosšœƒsinĪ©š‘”āˆ’š‘šš‘™2Ī©2sinšœƒcosšœƒ+š‘˜š‘™š‘„cosšœƒcosĪ©š‘”+š‘˜š‘™š‘¦cosšœƒsinĪ©š‘”+š‘˜š‘™2sinšœƒcosšœƒ+š‘˜š‘”šœƒ=0.(2.6) The above equations are second-order ordinary differential ones with variable coefficients, which is obviously the characteristic of strong nonlinearity. Based on the theory of differential equations, it is difficult to solve. By applying the inverse operation, (2.6) can be expressed as1Ģˆš‘„āˆ’ī€·š‘šš‘™1+sin2šœƒī€øī‚ƒš‘šš‘™2Ģ‡šœƒ2sinšœƒcosĪ©š‘”+2š‘šš‘™2Ī©Ģ‡šœƒcosšœƒsinĪ©š‘”āˆ’š‘šš‘™2Ī©Ģ‡šœƒcos3šœƒsinĪ©š‘”+š‘šš‘™2Ī©2sin3šœƒcosĪ©š‘”āˆ’š‘˜š‘™2sin3ī€·šœƒcosĪ©š‘”āˆ’š‘˜š‘™š‘„1+sin2šœƒī€ø+š‘˜š‘”šœƒcosšœƒcosĪ©š‘”+š‘šš‘’Ī©2ī‚„1š‘™š‘š‘œš‘ Ī©š‘”=0,Ģˆš‘¦āˆ’ī€·š‘šš‘™1+sin2šœƒī€øī‚ƒš‘šš‘™2Ģ‡šœƒ2sinšœƒsinĪ©š‘”āˆ’2š‘šš‘™2Ī©Ģ‡šœƒcosšœƒcosĪ©š‘”+š‘šš‘™2Ī©Ģ‡šœƒcos3šœƒcosĪ©š‘”+š‘šš‘™2Ī©2sin3šœƒsinĪ©š‘”āˆ’š‘˜š‘™2sin3ī€·šœƒsinĪ©š‘”āˆ’š‘˜š‘™š‘¦1+sin2šœƒī€ø+š‘˜š‘”šœƒcosšœƒsinĪ©š‘”+š‘šš‘’Ī©2ī‚„Ģˆ1š‘™sinĪ©š‘”=0,šœƒ+š‘šš‘™2ī€·1+sin2šœƒī€øī‚ƒš‘šš‘™2Ģ‡šœƒ2sinšœƒcosšœƒāˆ’š‘šš‘™2Ī©2sinšœƒcosšœƒ+š‘˜š‘™2sinšœƒcosšœƒ+2š‘˜š‘”šœƒ+š‘šš‘’Ī©2ī‚„š‘™cosšœƒ=0.(2.7) Let š‘‹=š‘„/š‘Ÿ, š‘Œ=š‘¦/š‘Ÿ be the nondimensional displacements, in which š‘Ÿ is the radius of rotor; šø=š‘’/š‘Ÿ, šæ=š‘™/š‘Ÿ are the nondimensional mass eccentricity and rotor length, respectively; šœ=Ī©š‘” is the nondimensional time; šœ”0=āˆšš‘˜/š‘šĪ©2, šœ”š‘”=ī”š‘˜š‘”/š‘šš‘™2Ī©2 are the nondimensional angular frequencies and denote š‘‘š‘„/š‘‘š‘”=š‘„ī…ž(š‘‘š‘‹/š‘‘šœ)=š‘‹ī…žā€¦; accordingly, (2.7) can be cast into the following nondimensional form:š‘‹ī…žī…žāˆ’1ī€·1+sin2šœƒī€øī‚ƒšæ(šœƒī…ž)2sinšœƒcosšœ+2šæšœƒī…žcosšœƒsinšœāˆ’šæšœƒī…žcos3ī€·šœ”šœƒsinšœāˆ’20ī€øāˆ’1šæsin3šœƒcosšœāˆ’šœ”20š‘‹ī€·1+š‘ š‘–š‘›2šœƒī€ø+šœ”2š‘”ī‚„š‘Œšæšœƒš‘š‘œš‘ šœƒš‘š‘œš‘ šœ+šøš‘š‘œš‘ šœ=0,ī…žī…žāˆ’1ī€·1+sin2šœƒī€øī‚ƒšæ(šœƒī…ž)2sinšœƒsinšœāˆ’2šæšœƒī…žcosšœƒcosšœ+šæšœƒī…žcos3āˆ’ī€·šœ”šœƒcosšœ20ī€øāˆ’1šæsin3šœƒsinšœāˆ’šœ”20š‘Œī€·1+sin2šœƒī€ø+šœ”2š‘”ī‚„šœƒšæšœƒcosšœƒsinšœ+šøsinšœ=0,ī…žī…ž+1ī€·1+sin2šœƒī€øī‚ƒī€·šœƒī…žī€ø2ī€·šœ”sinšœƒcosšœƒ+20ī€øāˆ’1sinšœƒcosšœƒ+2šœ”2š‘”šøšœƒ+šæī‚„cosšœƒ=0.(2.8)

Equation (2.8) is a parametrically excited system with three degrees of freedom on the theory of nonlinear vibration, in which šœ”0 and šœ”š‘” are the frequency ratios, respectively; Īµis the nondimensional mass eccentricity šæ is the nondimensional length. In the above equation, the third one is decoupled with the first two equations, that is, the generalized coordinate Īø is totally independent of š‘‹ and Y thereby it can be solved in the first place.

In the case of the initial angular misalignment, it can be assumed that šœƒ=š›¼+šœ‘(š‘”) in which š›¼ is the constant angle and šœ‘(š‘”) is its perturbation. After substituting šœƒ into (2.8) and expanding the relevant terms in the Taylor series, after neglecting the higher-order ones the governing equations that is of the initial or static angular misalignment between two rotors are obtainedš‘‹ī…žī…žāˆ’1ī€·1+sin2š›¼ī€øī‚ƒšæ(šœ‘ī…ž)2sinš›¼cosšœ+šæšœ‘ī…žī€·1+sin2š›¼ī€øī€·šœ”cosš›¼sinšœāˆ’20ī€øāˆ’1šæsin3š›¼cosšœāˆ’šœ”20ī€·1+sin2š›¼ī€øš‘‹+šœ”2š‘”ī‚„āˆ’šœ‘šæš›¼cosš›¼cosšœ+šøcosšœī€·1+sin2š›¼ī€øī‚ƒšæ(šœ‘ī…ž)2cosš›¼cosšœ+šæšœ‘ī…žī€·3cos2ī€øš›¼āˆ’2sinš›¼sinšœāˆ’2šœ”20š‘‹cosš›¼sinš›¼āˆ’šœ”2š‘”ī€·šæ(š›¼sinš›¼āˆ’cosš›¼)cosšœ+3šæ1āˆ’šœ”20ī€øsin2ī‚„+š›¼cosš›¼cosšœšœ‘sin2š›¼ī€·1+sin2š›¼ī€ø2ī‚ƒšæ(šœ‘ī…ž)2sinš›¼cosšœ+šæšœ‘ī…žī€·1+sin2š›¼ī€øcosš›¼sinšœ+šœ”2š‘”š›¼šæcosš›¼cosšœāˆ’šœ”20ī€·1+sin2š›¼ī€øī€·š‘‹+šæ1āˆ’šœ”20ī€øsin3ī‚„š‘Œš›¼cosšœ+šøcosšœ=0,ī…žī…žāˆ’1ī€·1+sin2š›¼ī€øī‚ƒšæ(šœ‘ī…ž)2sinš›¼sinšœāˆ’šæšœ‘ī…žī€·1+sin2š›¼ī€øī€·šœ”cosš›¼cosšœāˆ’20ī€øāˆ’1šæsin3š›¼sinšœāˆ’šœ”20ī€·1+sin2š›¼ī€øš‘Œ+šœ”2š‘”ī‚„āˆ’šœ‘šæš›¼cosš›¼sinšœ+šøsinšœī€·1+sin2š›¼ī€øī‚ƒšæ(šœ‘ī…ž)2cosš›¼sinšœ+šæšœ‘ī…žī€·2āˆ’3cos2š›¼ī€øsinš›¼cosšœāˆ’2šœ”20š‘Œcosš›¼sinš›¼āˆ’šœ”2š‘”ī€·šæ(š›¼sinš›¼āˆ’cosš›¼)sinšœ+3šæ1āˆ’šœ”20ī€øsin2ī‚„+š›¼cosš›¼sinšœšœ‘sin2š›¼ī€·1+sin2š›¼ī€ø2ī‚ƒšæ(šœ‘ī…ž)2sinš›¼sinšœāˆ’šæšœ‘ī…žī€·1+sin2š›¼ī€øcosš›¼cosšœ+šœ”2š‘”š›¼šæcosš›¼sinšœāˆ’šœ”20ī€·1+sin2š›¼ī€øī€·š‘Œ+šæ1āˆ’šœ”20ī€øsin3ī‚„šœ‘š›¼sinšœ+šøsinšœ=0,ī…žī…ž+1ī€·1+sin2š›¼ī€øī‚ƒī€·šœ‘ī…žī€ø2sinš›¼cosš›¼+2šœ”2š‘”ī€·šœ”š›¼+20ī€øšøāˆ’1sinš›¼cosš›¼+šæī‚„+šœ‘cosš›¼ī€·1+sin2š›¼ī€øī‚†(šœ‘ī…ž)2cos2š›¼+2šœ”2š‘”+ī€·šœ”20ī€øšøāˆ’1cos2š›¼āˆ’šæāˆ’sinš›¼šœ‘sin2š›¼ī€·1+sin2š›¼ī€ø2ī‚ƒ(šœ‘ī…ž)2sinš›¼cosš›¼+2šœ”2š‘”ī€·šœ”š›¼+20ī€ø+šøāˆ’1sinš›¼cosš›¼šæcosš›¼ī‚„ī‚‡=0.(2.9)

3. The Approximation Solution

For discussing the vibration mechanism and characteristics of the system conveniently, let š›¼=0, namely, the initial or static angular misalignment of a flexible coupling vanishes, and only the dynamic angular misalignment presents in the system, then (2.9) reduces toš‘‹ī…žī…žāˆ’šæ(šœ‘ī…ž)2šœ‘cosšœāˆ’šæšœ‘ī…žsinšœ+šœ”20š‘‹āˆ’šœ”2š‘”š‘Œšæšœ‘cosšœ=šøcosšœ,ī…žī…žāˆ’šæ(šœ‘ī…ž)2šœ‘sinšœ+šæšœ‘ī…žcosšœ+šœ”20š‘Œāˆ’šœ”2š‘”šœ‘šæšœ‘sinšœ=šøsinšœ,ī…žī…ž+(šœ‘ī…ž)2ī€·šœ”šœ‘+20+2šœ”2š‘”ī€øšøāˆ’1šœ‘+šæ=0.(3.1) The third of (3.1) is uncoupled with the first two; therefore, it can be simplified asšœ™ī…žī…ž+(šœ™ī…ž)2šœ™+šœ›20šœ™=0,(3.2) where šœ™=šœ‘+šø/šæšœ›2, šœ›20=šœ”20+2šœ”2š‘”āˆ’1.

The method of multiple scales (MMSs) is introduced for the approximation solution of the nonlinear vibration in this work. For the small angle šœ™, let š‘‡=šœ”šœ and expand šœ™ and šœ” [15] asšœ™(š‘‡,šœ€)=šœ€šœ™1(š‘‡)+šœ€3šœ™3(š‘‡),(3.3)šœ”=šœ›0+šœ€2šœ”2,(3.4) where Īµ stands for a small nondimensional parameter characterizing the amplitude of the motion. The term šœ€2šœ™2(šœ) is missing from (3.3) because the nonlinearity appears at š‘‚(šœ€3). The term šœ€šœ”1 is absent from (3.4) because the frequency is independent of the sign of Īµ. Substituting (3.3) and (3.4) into (3.2) and equating coefficients of like powers of Īµ, after donating š‘‘šœ™/š‘‘š‘‡=šœ™āˆ—, it yieldsšœ›20ī€·šœ™1āˆ—āˆ—+šœ™1ī€øšœ›=0,(3.5)20ī€·šœ™3āˆ—āˆ—+šœ™3ī€ø=āˆ’2šœ›0šœ”2šœ™1āˆ—āˆ—āˆ’šœ›20ī€·šœ™āˆ—1ī€ø2šœ™1.(3.6) The solution of (3.5) is of the formšœ™1=š‘Žcos(š‘‡+š›½),(3.7) where š‘Ž and š›½ are constants; hence, (3.6) becomesšœ™3āˆ—āˆ—+šœ™3=ī‚µšœ”2šœ›0āˆ’14š‘Ž2ī‚¶1š‘Žcos(š‘‡+š›½)+4š‘Ž3cos(3š‘‡+3š›½).(3.8) Eliminating the secular term in (3.8) gives šœ”2=(1/4)šœ›0š‘Ž2, then disregarding the solution of the homogeneous equation, its solution reduces tošœ™3š‘Ž=āˆ’332cos(3š‘‡+3š›½).(3.9) From the equation šœ™=šœ‘+šø/šæšœ›2, it follows thatšøšœ‘=āˆ’šæšœ›20šœ€+šœ€š‘Žcosšœ“āˆ’3š‘Ž332cos3šœ“,(3.10) in which šœ“=šœ”šœ+š›½, šœ”=šœ›0(1+šœ€2š‘Ž2/4). If imposing the initial conditions šœ‘|šœ=0=0and šœ‘āˆ—|šœ=0=0, then the constants šœ€š‘Ž and š›½ are obtainedšœ€šœ€š‘Žcosš›½āˆ’3š‘Ž3šø32cos3š›½=šæšœ›20,ī‚€3sinš›½1+šœ€322š‘Ž2āˆ’38šœ€2š‘Ž2cos2š›½ī‚=0.(3.11) When š›½=0, šœ€š‘Ž yieldsšœ€šœ€š‘Žāˆ’3š‘Ž3=šø32šæšœ›20.(3.12) In practice, šø/šæšœ›20 is small, thus the solution becomes š›½=0,šœ€š‘Žā‰ˆšø/šæšœ›20. For example, if the parameters šæ=20.0 and šø=0.03, 0.05, the errors between them can be neglected at all. The numerical results are shown in Figure 2, which indicate a good agreements under the concerned parameters.

Generally for the above nonlinear equations, there are six real solutions, in which the root š›½=0,šœ€š‘Žā‰ˆšø/šæšœ›2is only satisfied for small oscillation in engineering, that is, the systematic parameters are considered as šœ”š‘œ=1.2, šœ”š‘”=0.02, šæ=20.0, and šø=0.05, accordinglyšœ›0=ī”šœ”20+2šœ”2š‘”āˆ’1=0.664, and after solving (3.11) on Maple, the six real roots of (3.12) arešøš›½=0,šœ€š‘Ž=0.00567ā‰ˆšæšœ›2,šøš›½=0,šœ€š‘Ž=āˆ’5.65969,š›½=0,šœ€š‘Ž=5.65402,š›½=šœ‹,šœ€š‘Ž=āˆ’0.00567ā‰ˆāˆ’šæšœ›2,š›½=šœ‹,šœ€š‘Ž=5.65969,š›½=šœ‹,šœ€š‘Ž=āˆ’5.65402.(3.13)

The proves thatš›½=0,šœ€š‘Žā‰ˆšø/šæšœ›2 is an available approximate solution, š›½=0, andšœ€š‘Ž=āˆ’5.696,5.65402 are not almost changed with increasing the parameters šœ”š‘œ and šœ”š‘”, which are not suitable for the engineering. Thereby, the former will be paid more attention to the following analysis, then expression (3.10) leads tošøšœ‘=šæšœ›201(cos(šœ”šœ)āˆ’1)āˆ’īƒ©šø32šæšœ›20īƒŖ3cos(3šœ”šœ).(3.14) Substituting expression (3.14) into (3.1), it yieldsš‘‹ī…žī…ž+šœ”20šœ”š‘‹=šø20+šœ”2š‘”āˆ’1šœ›20šøcos(šœ)+šœ›20ī€·šœ”2š‘”ī€øī€·šøcos(šœ”šœ)cos(šœ)āˆ’šœ”sin(šœ”šœ)sin(šœ)+š‘‚2ī€ø,š‘Œī…žī…ž+šœ”20šœ”š‘Œ=šø20+šœ”2š‘”āˆ’1šœ›20šøsinšœ+šœ›20ī€·šœ”2š‘”ī€øī€·šøcos(šœ”šœ)sin(šœ)+šœ”sin(šœ”šœ)cos(šœ)+š‘‚2ī€ø,(3.15) and its general solution givesš‘‹=š¶1cosšœ”0šœ+š¶2sinšœ”0šœ”šœ+šø20+šœ”2š‘”āˆ’1šœ›20ī€·šœ”20ī€ø+šøāˆ’1cosšœ2šœ›20īƒ©šœ”2š‘”+šœ”šœ”20āˆ’(šœ”+1)2šœ”cos(šœ”+1)šœ+2š‘”āˆ’šœ”šœ”20āˆ’(šœ”āˆ’1)2īƒŖī€·šøcos(šœ”āˆ’1)šœ+š‘‚2ī€ø,š‘Œ=š¶3cosšœ”0šœ+š¶4sinšœ”0šœ”šœ+šø20+šœ”2š‘”āˆ’1šœ›20ī€·šœ”20ī€ø+šøāˆ’1sinšœ2šœ›20īƒ©šœ”2š‘”+šœ”šœ”20āˆ’(šœ”+1)2šœ”sin(šœ”+1)šœāˆ’2š‘”āˆ’šœ”šœ”20āˆ’(šœ”āˆ’1)2īƒŖī€·šøsin(šœ”āˆ’1)šœ+š‘‚2ī€ø,(3.16) where ī”šœ”=šœ”20+2šœ”2š‘”āˆ’1(1+(šø/2šæšœ›2)2), and š¶1,š¶2,š¶3,andš¶4are the constants.

If the initial conditionsš‘‹(0)=š‘‹ī…ž(0)=0 and š‘Œ(0)=š‘Œī…ž(0)=0 are introduced, the constants š¶1,š¶2,š¶3, and š¶4 can be determined easily; therefore, the responses can be shown to reduce toš‘‹=āˆ’(š“+šµ+š·)cosšœ”0šœ+š“cosšœ+šµcos(šœ”+1)šœ+š·cos(šœ”āˆ’1)šœ,š‘Œ=š·(šœ”āˆ’1)āˆ’šµ(šœ”+1)āˆ’š“šœ”0sinšœ”0šœ+š“sinšœ+šµsin(šœ”+1)šœāˆ’š·sin(šœ”āˆ’1)šœ,(3.17) in which š“=šø((šœ”20+šœ”2š‘”āˆ’1)/šœ›20(šœ”20āˆ’1)),šµ=šø(šœ”2š‘”+šœ”)/2šœ›20(šœ”20āˆ’(šœ”+1)2), and š·=šø(šœ”2š‘”āˆ’šœ”)/2šœ›20(šœ”20āˆ’(šœ”āˆ’1)2).

The above solution shows that the response consists of the following components: (a) the free vibration at natural frequency šœ”0 of the derived linear system. If the damping is concerned in š‘„ and š‘¦ direction, its amplitude will be decreased exponentially on the theory of vibration; (b) forced vibration excited by the mass unbalance at the frequency of rotating speed. When šœ”0=1, that is, the rotating speed coincides with the lateral natural frequency, the bending resonance of rotor system occurs; (c) the angular motions due to the flexible coupling, in which the frequencies šœ”āˆ’1and šœ”+1 are combined by šœ” and the rotating speed. It is a typical nonlinear oscillation because the combination resonances exist atšœ”0=šœ”āˆ’1andšœ”0=šœ”+1.

Certainly, it should be noted that the above solution only reveals some dynamic behaviors of the rotor system connected to a flexible coupling, and some other characteristics such as the subharmonic resonances may be emerged if suitable conditions are satisfied.

4. Numerical Analysis

Because (2.8) is a strongly nonlinear system, the numerical technique is preferable. Accordingly, the Runge-Kutta method is carried out to predict the dynamic characteristics in the present paper. As a nonautonomous system, traditionally (2.8) is discussed on the state space, and hence the three second-order equations can be converted easily to six first-order onesš‘‹ā€²=šœ‚,š‘Œī…ž=šœ‰,šœƒī…ž1=šœ—,šœ‚ā€²=ī€·1+sin2šœƒī€øī€ŗšæšœ—2sinšœƒcosšœ+2šæšœ—cosšœƒsinšœāˆ’šæšœ—cos3āˆ’ī€·šœ”šœƒsinšœ20ī€øāˆ’1šæsin3šœƒcosšœāˆ’šœ”20š‘‹ī€·1+sin2šœƒī€ø+šœ”2š‘”ī€»,1šæšœƒcosšœƒcosšœ+šøcosšœšœ‰ā€²=ī€·1+sin2šœƒī€øī€ŗšæšœ—2sinšœƒsinšœāˆ’2šæšœ—cosšœƒcosšœ+šæšœ—cos3āˆ’ī€·šœ”šœƒcosšœ20ī€øāˆ’1šæsin3šœƒsinšœāˆ’šœ”20š‘Œī€·1+sin2šœƒī€ø+šœ”2š‘”ī€»,šœ—šæšœƒcosšœƒsinšœ+šøsinšœī…ž1=āˆ’ī€·1+sin2šœƒī€øī‚ƒšœ—2ī€·šœ”sinšœƒcosšœƒ+20ī€øāˆ’1sinšœƒcosšœƒ+2šœ”2š‘”šøšœƒ+šæī‚„.cosšœƒ(4.1)

For the following calculation, the values of systematic parameters are considered as šœ”0=1.20, šœ”š‘”=0.02, and šæ=20, and all the initial generalized displacements and velocities are set to zero.

Figures 3(a) and 4(a) depict the displacement responses of rotor system in š‘„ and š‘¦ directions whenšø=0.05, respectively, in which the curves are demonstrated by using MMS and the numerical technique. The results show that the agreements between their responses are pretty almost at each interval, and thereby it proves that the dynamic behaviors of the system are in the form of (3.17) under certain initial conditions. Figures 3(b) and 4(b) appear as the frequency spectra of displacement responses by the numerical method, in which there are mainly four components from the vibrating frequencies:š‘“1=(šœ”āˆ’1)/2šœ‹=0.05349,š‘“2=1/2šœ‹=0.15915, š‘“3=šœ”0/2šœ‹=0.19099, and š‘“4=(šœ”+1)/2šœ‹=0.26482. Actually, it reveals that the synchronous motion š‘“2 emerges in the responses, which are obviously from the mass unbalance, and š‘“3 is the natural frequency of the derived linear system as shown in (3.15), š‘“1 and š‘“4 are the combinations between šœ”/2šœ‹ and the rotating speed Ī©, which occur frequently for a nonlinear system. Figures 5 and 6 also show the relevant responses and the spectra when šø=0.03. Figures 7 and 8 illustrate the responses and their spectra whenšø=0.05, and šœ”0=1.20, šœ”š‘”=0.50, namely, the angular stiffness of flexible coupling increases these vibration characteristics display the multifrequency signatures in the rotor system connected a flexible coupling with a dynamic angular misalignment.

5. Conclusions

The misalignment of rotor system is an important reason which causes mechanical vibration; a dynamic misalignment or offset of the rotors can be produced at work even the system is aligned under the static conditions. In this paper, firstly a mathematic model of the multirotor system with a flexible coupling is established after considering the effect on a dynamic angular misalignment based on Lagrangeā€™s equation, and it shows that the system is of a parametric oscillation with strongly nonlinear characteristics. Then, the method of multiple scales and Runge-Kutta numerical technique are carried out, respectively. And the results indicate that the responses in lateral direction consist of some parts, that is, the synchronous vibration due to the mass unbalance, the free vibration at natural frequency of the derived linear system, and the angular motions caused by the flexible coupling at the combined frequencies.

Acknowledgment

The author acknowledges the financial support from the National Natural Science Foundation of China, China (Grant no. 11072190).

References

  1. C. B. Gibbons, ā€œCoupling misalignment forces,ā€ in Proceedings of the 5th Turbo-Machinery Symposium, pp. 111ā€“116, Gas Turbine Laboratories, Texas A&M University, 1976. View at: Google Scholar
  2. D. L. Dewell and L. D. Mitchell, ā€œDetection of a misalignment disk coupling using spectrum analysis,ā€ ASME Journal of Vibration, Acoustics, Stress, and Reliability in Design, vol. 106, no. 1, pp. 9ā€“16, 1984. View at: Google Scholar
  3. M. Li and L. Yu, ā€œAnalysis of the coupled lateral torsional vibration of a rotor-bearing system with a misaligned gear coupling,ā€ Journal of Sound and Vibration, vol. 243, no. 2, pp. 283ā€“300, 2001. View at: Publisher Site | Google Scholar
  4. K. M. Al-Hussain and I. Redmond, ā€œDynamic response of two rotors connected by rigid mechanical coupling with parallel misalignment,ā€ Journal of Sound and Vibration, vol. 249, no. 3, pp. 483ā€“498, 2002. View at: Publisher Site | Google Scholar
  5. K. M. Al-Hussain, ā€œDynamic stability of two rigid rotors connected by a flexible coupling with angular misalignment,ā€ Journal of Sound and Vibration, vol. 266, no. 2, pp. 217ā€“234, 2003. View at: Publisher Site | Google Scholar
  6. S. Prabhakar, A. S. Sekhar, and A. R. Mohanty, ā€œVibration analysis of a misaligned rotor-coupling-bearing system passing through the critical speed,ā€ Proceedings of the Institution of Mechanical Engineers Part C, vol. 215, no. 12, pp. 1417ā€“1428, 2001. View at: Publisher Site | Google Scholar
  7. M. A. Hili, T. Fakhfakh, and M. Haddar, ā€œFailure analysis of a misaligned and unbalanced flexible rotor,ā€ Journal of Failure Analysis and Prevention, vol. 6, no. 4, pp. 73ā€“82, 2006. View at: Publisher Site | Google Scholar
  8. A. W. Lees, ā€œMisalignment in rigidly coupled rotors,ā€ Journal of Sound and Vibration, vol. 305, no. 1-2, pp. 261ā€“271, 2007. View at: Publisher Site | Google Scholar
  9. M. Li, ā€œNonlinear dynamics of a rotor system subject to a holonomic constraint of parallel misalignment,ā€ Dynamics of Continuous, Discrete and Impulsive Systems Series B, vol. 14, no. 5, pp. 222ā€“226, 2007. View at: Google Scholar
  10. B. Slim, A. H. Molka, M. Mohamed, F. Taher, and H. Mohamed, ā€œDynamic behaviour of hydrodynamic journal bearings in presence of rotor spatial angular misalignment,ā€ Mechanism and Machine Theory, vol. 44, no. 8, pp. 1548ā€“1559, 2009. View at: Publisher Site | Google Scholar
  11. T. H. Patel and A. K. Darpe, ā€œVibration response of misaligned rotors,ā€ Journal of Sound and Vibration, vol. 325, no. 3, pp. 609ā€“628, 2009. View at: Publisher Site | Google Scholar
  12. T. H. Patel and A. K. Darpe, ā€œExperimental investigations on vibration response of misaligned rotors,ā€ Mechanical Systems and Signal Processing, vol. 23, no. 7, pp. 2236ā€“2252, 2009. View at: Publisher Site | Google Scholar
  13. I. Redmond, ā€œStudy of a misaligned flexibly coupled shaft system having nonlinear bearings and cyclic coupling stiffness—theoretical model and analysis,ā€ Journal of Sound and Vibration, vol. 329, no. 6, pp. 700ā€“720, 2010. View at: Publisher Site | Google Scholar
  14. G. Zhao, Y. Yu, S. Gao, T. Sun, and Z. Liu, ā€œStudy on dynamic misalignment of coupled rotor-coupling-isolator system in marine power plant,ā€ Proceedings of the Asia-Pacific Power and Energy Engineering Conference (APPEEC '11), Wuhan, China, 2011. View at: Publisher Site | Google Scholar
  15. A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations, Wiley, New York, NY, USA, 1979.

Copyright © 2012 M. Li. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

 PDF Download Citation Citation
 Download other formatsMore
 Order printed copiesOrder
Views986
Downloads647
Citations

Related articles

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.