Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013, Article ID 671428, 11 pages
http://dx.doi.org/10.1155/2013/671428
Research Article

The Departure Characteristics of Traffic Flow at the Signalized Intersection

College of Transportation, Jilin University, Changchun 130025, China

Received 5 July 2013; Revised 22 August 2013; Accepted 25 August 2013

Academic Editor: Wuhong Wang

Copyright © 2013 Zhaowei Qu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. C. Gazis, R. Herman, and R. B. Potts, “Car-following theory of steady-state traffic flow,” Operations Research, vol. 7, no. 4, pp. 499–505, 1959. View at Google Scholar
  2. D. C. Gazis, R. Herman, and R. W. Rothery, “Follow-the-leader models of traffic flow,” Operations Research, vol. 9, no. 4, pp. 545–567, 1961. View at Publisher · View at Google Scholar
  3. P. K. Yang, W. Z. Huang, and P. M. Che, “Traffic flow model in consideration of vehicle plantoon dispersion on urban roads,” Journal of Tongji University, vol. 22, no. 3, pp. 294–299, 1994. View at Google Scholar
  4. W. Guo, W. Wang, G. Wets et al., “Influence of stretching-segment storage length on urban traffic flow in signalized intersection,” International Journal of Computational Intelligence Systems, vol. 4, no. 6, pp. 1401–1406, 2011. View at Google Scholar
  5. L. S. Brian, B. H. Russell, and B. B. Park, “Travel time estimation for urban freeway performance measurement: understanding and improving upon the extrapolation method,” in Proceedings of the 83rd Annual Meeting o f the Transportation Research Board, 2004.
  6. W. Wang, Y. Mao, J. Jin et al., “Driver's various information process and multi-ruled decision-making mechanism: a fundamental of intelligent driving shaping model,” International Journal of Computational Intelligence Systems, vol. 4, no. 3, pp. 297–305, 2011. View at Google Scholar · View at Scopus
  7. W. Wang and K. Bengler, “Computational intelligence for transportation: driving safety and assistance,” International Journal of Computational Intelligence Systems, vol. 4, no. 3, p. 286, 2011. View at Google Scholar · View at Scopus
  8. S. Jin, Modeling of Car Following Behavior Considering Visual Attention Performance, Jilin university, JiLin, China, 2010.
  9. P. F. Tao, Modeling of Driving Behavior Based on the Psychology Field Theory, Jilin university, JiLin, China, 2012.
  10. R. W. Stokes, “Capacities of triple left-turn lanes,” Tech. Rep. Committee 5P-5A, Institute of Transportation Engineers Technical Council, Washington, DC, USA, 1995. View at Google Scholar
  11. R. I. Perez-Cartagena and A. P. Tarko, “Calibration of capacity parameters for signalized intersections in Indiana,” Journal of Transportation Engineering, vol. 131, no. 12, pp. 904–911, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. A. D. May, Traffic Flow Fundamentals, Prentiee-Hall, Upper Saddle River, NJ, USA, 1990.
  13. E. I. Vlahogianni, C. L. Webber Jr., N. Geroliminis, and A. Skabardonis, “Statistical characteristics of transitional queue conditions in signalized arterials,” Transportation Research C, vol. 15, no. 6, pp. 392–403, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama, “Dynamical model of traffic congestion and numerical simulation,” Physical Review E, vol. 51, no. 2, pp. 1035–1042, 1995. View at Publisher · View at Google Scholar · View at Scopus
  15. B.-H. Wang, Y.-R. Kwong, and P.-M. Hui, “Statistical mechanical approach to cellular automaton models of highway traffic flow,” Acta Physica Sinica, vol. 47, no. 6, pp. 914–915, 1998. View at Google Scholar · View at Scopus
  16. D.-H. Wang, C.-G. Jing, and Z.-W. Qu, “Application of traffic-wave theory in intersections traffic flow analysis,” China Journal of Highway and Transport, vol. 15, no. 1, p. 93, 2002. View at Google Scholar · View at Scopus
  17. S. H. Yang, D. H. Wang, B. Dong, and Y. P. Wang, “Modification of start-wave model at signalized intersection,” Journal of Highway and Transportation Research and Development, vol. 23, no. 1, pp. 130–134, 2006. View at Google Scholar
  18. D. F. Ma, D. H. Wang, Y. M. Bie, and D. Sun, “A method of signal timing optimization for spillover dissipation in urban street networks,” Mathematical Problems in Engineering, vol. 2013, Article ID 580546, 9 pages, 2013. View at Publisher · View at Google Scholar
  19. G. Y. Guo, “Based on distribution wave principle analysis of traffic congestion—dissipation process,” East China Highway, vol. 5, pp. 77–86, 1984, http://www.cnki.com.cn/Article/CJFDTotal-HDGL198405008.htm. View at Google Scholar
  20. L. Zongping B, Wei, and G. Mi, “Research on intersection signal switching model under emergency situation,” Mathematical Problems in Engineering, vol. 2012, Article ID 186383, 14 pages, 2012. View at Publisher · View at Google Scholar