Research Article  Open Access
Tao Tao, Hongze Xu, "Adaptive FaultTolerant Cruise Control for a Class of HighSpeed Trains with Unknown Actuator Failure and Control Input Saturation", Mathematical Problems in Engineering, vol. 2014, Article ID 481315, 13 pages, 2014. https://doi.org/10.1155/2014/481315
Adaptive FaultTolerant Cruise Control for a Class of HighSpeed Trains with Unknown Actuator Failure and Control Input Saturation
Abstract
This paper investigates the position and velocity tracking control of a class of highspeed trains (HST) with unknown actuator failures (AF) and control input saturation (CIS). Firstly, a nonlinear dynamic model for HST at normal operating status is built. The structure of traction system in HST is analyzed and the corresponding model for HST with unknown AF is presented as well. The type of AF under consideration is that some of the plant inputs are influenced by hopping function. An adaptive modelbased fault detection and diagnosis (AMFDD) module is proposed based on immersion and invariance (I&I) method to make decisions on whether a fault has occurred. A new framework to design a monotone mapping is proposed in I&I method, that is, monotone. Using online obtained fault information, an adaptive law is designed to update the controller parameters to handle unknown AF and CIS in HST simultaneously when some of plant parameters are unknown. Closedloop stability and asymptotic position and velocity tracking are ensured. Numerical simulations of China Railways Highspeed 2 (CRH2) train are provided to verify the effectiveness of the presented scheme.
1. Introduction
In practical applications, nonlinearity caused by imperfections of modelling leads to performance degradation of the closedloop system. Compensation control of nonlinear systems has been a research topic of wide interest. In [1], unknown continuous and monotone nonlinearities which satisfy some constraints are considered, and an adaptive controller using artificial neural networks is proposed for a class of nonlinear systems with input nonlinearities. In [2], direct adaptive neural network control is presented for uncertain multiinput/multioutput nonlinear systems in block triangular forms. Reference [3] presents two indirect adaptive control schemes which are employed to approximate unknown nonlinear functions. Reference [4] proposes a robust control algorithm for a threeaxis stabilized flexible spacecraft in the presence of control input nonlinearity/deadzone. In [5, 6], an adaptive neurofuzzy control is proposed by describing nonlinear affine systems as a TakagiSugeno fuzzy model. An adaptive fuzzy backstepping control approach is considered in [7] for a class of nonlinear strictfeedback systems with unknown functions, unknown dead zones, and immeasurable states. In [8], step tracking control problem for discretetime nonlinear systems, which are represented by a TakagiSugeno fuzzy system, is investigated in a networked environment with a limited capacity. In [9], the problem of adaptive fuzzy tracking control via output feedback for a class of uncertain strictfeedback nonlinear systems with unknown timedelay functions is investigated. In [10], the problem of tracking control for a class of largescale nonlinear systems with unmodeled dynamics is addressed by designing the decentralized adaptive fuzzy output feedback controller to guarantee that all the signals in the closedloop system are bounded. Reference [11] deals with the adaptive slidingmode control problem for nonlinear active suspension systems with varying sprung and unsprung masses, unknown actuator nonlinearity, and suspension performances.
In HST, besides nonlinearity, train traction module may fail to work due to various kinds of reasons [12–14], such as overvoltage in traction transformer, overcurrent in traction converter, and overheat in asynchronous motor. AF in HST will cause problems, that is, inaccurate position tracking, inaccurate velocity tracking, or even train accident. It is significant to design the controller addressing AF to realize faulttolerant control (FTC) in HST [15–21]. In control society, there are many remarkable results on FTC for AF. In [22], a class of nonlinear systems with faults, parametric uncertainties, and without full state measurements are considered. A novel observer is designed whose estimation error is not affected by faults and an observerbased faulttolerant tracking controller is proposed to make the outputs asymptotically track the reference signals while the states are bounded. In [23], a FTC scheme based on the adaptive control technique for nearspacevehicle attitude dynamics is considered. In [24], a FTC scheme using backstepping and neural network methodology is proposed for a class of nonlinear systems with known structure and unknown faults. In [25, 26], a direct adaptive feedback controller is developed for linear timeinvariant plants with AF and the closedloop stability and asymptotic tracking are ensured. Reference [27] proposes an adaptive compensation for parametric strictfeedback systems. A faulttolerant robust control for a class of nonlinear systems is investigated in [28]. A robust FTC will switch itself between robust control strategies designed under normal operation and faulty condition. Reference [29] investigates the reliable control problem for discretetime piecewise linear systems with time delays and AF. In [30], a faulttolerant controller is presented for Lipschitz nonlinear continuoustime systems in the presence of disturbances and noises. An integrated design of the adaptive robust control and the fault identification for a linear system with AF is proposed in [31]. Reference [32] investigates the FTC problem for nearspace vehicle attitude dynamics with AF, which is described by a TakagiSugeno fuzzy model. In [33], a new FTC scheme is proposed by incorporating integral sliding modes, unknown input observers, and a fixed control allocation scheme, where only measured system outputs are assumed to be available. The problem of FTC for a class of nonlinear systems with AF is discussed, and an observerbased FTC scheme is proposed in [34]. Adaptive fuzzy observers are proposed to provide a bank of residuals for fault detection and isolation and an accommodation scheme is proposed to compensate for the effect of the fault. Reference [35] presents a FTC for nonlinear systems which are connected in a networked control system.
CIS, which implies that the output of serving motors is constrained, is another problem in HST, and a few studies have been done on this field [36, 37]. Study on designing controllers by considering CIS beforehand is promoted for system in which higher performance is expected. Karason and Annaswamy [38] deal with the problem of adaptive control for a linear timeinvariant plant in the presence of constraints on the input amplitude. In [39], a nonlinear small gain theorem is presented that provides formalism for analyzing the behavior of certain control systems that contain or utilize saturation. Polycarpou et al. [40] address the issue of CIS in online approximation based control for nonlinear systems, and a modified control design framework is presented for preventing CIS from destroying the learning capabilities and memory of an online approximation. In [41], the robust control of an induction motor is investigated, and a parameterdependent model is addressed. Wu et al. [42] present a method, for designing output feedback laws that stabilize a linear system subject to actuator saturation with a large domain of attraction, which applies to general linear systems including strictly unstable ones and is presented in both continuoustime and discretetime setting. Zhou et al. [43, 44] develop some significative methods in this direction using Raccati equations as a basic tool. Fridman and Dambrine [45] consider quantized and delayed state feedback control of linear systems with given constant bounds on the quantization error and on the timevarying delay. Reference [46] deals with the problem of tracking and stabilization control of internally damped mobile robots with unknown parameters and subject to input torque saturation and external disturbances.
Recently, a novel I&I adaptive method for nonlinear systems is presented to realize performanceoriented control [47–49]. In this paper, based on a nonlinear dynamic model for a class of HST, an adaptive FTC with I&I AMFDD is presented. An AMFDD module using I&I adaptive state observer is designed to detect AF, and direct adaptive controller based on online AMFDD information is achieved to handle nonlinearity, unknown AF, and CIS in HST. A new framework to design a monotone mapping is proposed in I&I method, that is, monotone. The stability of HST systems is proved theoretically.
The rest of this paper is organized as follows. Section 2 introduces problem formulation in HST. In Section 3, an AMFDD module is introduced and corresponding I&I adaptive FTC is presented for AF and CIS. The simulation is shown in Section 4. Section 5 draws the conclusion.
2. Problem Formulation
In this section, we propose a nonlinear dynamic model for a class of HST with and without AF.
2.1. Dynamic Model of a Single Carriage
The HST consists of a number of carriages, and couplers are used to couple adjacent carriages. A carriage during travelling is subjected to various kinds of forces, such as traction and braking forces, forces between carriages, and resistance forces. The force analysis of a single carriage in HST is illustrated in Figure 1.
Traction and Braking Forces. denotes traction force of the th carriage, that is, , and braking force of the th carriage, that is, . denotes whether the th carriage is powered or nonpowered.
Assumption 1. The class of HST that we considered is distributed driving type [50], that is, for all carriages.
Interacting Forces between Carriages. Connection modules between two carriages in HST are nonlinear subsystems. Hence, it is difficult to obtain accurate mechanical model of interacting forces between two carriages. A widely used mechanical model for couplers consists of elastic forces and damping forces. In [51], nonlinear elastic force acting between carriages is described as follows: where relative displacement between two carriages is as where is position of the th carriage. denotes nonlinear relationship between displacements and forces and If , coupler between carriages is linear, that is, , which does not exist in practice. If or , the coupler is soft coupling or hard coupling, respectively. Khalil and Grizzle [52] and Franklin and Powell [53] have proved that a system with a soft spring is more likely to have unsatisfying control performance. We take the minimum value of in controller design, that is, . The damping force is described as where is damping coefficient and is velocity of the th carriage. We take the minimal value of the coefficient , that is, . The interacting force between carriages is as
Resistance Forces of HST. During travelling, carriages of HST are subjected to various kinds of resistance forces mainly including mechanical resistance and air resistance. The two forces are as follows [54]: where represents mass of the th carriage and and denote mechanical resistance and air resistance, respectively. , and are coefficients which may not be obtained accurately during train locomotion.
Slope and curve resistance forces of HST depend on railway condition. Slope and curve resistance forces are normally considered by Garg and Dukkipati [55] as follows: where is axle length of a carriage and is turning radius. Based on the above analysis, dynamic model of a single carriage in HST is given as follows:
2.2. Dynamic Model of HST
Dynamic model of HST with carriages can be derived as follows: where subsystem represents dynamics of the th carriage in HST. To simplify the controller design, (9) is rewritten as where is the state vector. and are known, and , , and are unknown matrixes, and we have
2.3. Fault Analysis of Traction Systems in HST
In HST, velocity cruise control is accomplished through the traction system which consists of highvoltage circuit (included by pantograph, current transformer, main circuit breaker, etc.), traction transformer, traction converter, asynchronous motor, wheels, and so on [12–14]. The principle of velocity cruise control is shown in Figure 2.
Traction converter is used to control traction motor to achieve velocity cruise control of HST. The probability of incorrect voltage and current, such as malfunction of electronic components in traction converter, is great [56, 57]. The output of th actuator in failure status can be described as and its elements is shown as follows: where is control input without AF. is unknown piecewise hopping function, with known boundary , which represents malfunction of electronic components in traction system and where is unknown constant for and for satisfies where and , which is the minimum switch time for , will be discussed later. It is assumed that is unknown constant matrix for . After AF, dynamic model (10) will be or suppose there are failed actuators; we have where is the column of , , and Therefore, after AF, HST system is multiplied by an unknown AF which impacts on stability of HST system. The control objective is to design a feedback control such that all signals in the closedloop system are bounded, and asymptotically tracks a given reference which is generated from the reference system: where , , and are known constant matrices such that all the eigenvalues of are in the open lefthalf complex plane, and is bounded and piecewise continuous.
3. I&I Adaptive FaultTolerant Control Based on AMFDD
In this section, an adaptive controller combined with faulttolerant module based on I&I AMFDD technology is developed. I&I AMFDD module is designed to detect AF and direct adaptive controller handles AF of HST. The system (10) can be rewritten as follows: where , and is Lipschitz with as where is the maximum value of position and velocity of HST. For the control problem considered in this paper, the following is assumed.
Assumption 2. The state of system (19) is available at every instant, and the maximum value of position and velocity of HST, that is, , is known before AF (12).
Assumption 3. If system parameters and AF (up to failures) are known, the remaining actuators can still achieve a desired control objective.
Assumption 4. All pairs are uniformly completely controllable for , .
3.1. Adaptive ModelBased Fault Detection and Diagnosis (AMFDD)
AMFDD module is combined with train control system in HST. Taking China Railways Highspeed (CRH) trains [58–60] as an example, AMFDD module is designed to detect AF in Train Control and Management System. For , consider the following AMFDD: where , , and are the estimate of , , and . I&I adaptive control is a noncertainty equivalence technique with where the estimation objective is to render the manifold invariant and (asymptotically) attractive, and the continuous function , which is added to the estimated parameter vector , is also a design parameter. Estimation of is achieved by driving the estimate error to zero. Define parameterized function: which satisfies , that is, where is a design function, which simplifies computational complexity of , satisfying
Theorem 5. AMFDD (21) and the adaptive law can realise that (1) the estimate error (24) converges to zero, that is, ;(2) the observational error satisfies where where is initial state vector of , is the upper bound of , and and denote the maximum and minimum value of matrix. (3)Decision on the occurrence of AF in carriages is made if at least one term of the estimation error exceeds its corresponding error bound .
Proof. The derivative of is as follows: which clearly yields Consider a positivedefinite function , and using (26), (27), and (32), we have from which convergence of follows; that is, The derivative of is as follows: Consequently, when no AF occurs, we have Hence, decision on the occurrence of AF in carriages is made if at least one term of the estimation error exceeds its corresponding error bound .
3.2. Adaptive Control for Unknown AF
After detection of AF, the key task of AF compensation control is to design a direct adaptive control law such that all trajectories of the closedloop system (16) are bounded and . Using the AMFDD (21), the AF system (16) is as follows: where is unknown constant matrix with , , and , which is exponential convergence, is defined in (24).
Before addressing the control problem for unknown AF, we must first derive the existence of controllers for the system (37) with known AF to obtain some basic plantmodel matching conditions which are useful for controller parameterization in adaptive designs for unknown AF. Without AF, matching equations of HST system (37) are satisfied: and and . We see Assumptions 3 implies that there exist constant vectors and nonzero constant such that when only one AF occurs, the following matching equations are satisfied: Using (38) and (39), we obtain
Now we develop an adaptive control scheme for the system (37) with unknown AF. We propose the controller structure: where are adaptive estimates of the unknown parameters and , and is a design vector. Define the parameter errors for . Substituting the control law (41) into the system (37), we obtain Using (40) and (44), the system (45) is as follows: Then, we have the tracking error equation: Consider a positive definite function According to [25], we assume that the sign of parameter is known, and is a known upper bound on . Choose the adaptive laws as where , such that for any constant such that , is constant matrix such that , and is constant. Then, we have where is defined in (29). We choose and we obtain where Hence, whenever , which means that the tracking error will converge to a set of a small size if is chosen to be large.
Theorem 6. For HST system (37) with Assumptions 1–4 and AF (12) satisfying (56), the controller is given by the control law (41) and the adaptation laws (49) and (52); then we have the following. (1)HST system (37) is internally stable and all closedloop signals are bounded.(2)If is chosen to be large, the tracking error will converge to a set of a small size.
Remark 7. The convergence time is defined by where is a design parameter, and we assume the minimum switch time must satisfy
3.3. Adaptive Control for Unknown AF and CIS
In this subsection, we consider unknown AF (12) and CIS simultaneously for HST system (37). In many practical applications, CIS occurs after AF (12), for example, when signal generated by the adaptive faulttolerant control law (41) cannot be implemented due to some physical constraints in HST traction system.
Due to CIS, adaptive faulttolerant control law, which is different from (41), is as follows: where and are the minimum and maximum values of , and is defined in (41). Saturation function is linear with unity slope between its lower and upper bound; that is, and we consider CIS error described by and . Now we develop an adaptive control scheme for the system (37) with unknown AF (12) and CIS (57). We suppose there are CIS in HST, that is, , and propose the controller structure: where , , and are defined in (49) and (52). . We obtain We have the tracking error equation: Consider a positive definite function: and using (49) and (52), we have and we assume We choose the design signal as Since the control signal in (66) is not continuous, according to [61, 62], to avoid system chatterings caused by such discontinuous control laws, the following common approximations will be used for function: We obtain where is a constant. Hence , whenever which means decreases to a lower bound proportional to and .
Theorem 8. For HST system (37) with Assumptions 1–4 and AF (12) and CIS (57), the controller is given by the control law (60) and the adaptation laws (49), (52), and (66); then we have the following.(1)HST system (37) is internally stable and all closedloop signals are bounded.(2)If is chosen to be small and is chosen to be large, the tracking error will converge to a set of a small size.
4. Simulations
To prove the effectiveness of proposed controller, a train model of CRH2 [59], which consists of two powered carriages, is used. The parameters in this simulation are given in Table 1.

The unknown parameters, which should not be ignored, are shown as follows: We consider the AF in the first carriage is as follows: and CIS in the second carriage is as follows:
In order to exhibit the advantage of the proposed adaptive faulttolerant control, a faulttolerant control using neural networks [63] (FTCNN) is introduced. Using FTCNN, performance of the system (37) under AF (71) and CIS (72) is shown in Figures 3 and 4. The maximum position and velocity tracking errors after AF attain to m and m/s, respectively.
(a)
(b)
(a)
(b)
The AMFDD (21) and adaptive faulttolerant control law (60) with adaptation laws (49), (52), and (66) are applied to handle unknown AF (71) and CIS (72) in HST system. Figures 5 and 6 show the system responses which indicate that even when there are unknown AF, the tracking errors still converge to zero. It is shown that the developed adaptive faulttolerant control law (60) with adaptation laws (49), (52), and (66) ensures that, in addition to closedloop signal boundedness, the position and velocity tracking errors converge to zero as the time goes by, despite of the plant uncertainties, AF, and CIS.
(a)
(b)
(a)
(b)
5. Conclusion
In this paper, an adaptive state feedback and tracking control with AMFDD module is proposed to deal with a class of HST in the presence of unknown CIS and AF. That is, some of the plant inputs are influenced by hopping function. An AMFDD module using I&I observer is introduced based on the model of HST to detect AF, and a corresponding adaptive control law based on the AMFDD information is switched on to realize the faulttolerant control. The proposed adaptive FTC guarantees the boundedness of all signals in the HST system.
Conflict of Interests
The authors declare that there is no conflict of interests regarding the publication of this paper.
References
 T. Zhang and M. Guay, “Adaptive control for a class of secondorder nonlinear systems with unknown input nonlinearities,” IEEE Transactions on Systems, Man, and Cybernetics B: Cybernetics, vol. 33, no. 1, pp. 143–149, 2003. View at: Publisher Site  Google Scholar
 S. S. Ge and C. Wang, “Adaptive neural control of uncertain MIMO nonlinear systems,” IEEE Transactions on Neural Networks, vol. 15, no. 3, pp. 674–692, 2004. View at: Publisher Site  Google Scholar
 S. Labiod, M. S. Boucherit, and T. M. Guerra, “Adaptive fuzzy control of a class of MIMO nonlinear systems,” Fuzzy Sets and Systems, vol. 151, no. 1, pp. 59–77, 2005. View at: Publisher Site  Google Scholar  MathSciNet
 Q. Hu, G. Ma, and L. Xie, “Robust and adaptive variable structure output feedback control of uncertain systems with input nonlinearity,” Automatica, vol. 44, no. 2, pp. 552–559, 2008. View at: Publisher Site  Google Scholar  MathSciNet
 M. Chen, S. S. Ge, and B. V. E. How, “Robust adaptive neural network control for a class of uncertain MIMO nonlinear systems with input nonlinearities,” IEEE Transactions on Neural Networks, vol. 21, no. 5, pp. 796–812, 2010. View at: Publisher Site  Google Scholar
 M. Chen, S. S. Ge, and B. Ren, “Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints,” Automatica, vol. 47, no. 3, pp. 452–465, 2011. View at: Publisher Site  Google Scholar  MathSciNet
 S. Tong and Y. Li, “Adaptive fuzzy output feedback tracking backstepping control of strictfeedback nonlinear systems with unknown dead zones,” IEEE Transactions on Fuzzy Systems, vol. 20, no. 1, pp. 168–180, 2012. View at: Publisher Site  Google Scholar
 H. Zhang, Y. Shi, and M. Liu, “H_{∞} step tracking control for networked discretetime nonlinear systems with integral and predictive actions,” IEEE Transactions on Industrial Informatics, vol. 9, no. 1, pp. 337–345, 2013. View at: Google Scholar
 Q. Zhou, P. Shi, S. Xu, and H. Li, “Adaptive output feedback control for nonlinear timedelay systems by fuzzy approximation approach,” IEEE Transactions on Fuzzy Systems, vol. 21, no. 2, pp. 301–313, 2013. View at: Publisher Site  Google Scholar
 Y. Liu, S. Tong, and C. L. P. Chen, “Adaptive fuzzy control via observer design for uncertain nonlinear systems with unmodeled dynamics,” IEEE Transactions on Fuzzy Systems, vol. 21, no. 2, pp. 275–288, 2013. View at: Publisher Site  Google Scholar
 H. Li, J. Yu, C. Hilton, and H. Liu, “Adaptive slidingmode control for nonlinear active suspension vehicle systems using TS fuzzy approach,” IEEE Transactions on Industrial Electronics, vol. 60, no. 8, pp. 3328–3338, 2013. View at: Publisher Site  Google Scholar
 X. Deng, “Traction drive system of 200 km/h CRH 2 EMUs,” Electric Drive for Locomotives, vol. 4, no. 1, pp. 31–38, 2008. View at: Google Scholar
 H. Wang, Y. Wang, C. Xie, and X. Hu, “Reliability modeling and assigning for CRH2 electric multiple unit,” Journal of the China Railway Society, vol. 5, no. 1, pp. 19–21, 2009. View at: Google Scholar
 G. Xie and Q. Lu, “Modeling and simulation at temporary poweroff state of EMU traction driver system,” Jidian Gongcheng Mechanical & Electrical Engineering Magazine, vol. 28, no. 5, pp. 605–609, 2011. View at: Google Scholar
 X. Zhuan and X. Xia, “Faulttolerant control of heavyhaul trains,” Vehicle System Dynamics, vol. 48, no. 6, pp. 705–735, 2010. View at: Publisher Site  Google Scholar
 X. Zhuan and X. Xia, “Speed regulation with measured output feedback in the control of heavy haul trains,” Automatica, vol. 44, no. 1, pp. 242–247, 2008. View at: Publisher Site  Google Scholar  MathSciNet
 X. Liu and Y. Song, “Robust adaptive faulttolerant control of dynamic systems with floating nonlinearities and fading actuators,” in Proceedings of the Chinese Control and Decision Conference (CCDC ’11), pp. 149–154, Mianyang, China, May 2011. View at: Publisher Site  Google Scholar
 Q. Song and Y. Song, “Databased faulttolerant control of highspeed trains with traction/braking notch nonlinearities and actuator failures,” IEEE Transactions on Neural Networks, vol. 22, no. 12, pp. 2250–2261, 2011. View at: Publisher Site  Google Scholar
 H. Dong, S. Gao, B. Ning, and L. Li, “Extended fuzzy logic controller for high speed train,” Neural Computing and Applications, vol. 22, no. 2, pp. 321–328, 2013. View at: Publisher Site  Google Scholar
 H. Yang, Y. Fu, K. Zhang, and Z. Li, “Speed tracking control using an ANFIS model for highspeed electric multiple unit,” Control Engineering Practice, vol. 23, pp. 57–65, 2014. View at: Google Scholar
 M. Faieghi, A. Jalali, and S. K. M. Mashhadi, “Robust adaptive cruise control of high speed trains,” ISA Transactions, vol. 53, no. 2, pp. 533–541, 2014. View at: Google Scholar
 H. Yang, V. Cocquempot, and B. Jiang, “Robust fault tolerant tracking control with application to hybrid nonlinear systems,” IET Control Theory and Applications, vol. 3, no. 2, pp. 211–224, 2009. View at: Publisher Site  Google Scholar
 B. Jiang, Z. Gao, P. Shi, and Y. Xu, “Adaptive faulttolerant tracking control of nearspace vehicle using TakagiSugeno fuzzy models,” IEEE Transactions on Fuzzy Systems, vol. 18, no. 5, pp. 1000–1007, 2010. View at: Publisher Site  Google Scholar
 Y. Xu, B. Jiang, G. Tao, and Z. Gao, “Fault tolerant control for a class of nonlinear systems with application to near space vehicle,” Circuits, Systems, and Signal Processing, vol. 30, no. 3, pp. 655–672, 2011. View at: Publisher Site  Google Scholar  Zentralblatt MATH  MathSciNet
 G. Tao, S. M. Joshi, and X. Ma, “Adaptive state feedback and tracking control of systems with actuator failures,” IEEE Transactions on Automatic Control, vol. 46, no. 1, pp. 78–95, 2001. View at: Publisher Site  Google Scholar  MathSciNet
 G. Tao, S. Chen, and S. M. Joshi, “An adaptive actuator failure compensation controller using output feedback,” IEEE Transactions on Automatic Control, vol. 47, no. 3, pp. 506–511, 2002. View at: Publisher Site  Google Scholar  MathSciNet
 X. Tang, G. Tao, and S. M. Joshi, “Adaptive actuator failure compensation for parametric strict feedback systems and an aircraft application,” Automatica, vol. 39, no. 11, pp. 1975–1982, 2003. View at: Publisher Site  Google Scholar  MathSciNet
 Z. Qu, C. M. Ihlefeld, Y. Jin, and A. Saengdeejing, “Robust faulttolerant selfrecovering control of nonlinear uncertain systems,” Automatica, vol. 39, no. 10, pp. 1763–1771, 2003. View at: Publisher Site  Google Scholar  MathSciNet
 Z. Wang, G. Wei, and G. Feng, “Reliable ${H}_{\infty}$ control for discretetime piecewise linear systems with infinite distributed delays,” Automatica, vol. 45, no. 12, pp. 2991–2994, 2009. View at: Publisher Site  Google Scholar  MathSciNet
 M. J. Khosrowjerdi, “Mixed H_{2}/H_{∞} approach to faulttolerant controller design for Lipschitz nonlinear systems,” IET Control Theory and Applications, vol. 5, no. 2, pp. 299–307, 2011. View at: Publisher Site  Google Scholar
 Y. Shen, L. Liu, and E. H. Dowell, “Adaptive faulttolerant robust control for a linear system with adaptive fault identification,” IET Control Theory & Applications, vol. 7, no. 2, pp. 246–252, 2013. View at: Publisher Site  Google Scholar
 Q. Shen, B. Jiang, and V. Cocquempot, “Fuzzy logic systembased adaptive faulttolerant control for nearspace vehicle attitude dynamics with actuator faults,” IEEE Transactions on Fuzzy Systems, vol. 21, no. 2, pp. 289–300, 2013. View at: Publisher Site  Google Scholar
 M. T. Hamayun, C. Edwards, and H. Alwi, “A fault tolerant control allocation scheme with output integral sliding modes,” Automatica, vol. 49, no. 6, pp. 1830–1837, 2013. View at: Publisher Site  Google Scholar  MathSciNet
 Q. Shen, B. Jiang, and V. Cocquempot, “Adaptive faulttolerant backstepping control against actuator gain faults and its applications to an aircraft longitudinal motion dynamics,” International Journal of Robust and Nonlinear Control, vol. 23, no. 15, pp. 1753–1779, 2013. View at: Google Scholar  MathSciNet
 M. S. Mahmoud, A. M. Memon, and P. Shi, “Observerbased faulttolerant control for a class of nonlinear networked control systems,” International Journal of Control, vol. 87, no. 8, pp. 1707–1715, 2014. View at: Publisher Site  Google Scholar  MathSciNet
 S. Gao, H. Dong, Y. Chen, B. Ning, and G. Chen, “Adaptive and robust automatic train control systems with input saturation,” Control and Intelligent Systems, vol. 41, no. 2, pp. 103–111, 2013. View at: Publisher Site  Google Scholar  MathSciNet
 S. Gao, H. Dong, Y. Chen, B. Ning, G. Chen, and X. Yang, “Approximationbased robust adaptive automatic train control: an approach for actuator saturation,” IEEE Transactions on Intelligent Transportation Systems, vol. 14, no. 4, pp. 1733–1742, 2013. View at: Publisher Site  Google Scholar
 S. P. Karason and A. M. Annaswamy, “Adaptive control in the presence of input constraints,” IEEE Transactions on Automatic Control, vol. 39, no. 11, pp. 2325–2330, 1994. View at: Publisher Site  Google Scholar  MathSciNet
 A. R. Teel, “A nonlinear small gain theorem for the analysis of control systems with saturation,” IEEE Transactions on Automatic Control, vol. 41, no. 9, pp. 1256–1270, 1996. View at: Publisher Site  Google Scholar  MathSciNet
 M. Polycarpou, J. Farrell, and M. Sharma, “Online approximation control of uncertain nonlinear systems: issues with control input saturation,” in Proceedings of the American Control Conference, pp. 543–548, Denver, Colo, USA, June 2003. View at: Google Scholar
 Y. Chang, Y. Wang, M. Hung, and P. Chen, “Regional stability and H∞ performance control of an inputsaturated induction motor via LMI approach,” Asian Journal of Control, vol. 7, no. 4, pp. 368–379, 2005. View at: Google Scholar
 F. Wu, Z. Lin, and Q. Zheng, “Output feedback stabilization of linear systems with actuator saturation,” IEEE Transactions on Automatic Control, vol. 52, no. 1, pp. 122–128, 2007. View at: Publisher Site  Google Scholar  MathSciNet
 B. Zhou, G. Duan, and Z. Lin, “A parametric Lyapunov equation approach to the design of low gain feedback,” IEEE Transactions on Automatic Control, vol. 53, no. 6, pp. 1548–1554, 2008. View at: Publisher Site  Google Scholar  MathSciNet
 B. Zhou, Z. Lin, and G. Duan, “A parametric Lyapunov equation approach to low gain feedback design for discretetime systems,” Automatica, vol. 45, no. 1, pp. 238–244, 2009. View at: Publisher Site  Google Scholar  MathSciNet
 E. Fridman and M. Dambrine, “Control under quantization, saturation and delay: an LMI approach,” Automatica, vol. 45, no. 10, pp. 2258–2264, 2009. View at: Publisher Site  Google Scholar  MathSciNet
 J. Huang, C. Wen, W. Wang, and Z. Jiang, “Adaptive stabilization and tracking control of a nonholonomic mobile robot with input saturation and disturbance,” Systems & Control Letters, vol. 62, no. 3, pp. 234–241, 2013. View at: Publisher Site  Google Scholar
 A. Astolfi and R. Ortega, “Immersion and invariance: a new tool for stabilization and adaptive control of nonlinear systems,” IEEE Transactions on Automatic Control, vol. 48, no. 4, pp. 590–606, 2003. View at: Publisher Site  Google Scholar  MathSciNet
 X. Liu, R. Ortega, H. Su, and J. Chu, “Immersion and invariance adaptive control of nonlinearly parameterized nonlinear systems,” IEEE Transactions on Automatic Control, vol. 55, no. 9, pp. 2209–2214, 2010. View at: Publisher Site  Google Scholar 