Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2014, Article ID 974024, 23 pages
http://dx.doi.org/10.1155/2014/974024
Research Article

A Global Multilevel Thresholding Using Differential Evolution Approach

Department of Computer Science, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand

Received 3 October 2013; Revised 23 January 2014; Accepted 3 February 2014; Published 20 March 2014

Academic Editor: Yi-Hung Liu

Copyright © 2014 Kanjana Charansiriphaisan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. K. Pratt, Digital Image Processing, John Wiley & Sons, New York, NY, USA, 1978.
  2. J. S. Weszka, “A survey of threshold selection techniques,” Computer Graphics and Image Processing, vol. 7, no. 2, pp. 259–265, 1978. View at Google Scholar · View at Scopus
  3. K. S. Fu and J. K. Mui, “A survey on image segmentation,” Pattern Recognition, vol. 13, no. 1, pp. 3–16, 1981. View at Google Scholar · View at MathSciNet · View at Scopus
  4. P. K. Sahoo, S. Soltani, and A. K. C. Wong, “A survey of thresholding techniques,” Computer Vision, Graphics and Image Processing, vol. 41, no. 2, pp. 233–260, 1988. View at Google Scholar · View at Scopus
  5. N. R. Pal and S. K. Pal, “A review on image segmentation techniques,” Pattern Recognition, vol. 26, no. 9, pp. 1277–1294, 1993. View at Publisher · View at Google Scholar · View at Scopus
  6. A. T. Abak, U. Baris, and B. Sankur, “The performance evaluation of thresholding algorithms for optical character recognition,” in Proceedings of the 4th International Conference on Document Analysis and Recognition, pp. 697–700, Ulm, Germany, August 1997. View at Scopus
  7. M. Sezgin and B. Sankur, “Survey over image thresholding techniques and quantitative performance evaluation,” Journal of Electronic Imaging, vol. 13, no. 1, pp. 146–168, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. S. U. Lee and S. Yoon Chung, “A comparative performance study of several global thresholding techniques for segmentation,” Computer Vision, Graphics and Image Processing, vol. 52, no. 2, pp. 171–190, 1990. View at Google Scholar · View at Scopus
  9. N. Otsu, “A threshold selection method from gray level histograms,” IEEE Transactions on Systems, Man and Cybernetics, vol. 9, no. 1, pp. 62–66, 1979. View at Google Scholar · View at Scopus
  10. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of the IEEE International Conference on Neural Networks (ICNN ’95), vol. 4, pp. 1942–1948, Perth, Australia, December 1995. View at Scopus
  11. R. Storn and K. Price, “Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces,” Tech. Rep. TR-95-012, International Computer Sciences Institute, Berkeley, Calif, USA, 1995. View at Google Scholar
  12. D. Karaboga, “An idea based on honey bee swarm for numerical optimization,” Tech. Rep. TR06, Erciyes University, Engineering Faculty, Computer Engineering Department, 2005. View at Google Scholar
  13. M. S. Couceiro, R. P. Rocha, N. M. F. Ferreira, and J. A. T. Machado, “Introducing the fractional-order Darwinian PSO,” Signal Image and Video Processing, vol. 6, no. 3, pp. 343–350, 2012. View at Publisher · View at Google Scholar
  14. R. V. Kulkarni and G. K. Venayagamoorthy, “Bio-inspired algorithms for autonomous deployment and localization of sensor nodes,” IEEE Transactions on Systems, Man and Cybernetics C, vol. 40, no. 6, pp. 663–675, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Akay, “A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding,” Applied Soft Computing Journal, vol. 3, no. 6, pp. 3066–3091, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Hammouche, M. Diaf, and P. Siarry, “A comparative study of various meta-heuristic techniques applied to the multilevel thresholding problem,” Engineering Applications of Artificial Intelligence, vol. 23, no. 5, pp. 676–688, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. V. Osuna-Enciso, E. Cuevas, and H. Sossa, “A comparison of nature inspired algorithms for multi-threshold image segmentation,” Expert Systems with Applications, vol. 40, no. 4, pp. 1213–1219, 2013. View at Google Scholar
  18. P. Ghamisia, M. S. Couceiro, F. Martins, and J. A. Benediktsson, “Multilevel image segmentation based on Fractional-Order Darwinian particle swarm optimization,” IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 1, pp. 1–44, 2013. View at Google Scholar
  19. W. Gong and Z. Cai, “Differential evolution with ranking-based mutation operators,” IEEE Transactions on Cybernetics, vol. 43, no. 6, pp. 2066–2081, 2013. View at Google Scholar
  20. K. Price, R. Storn, and J. Lampinen, Differential Evolution: A Practical Approach to Global Optimization, Springer, Berlin, Germany, 2005. View at MathSciNet
  21. R. Storn and K. Price, Home Page of Differential Evolution, International Computer Science Institute, Berkeley, Calif, USA, 2010.
  22. A. K. Qin and P. N. Suganthan, “Self-adaptive differential evolution algorithm for numerical optimization,” in Proceedings of the IEEE Congress on Evolutionary Computation (CEC '05), pp. 1785–1791, September 2005. View at Scopus
  23. E. Mezura-Montes, J. Velázquez-Reyes, and C. A. Coello Coello, “A comparative study of differential evolution variants for global optimization,” in Proceedings of the 8th Annual Genetic and Evolutionary Computation Conference, pp. 485–492, July 2006. View at Scopus
  24. A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolution algorithm with strategy adaptation for global numerical optimization,” IEEE Transactions on Evolutionary Computation, vol. 13, no. 2, pp. 398–417, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Das, A. Abraham, and A. Konar, “Automatic clustering using an improved differential evolution algorithm,” IEEE Transactions on Systems, Man, and Cybernetics A, vol. 38, no. 1, pp. 218–237, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Brest, S. Greiner, B. Bošković, M. Mernik, and V. Zumer, “Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems,” IEEE Transactions on Evolutionary Computation, vol. 10, no. 6, pp. 646–657, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. N. Noman and H. Iba, “Accelerating differential evolution using an adaptive local search,” IEEE Transactions on Evolutionary Computation, vol. 12, no. 1, pp. 107–125, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. R. S. Rahnamayan, H. R. Tizhoosh, and M. M. A. Salama, “Opposition-based differential evolution,” IEEE Transactions on Evolutionary Computation, vol. 12, no. 1, pp. 64–79, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics,” in Proceedings of the 8th International Conference on Computer Vision, vol. 2, pp. 416–423, July 2001. View at Scopus
  30. P. Ghamisi, M. S. Couceiro, J. A. Benediktsson, and N. M. F. Ferreira, “An efficient method for segmentation of image based on fractional calculus and natural selection,” Expert Systems with Applications, vol. 39, pp. 12407–12417, 2012. View at Google Scholar
  31. R. Gamperle, S. D. Muller, and A. Koumoutsakos, “A parameter study for differential evolution,” in Proceedings of the Advances in Intelligent Systems, Fuzzy Systems, Evolutionary Computation, vol. 10, pp. 293–298, 2002.
  32. M. Saraswat, K. V. Arya, and H. Sharma, “Leukocyte segmentation in tissue images using differential evolution algorithm,” Swarm and Evolutionary Computation, vol. 11, pp. 46–54, 2013. View at Google Scholar
  33. J. Kittler and J. Illingworth, “On threshold selection using clustering criteria,” IEEE Transactions on Systems, Man and Cybernetics, vol. 15, no. 5, pp. 652–655, 1985. View at Google Scholar · View at Scopus
  34. R. Guo and S. M. Pandit, “Automatic threshold selection based on histogram modes and a discriminant criterion,” Machine Vision and Applications, vol. 10, no. 5-6, pp. 331–338, 1998. View at Google Scholar · View at Scopus
  35. J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder-Mead simplex method in low dimensions,” SIAM Journal on Optimization, vol. 9, no. 1, pp. 112–147, 1998. View at Google Scholar · View at MathSciNet · View at Scopus