Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2012, Article ID 124548, 9 pages
http://dx.doi.org/10.1155/2012/124548
Review Article

Matrix Metalloproteinases and Minocycline: Therapeutic Avenues for Fragile X Syndrome

1Departments of Biological Sciences and Cell and Developmental Biology, Kennedy Center for Research on Human Development, Vanderbilt University Station B, Nashville, TN 37232, USA
2Stony Brook School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA

Received 29 November 2011; Accepted 24 February 2012

Academic Editor: Laurie Doering

Copyright © 2012 Saul S. Siller and Kendal Broadie. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. D. Koukoui and A. Chaudhuri, “Neuroanatomical, molecular genetic, and behavioral correlates of fragile X syndrome,” Brain Research Reviews, vol. 53, no. 1, pp. 27–38, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. D. C. Crawford, J. M. Acuna, and S. L. Sherman, “FMR1 and the fragile X syndrome: human genome epidemiology review,” Genetics in Medicine, vol. 3, no. 5, pp. 359–371, 2001. View at Google Scholar
  3. P. J. Hagerman, “The fragile X prevalence paradox,” Journal of Medical Genetics, vol. 45, no. 8, pp. 498–499, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. K. B. Garber, J. Visootsak, and S. T. Warren, “fragile X syndrome,” European Journal of Human Genetics, vol. 16, no. 6, pp. 666–672, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. O. Penagarikano, J. G. Mulle, and S. T. Warren, “The pathophysiology of fragile X syndrome,” Annual Review of Genomics and Human Genetics, vol. 8, pp. 109–129, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. S. A. Merenstein, W. E. Sobesky, A. K. Taylor, J. E. Riddle, H. X. Tran, and R. J. Hagerman, “Molecular-clinical correlations in males with an expanded FMR1 mutation,” American Journal of Medical Genetics, vol. 64, no. 2, pp. 388–394, 1996. View at Google Scholar
  7. W. T. Brown, E. C. Jenkins, and I. L. Cohen, “fragile X and autism: a multicenter survey,” American Journal of Medical Genetics, vol. 23, no. 1-2, pp. 341–352, 1986. View at Google Scholar · View at Scopus
  8. K. Cornish, V. Sudhalter, and J. Turk, “Attention and language in fragile X,” Mental Retardation and Developmental Disabilities Research Reviews, vol. 10, no. 1, pp. 11–16, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Einfeld, W. Hall, and F. Levy, “Hyperactivity and the fragile X syndrome,” Journal of Abnormal Child Psychology, vol. 19, no. 3, pp. 253–262, 1991. View at Google Scholar · View at Scopus
  10. M. Elia, R. Ferri, S. A. Musumeci et al., “Sleep in subjects with autistic disorder: a neurophysiological and psychological study,” Brain and Development, vol. 22, no. 2, pp. 88–92, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. R. J. Hagerman, A. W. Jackson, and A. Levitas, “An analysis of autism in fifty males with the fragile X syndrome,” American Journal of Medical Genetics, vol. 23, no. 1-2, pp. 359–374, 1986. View at Google Scholar · View at Scopus
  12. W. E. Kaufmann, R. Cortell, A. S. M. Kau et al., “Autism spectrum disorder in fragile X syndrome: communication, social interaction, and specific behaviors,” American Journal of Medical Genetics A, vol. 129, no. 3, pp. 225–234, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Miano, O. Bruni, M. Elia et al., “Sleep phenotypes of intellectual disability: a polysomnographic evaluation in subjects with Down syndrome and Fragile-X syndrome,” Clinical Neurophysiology, vol. 119, no. 6, pp. 1242–1247, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. J. A. Tsiouris and W. T. Brown, “Neuropsychiatric symptoms of fragile X syndrome: pathophysiology and pharmacotherapy,” CNS Drugs, vol. 18, no. 11, pp. 687–703, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. A. E. Chudley and R. J. Hagerman, “fragile X syndrome,” Journal of Pediatrics, vol. 110, no. 6, pp. 821–831, 1987. View at Google Scholar · View at Scopus
  16. R. J. Hagerman, K. Van Housen, A. C. M. Smith, and L. McGavran, “Consideration of connective tissue dysfunction in the fragile X syndrome,” American Journal of Medical Genetics, vol. 17, no. 1, pp. 111–121, 1984. View at Google Scholar · View at Scopus
  17. A. M. Lachiewicz and D. V. Dawson, “Do young boys with fragile X syndrome have macroorchidism?” Pediatrics I, vol. 93, no. 6, pp. 992–995, 1994. View at Google Scholar · View at Scopus
  18. S. A. Musumeci, R. J. Hagerman, R. Ferri et al., “Epilepsy and EEG findings in males with fragile X syndrome,” Epilepsia, vol. 40, no. 8, pp. 1092–1099, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Pieretti, F. Zhang, Y. H. Fu et al., “Absence of expression of the FMR-1 gene in fragile X syndrome,” Cell, vol. 66, no. 4, pp. 817–822, 1991. View at Publisher · View at Google Scholar · View at Scopus
  20. J. S. Sutcliffe, D. L. Nelson, F. Zhang et al., “DNA methylation represses FMR-1 transcription in fragile X syndrome,” Human Molecular Genetics, vol. 1, no. 6, pp. 397–400, 1992. View at Google Scholar · View at Scopus
  21. B. Laggerbauer, D. Ostareck, E. M. Keidel, A. Ostareck-Lederer, and U. Fischer, “Evidence that fragile X mental retardation protein is a negative regulator of translation,” Human Molecular Genetics, vol. 10, no. 4, pp. 329–338, 2001. View at Google Scholar · View at Scopus
  22. Z. Li, Y. Zhang, L. Ku, K. D. Wilkinson, S. T. Warren, and Y. Feng, “The fragile X mental retardation protein inhibits translation via interacting with mRNA,” Nucleic Acids Research, vol. 29, no. 11, pp. 2276–2283, 2001. View at Google Scholar · View at Scopus
  23. R. Lu, H. Wang, Z. Liang et al., “The fragile X protein controls microtubule-associated protein 1B translation and microtubule stability in brain neuron development,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 42, pp. 15201–15206, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. R. S. Muddashetty, S. Kelić, C. Gross, M. Xu, and G. J. Bassell, “Dysregulated metabotropic glutamate receptor-dependent translation of AMPA receptor and postsynaptic density-95 mRNAs at synapses in a mouse model of fragile X syndrome,” Journal of Neuroscience, vol. 27, no. 20, pp. 5338–5348, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Q. Zhang, A. M. Bailey, H. J. G. Matthies et al., “Drosophila fragile X-related gene regulates the MAP1B homolog Futsch to control synaptic structure and function,” Cell, vol. 107, no. 5, pp. 591–603, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. C. R. Tessier and K. Broadie, “Drosophila fragile X mental retardation protein developmentally regulates activity-dependent axon pruning,” Development, vol. 135, no. 8, pp. 1547–1557, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. L. N. Antar and G. J. Bassell, “Sunrise at the synapse: the FMRP mRNP shaping the synaptic interface,” Neuron, vol. 37, no. 4, pp. 555–558, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. B. D. Auerbach and M. F. Bear, “Loss of the fragile X mental retardation protein decouples metabotropic glutamate receptor dependent priming of long-term potentiation from protein synthesis,” Journal of Neurophysiology, vol. 104, no. 2, pp. 1047–1051, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Costa-Mattioli, W. S. Sossin, E. Klann, and N. Sonenberg, “Translational control of long-lasting synaptic plasticity and memory,” Neuron, vol. 61, no. 1, pp. 10–26, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. K. M. Huber, S. M. Gallagher, S. T. Warren, and M. F. Bear, “Altered synaptic plasticity in a mouse model of fragile X mental retardation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 11, pp. 7746–7750, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Pan, E. Woodruff, P. Liang, and K. Broadie, “Mechanistic relationships between Drosophila fragile X mental retardation protein and metabotropic glutamate receptor A signaling,” Molecular and Cellular Neuroscience, vol. 37, no. 4, pp. 747–760, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. M. W. Waung and K. M. Huber, “Protein translation in synaptic plasticity: mGluR-LTD, fragile X,” Current Opinion in Neurobiology, vol. 19, no. 3, pp. 319–326, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Q. Zhang and K. Broadie, “Fathoming fragile X in fruit flies,” Trends in Genetics, vol. 21, no. 1, pp. 37–45, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. L. N. Antar, R. Afroz, J. B. Dictenberg, R. C. Carroll, and G. J. Bassell, “Metabotropic glutamate receptor activation regulates fragile x mental retardation protein and FMR1 mRNA localization differentially in dendrites and at synapses,” Journal of Neuroscience, vol. 24, no. 11, pp. 2648–2655, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. M. F. Bear, “Therapeutic implications of the mGluR theory of fragile X mental retardation,” Genes, Brain and Behavior, vol. 4, no. 6, pp. 393–398, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. M. F. Bear, G. Dölen, E. Osterweil, and N. Nagarajan, “fragile X: translation in action,” Neuropsychopharmacology, vol. 33, no. 1, pp. 84–87, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. M. F. Bear, K. M. Huber, and S. T. Warren, “The mGluR theory of fragile X mental retardation,” Trends in Neurosciences, vol. 27, no. 7, pp. 370–377, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Dölen and M. F. Bear, “Role for metabotropic glutamate receptor 5 (mGluR5) in the pathogenesis of fragile X syndrome,” Journal of Physiology, vol. 586, no. 6, pp. 1503–1508, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. G. Dölen, R. L. Carpenter, T. D. Ocain, and M. F. Bear, “Mechanism-based approaches to treating fragile X,” Pharmacology and Therapeutics, vol. 127, no. 1, pp. 78–93, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. G. Dölen, E. Osterweil, B. S. S. Rao et al., “Correction of fragile X syndrome in mice,” Neuron, vol. 56, no. 6, pp. 955–962, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. R. M. Meredith, R. de Jong, and H. D. Mansvelder, “Functional rescue of excitatory synaptic transmission in the developing hippocampus in Fmr1-KO mouse,” Neurobiology of Disease, vol. 41, no. 1, pp. 104–110, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. L. Pan, Y. Q. Zhang, E. Woodruff, and K. Broadie, “The Drosophila fragile X gene negatively regulates neuronal elaboration and synaptic differentiation,” Current Biology, vol. 14, no. 20, pp. 1863–1870, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Repicky and K. Broadie, “Metabotropic glutamate receptor-mediated use-dependent down-regulation of synaptic excitability involves the fragile X mental retardation protein,” Journal of Neurophysiology, vol. 101, no. 2, pp. 672–687, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. F. V. Bolduc, K. Bell, H. Cox, K. S. Broadie, and T. Tully, “Excess protein synthesis in Drosophila fragile X mutants impairs long-term memory,” Nature Neuroscience, vol. 11, no. 10, pp. 1143–1145, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. C. H. Choi, S. M. J. McBride, B. P. Schoenfeld et al., “Age-dependent cognitive impairment in a Drosophila fragile X model and its pharmacological rescue,” Biogerontology, vol. 11, no. 3, pp. 347–362, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. S. M. J. McBride, C. H. Choi, Y. Wang et al., “Pharmacological rescue of synaptic plasticity, courtship behavior, and mushroom body defects in a Drosophila model of fragile X syndrome,” Neuron, vol. 45, no. 5, pp. 753–764, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. L. Pan and K. S. Broadie, “Drosophila fragile X mental retardation protein and metabotropic glutamate receptor a convergently regulate the synaptic ratio of ionotropic glutamate receptor subclasses,” Journal of Neuroscience, vol. 27, no. 45, pp. 12378–12389, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Levenga, F. M. S. de Vrij, B. A. Oostra, and R. Willemsen, “Potential therapeutic interventions for fragile X syndrome,” Trends in Molecular Medicine, vol. 16, no. 11, pp. 516–527, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. L. W. Wang, E. Berry-Kravis, and R. J. Hagerman, “fragile X: leading the way for targeted treatments in autism,” Neurotherapeutics, vol. 7, no. 3, pp. 264–274, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. E. Berry-Kravis, A. Sumis, C. Hervey et al., “Open-label treatment trial of lithium to target the underlying defect in fragile X syndrome,” Journal of Developmental and Behavioral Pediatrics, vol. 29, no. 4, pp. 293–302, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. T. V. Bilousova, L. Dansie, M. Ngo et al., “Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model,” Journal of Medical Genetics, vol. 46, no. 2, pp. 94–102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. C. Paribello, L. Tao, A. Folino et al., “Open-label add-on treatment trial of minocycline in fragile X syndrome,” BMC Neurology, vol. 10, article 91, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. S. S. Siller and K. Broadie, “Neural circuit architecture defects in a Drosophila model of fragile X syndrome are alleviated by minocycline treatment and genetic removal of matrix metalloproteinase,” Disease Models and Mechanisms, vol. 4, no. 5, pp. 673–685, 2011. View at Google Scholar
  54. A. Utari, W. Chonchaiya, S. M. Rivera et al., “Side effects of minocycline treatment in patients with fragile X syndrome and exploration of outcome measures,” American journal on intellectual and developmental disabilities, vol. 115, no. 5, pp. 433–443, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. H. S. Kim and Y. H. Suh, “Minocycline and neurodegenerative diseases,” Behavioural Brain Research, vol. 196, no. 2, pp. 168–179, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. M. O. Griffin, E. Fricovsky, G. Ceballos, and F. Villarreal, “Tetracyclines: a pleitropic family of compounds with promising therapeutic properties. Review of the literature,” American Journal of Physiology - Cell Physiology, vol. 299, no. 3, pp. C539–C548, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. S. M. Agrawal, L. Lau, and V. W. Yong, “MMPs in the central nervous system: where the good guys go bad,” Seminars in Cell and Developmental Biology, vol. 19, no. 1, pp. 42–51, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. I. M. Ethell and D. W. Ethell, “Matrix metalloproteinases in brain development and remodeling: synaptic functions and targets,” Journal of Neuroscience Research, vol. 85, no. 13, pp. 2813–2823, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Page-McCaw, A. J. Ewald, and Z. Werb, “Matrix metalloproteinases and the regulation of tissue remodelling,” Nature Reviews Molecular Cell Biology, vol. 8, no. 3, pp. 221–233, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Page-McCaw, J. Serano, J. M. Santë, and G. M. Rubin, “Drosophila matrix metalloproteinases are required for tissue remodeling, but not embryonic development,” Developmental Cell, vol. 4, no. 1, pp. 95–106, 2003. View at Publisher · View at Google Scholar · View at Scopus
  61. V. Brundula, N. B. Rewcastle, L. M. Metz, C. C. Bernard, and V. W. Yong, “Targeting leukocyte MMPs and transmigration minocycline as a potential therapy for multiple sclerosis,” Brain, vol. 125 part 6, pp. 1297–1308, 2002. View at Google Scholar · View at Scopus
  62. L. van den Bosch, P. Tilkin, G. Lemmens, and W. Robberecht, “Minocycline delays disease onset and mortality in a transgenic model of ALS,” NeuroReport, vol. 13, no. 8, pp. 1067–1070, 2002. View at Google Scholar · View at Scopus
  63. S. Zhu, I. G. Stavrovskaya, M. Drozda et al., “Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice,” Nature, vol. 417, no. 6884, pp. 74–78, 2002. View at Publisher · View at Google Scholar · View at Scopus
  64. X. Wang, S. Zhu, M. Drozda et al., “Minocycline inhibits caspase-independent and -dependent mitochondrial cell death pathways in models of Huntington's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 18, pp. 10483–10487, 2003. View at Publisher · View at Google Scholar · View at Scopus
  65. D. C. Wu, V. Jackson-Lewis, M. Vila et al., “Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease,” Journal of Neuroscience, vol. 22, no. 5, pp. 1763–1771, 2002. View at Google Scholar · View at Scopus
  66. Y. Choi, H. S. Kim, K. Y. Shin et al., “Minocycline attenuates neuronal cell death and improves cognitive impairment in Alzheimer's disease models,” Neuropsychopharmacology, vol. 32, no. 11, pp. 2393–2404, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. S. Rivera, M. Khrestchatisky, L. Kaczmarek, G. A. Rosenberg, and D. M. Jaworski, “Metzincin proteases and their inhibitors: foes or friends in nervous system physiology?” Journal of Neuroscience, vol. 30, no. 46, pp. 15337–15357, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. S. J. Crocker, A. Pagenstecher, and I. L. Campbell, “The TIMPs tango with MMPs and more in the central nervous system,” Journal of Neuroscience Research, vol. 75, no. 1, pp. 1–11, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. W. G. Stetler-Stevenson, “Tissue inhibitors of metalloproteinases in cell signaling: metalloproteinase-independent biological activities,” Science signaling, vol. 1, no. 27, p. re6, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. S. E. Rotschafer, M. S. Trujillo, L. E. Dansie, I. M. Ethell, and K. A. Razak, “Minocycline treatment reverses ultrasonic vocalization production deficit in a mouse model of fragile X syndrome,” Brain Research, vol. 1439, pp. 7–14, 2012. View at Google Scholar
  71. C. E. Bakker, C. Verheij, R. Willemsen et al., “Fmr1 knockout mice: a model to study fragile X mental retardation,” Cell, vol. 78, no. 1, pp. 23–33, 1994. View at Google Scholar · View at Scopus
  72. R. F. Kooy, R. D'Hooge, E. Reyniers et al., “Transgenic mouse model for the fragile X syndrome,” American Journal of Medical Genetics, vol. 64, no. 2, pp. 241–245, 1996. View at Google Scholar
  73. I. Heulens and F. Kooy, “fragile X syndrome: from gene discovery to therapy,” Frontiers in Bioscience, vol. 16, no. 4, pp. 1211–1232, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. V. J. Hinton, W. T. Brown, K. Wisniewski, and R. D. Rudelli, “Analysis of neocortex in three males with the fragile X syndrome,” American Journal of Medical Genetics, vol. 41, no. 3, pp. 289–294, 1991. View at Google Scholar · View at Scopus
  75. R. D. Rudelli, W. T. Brown, and K. Wisniewski, “Adult fragile X syndrome. Clinico-neuropathologic findings,” Acta Neuropathologica, vol. 67, no. 3-4, pp. 289–295, 1985. View at Google Scholar · View at Scopus
  76. I. M. Ethell and E. B. Pasquale, “Molecular mechanisms of dendritic spine development and remodeling,” Progress in Neurobiology, vol. 75, no. 3, pp. 161–205, 2005. View at Publisher · View at Google Scholar · View at Scopus
  77. G. W. Knott, A. Holtmaat, L. Wilbrecht, E. Welker, and K. Svoboda, “Spine growth precedes synapse formation in the adult neocortex in vivo,” Nature Neuroscience, vol. 9, no. 9, pp. 1117–1124, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. G. S. Marrs, S. H. Green, and M. E. Dailey, “Rapid formation and remodeling of postsynaptic densities in developing dendrites,” Nature Neuroscience, vol. 4, no. 10, pp. 1006–1013, 2001. View at Publisher · View at Google Scholar · View at Scopus
  79. N. E. Ziv and S. J. Smith, “Evidence for a role of dendritic filopodia in synaptogenesis and spine formation,” Neuron, vol. 17, no. 1, pp. 91–102, 1996. View at Publisher · View at Google Scholar · View at Scopus
  80. T. A. Comery, J. B. Harris, P. J. Willems et al., “Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 10, pp. 5401–5404, 1997. View at Publisher · View at Google Scholar · View at Scopus
  81. E. A. Nimchinsky, A. M. Oberlander, and K. Svoboda, “Abnormal development of dendritic spines in FMR1 knock-out mice,” Journal of Neuroscience, vol. 21, no. 14, pp. 5139–5146, 2001. View at Google Scholar · View at Scopus
  82. T. V. Bilousova, D. A. Rusakov, D. W. Ethell, and I. M. Ethell, “Matrix metalloproteinase-7 disrupts dendritic spines in hippocampal neurons through NMDA receptor activation,” Journal of Neurochemistry, vol. 97, no. 1, pp. 44–56, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. D. Bushey, G. Tononi, and C. Cirelli, “The drosophila fragile X mental retardation gene regulates sleep need,” Journal of Neuroscience, vol. 29, no. 7, pp. 1948–1961, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. R. L. Coffee, C. R. Tessier, E. A. Woodruff, and K. Broadie, “fragile X mental retardation protein has a unique, evolutionarily conserved neuronal function not shared with FXR1P or FXR2P,” DMM Disease Models and Mechanisms, vol. 3, no. 7-8, pp. 471–485, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. T. C. Dockendorff, H. S. Su, S. M. J. McBride et al., “Drosophila lacking dfmr1 activity show defects in circadian output and fail to maintain courtship interest,” Neuron, vol. 34, no. 6, pp. 973–984, 2002. View at Publisher · View at Google Scholar · View at Scopus
  86. C. L. Gatto and K. Broadie, “Temporal requirements of the fragile X mental retardation protein in the regulation of synaptic structure,” Development, vol. 135, no. 15, pp. 2637–2642, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. C. L. Gatto and K. Broadie, “Temporal requirements of the fragile X mental retardation protein in modulating circadian clock circuit synaptic architecture,” Front Neural Circuits, vol. 3, p. 8, 2009. View at Google Scholar
  88. C. L. Gatto and K. Broadie, “The fragile X mental retardation protein in circadian rhythmicity and memory consolidation,” Molecular Neurobiology, vol. 39, no. 2, pp. 107–129, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. S. B. Inoue, M. Shimoda, I. Nishinokubi et al., “A role for the Drosophila fragile X-related gene in circadian output,” Current Biology, vol. 12, no. 15, pp. 1331–1335, 2002. View at Publisher · View at Google Scholar · View at Scopus
  90. J. Morales, P. R. Hiesinger, A. J. Schroeder et al., “Drosophila fragile X protein, DFXR, regulates neuronal morphology and function in the brain,” Neuron, vol. 34, no. 6, pp. 961–972, 2002. View at Publisher · View at Google Scholar · View at Scopus
  91. C. R. Tessier and K. Broadie, “The fragile X mental retardation protein developmentally regulates the strength and fidelity of calcium signaling in Drosophilas mushroom body neurons,” Neurobiology of Disease, vol. 41, no. 1, pp. 147–159, 2011. View at Publisher · View at Google Scholar · View at Scopus
  92. Y. Q. Zhang, H. J. G. Matthies, J. Mancuso et al., “The Drosophila fragile X-related gene regulates axoneme differentiation during spermatogenesis,” Developmental Biology, vol. 270, no. 2, pp. 290–307, 2004. View at Publisher · View at Google Scholar · View at Scopus
  93. M. A. Callan, C. Cabernard, J. Heck, S. Luois, C. Q. Doe, and D. C. Zarnescu, “fragile X protein controls neural stem cell proliferation in the Drosophila brain,” Human molecular genetics, vol. 19, no. 15, pp. 3068–3079, 2010. View at Google Scholar · View at Scopus
  94. A. M. J. Cziko, C. T. McCann, I. C. Howlett et al., “Genetic modifiers of dFMR1 encode RNA granule components in Drosophila,” Genetics, vol. 182, no. 4, pp. 1051–1060, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. A. M. Epstein, C. R. Bauer, A. Ho, G. Bosco, and D. C. Zarnescu, “Drosophila fragile X protein controls cellular proliferation by regulating cbl levels in the ovary,” Developmental Biology, vol. 330, no. 1, pp. 83–92, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. P. S. Estes, M. O'Shea, S. Clasen, and D. C. Zarnescu, “fragile X protein controls the efficacy of mRNA transport in Drosophila neurons,” Molecular and Cellular Neuroscience, vol. 39, no. 2, pp. 170–179, 2008. View at Publisher · View at Google Scholar · View at Scopus
  97. S. Chang, S. M. Bray, Z. Li et al., “Identification of small molecules rescuing fragile X syndrome phenotypes in Drosophila,” Nature Chemical Biology, vol. 4, no. 4, pp. 256–263, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. D. C. Zarnescu, G. Shan, S. T. Warren, and P. Jin, “Come FLY with us: toward understanding fragile X syndrome,” Genes, Brain and Behavior, vol. 4, no. 6, pp. 385–392, 2005. View at Publisher · View at Google Scholar · View at Scopus
  99. R. L. Coffee Jr., A. J. Williamson, C. M. Adkins, M. C. Gray, T. L. Page, and K. Broadie, “In vivo neuronal function of the fragile X mental retardation protein is regulated by phosphorylation,” Human Molecular Genetics. In press.
  100. P. Michaluk, M. Wawrzyniak, and P. Alot, “Influence of matrix metalloproteinase MMP-9 on dendritic spine morphology,” Journal of Cell Science, vol. 124, part 19, pp. 3369–3380, 2011. View at Google Scholar
  101. A. Page-McCaw, “Remodeling the model organism: matrix metalloproteinase functions in invertebrates,” Seminars in Cell and Developmental Biology, vol. 19, no. 1, pp. 14–23, 2008. View at Publisher · View at Google Scholar · View at Scopus
  102. B. M. Glasheen, A. T. Kabra, and A. Page-McCaw, “Distinct functions for the catalytic and hemopexin domains of a Drosophila matrix metalloproteinase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 8, pp. 2659–2664, 2009. View at Publisher · View at Google Scholar · View at Scopus
  103. B. M. Glasheen, R. M. Robbins, C. Piette, G. J. Beitel, and A. Page-McCaw, “A matrix metalloproteinase mediates airway remodeling in Drosophila,” Developmental Biology, vol. 344, no. 2, pp. 772–783, 2010. View at Publisher · View at Google Scholar · View at Scopus
  104. P. Michaluk and L. Kaczmarek, “Matrix metalloproteinase-9 in glutamate-dependent adult brain function and dysfunction,” Cell Death and Differentiation, vol. 14, no. 7, pp. 1255–1258, 2007. View at Publisher · View at Google Scholar · View at Scopus
  105. V. Nagy, O. Bozdagi, A. Matynia et al., “Matrix metalloproteinase-9 is required for hippocampal late-phase long-term potentiation and memory,” Journal of Neuroscience, vol. 26, no. 7, pp. 1923–1934, 2006. View at Publisher · View at Google Scholar · View at Scopus
  106. L. Tian, M. Stefanidakis, L. Ning et al., “Activation of NMDA receptors promotes dendritic spine development through MMP-mediated ICAM-5 cleavage,” Journal of Cell Biology, vol. 178, no. 4, pp. 687–700, 2007. View at Publisher · View at Google Scholar · View at Scopus
  107. M. Gawlak, T. Górkiewicz, A. Gorlewicz, F. A. Konopacki, L. Kaczmarek, and G. M. Wilczynski, “High resolution in situ zymography reveals matrix metalloproteinase activity at glutamatergic synapses,” Neuroscience, vol. 158, no. 1, pp. 167–176, 2009. View at Publisher · View at Google Scholar · View at Scopus
  108. F. A. Konopacki, M. Rylski, E. Wilczek et al., “Synaptic localization of seizure-induced matrix metalloproteinase-9 mRNA,” Neuroscience, vol. 150, no. 1, pp. 31–39, 2007. View at Publisher · View at Google Scholar · View at Scopus
  109. Y. Duchossoy, J. C. Horvat, and O. Stettler, “MMP-related gelatinase activity is strongly induced in scar tissue of injured adult spinal cord and forms pathways for ingrowing neurites,” Molecular and Cellular Neuroscience, vol. 17, no. 6, pp. 945–956, 2001. View at Publisher · View at Google Scholar · View at Scopus
  110. C. S. Moore and S. J. Crocker, “An alternate perspective on the roles of TIMPs and MMPs in pathology,” The American Journal of Pathology, vol. 180, no. 1, pp. 12–16, 2012. View at Google Scholar
  111. A. P. Le and W. J. Friedman, “Matrix metalloproteinase-7 regulates cleavage of pro-nerve growth factor and is neuroprotective following kainic acid-induced seizures,” The Journal of Neuroscience, vol. 32, no. 2, pp. 703–712, 2012. View at Google Scholar
  112. A. de Maria, C. Solaro, M. Abbruzzese, and A. Primavera, “Minocycline for symptomatic neurosyphilis in patients allergic to penicillin,” The New England Journal of Medicine, vol. 337, no. 18, pp. 1322–1323, 1997. View at Publisher · View at Google Scholar · View at Scopus
  113. N. Hayashi and M. Kawashima, “Efficacy of oral antibiotics on acne vulgaris and their effects on quality of life: a multicenter randomized controlled trial using minocycline, roxithromycin and faropenem,” Journal of Dermatology, vol. 38, no. 2, pp. 111–119, 2011. View at Publisher · View at Google Scholar · View at Scopus
  114. P. R. Moult, S. A. L. Corrêa, G. L. Collingridge, S. M. Fitzjohn, and Z. I. Bashir, “Co-activation of p38 mitogen-activated protein kinase and protein tyrosine phosphatase underlies metabotropic glutamate receptor-dependent long-term depression,” Journal of Physiology, vol. 586, no. 10, pp. 2499–2510, 2008. View at Publisher · View at Google Scholar · View at Scopus
  115. R. Pi, W. Li, N. T. K. Lee et al., “Minocycline prevents glutamate-induced apoptosis of cerebellar granule neurons by differential regulation of p38 and Akt pathways,” Journal of Neurochemistry, vol. 91, no. 5, pp. 1219–1230, 2004. View at Publisher · View at Google Scholar · View at Scopus