Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2012, Article ID 197491, 12 pages
http://dx.doi.org/10.1155/2012/197491
Review Article

Astrocytes and Developmental Plasticity in Fragile X

Department of Pathology and Molecular Medicine, McMaster University, HSC 1R1, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1

Received 23 March 2012; Revised 25 May 2012; Accepted 27 May 2012

Academic Editor: Hansen Wang

Copyright © 2012 Connie Cheng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Verkhratsky, J. J. Rodriguez, and V. Parpura, “Neurotransmitters and integration in neuronal-astroglial networks,” Neurochemical Research. In press.
  2. M. M. Bolton and C. Eroglu, “Look who is weaving the neural web: glial control of synapse formation,” Current Opinion in Neurobiology, vol. 19, no. 5, pp. 491–497, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Jacobs, C. Cheng, and L. C. Doering, “Probing astrocyte function in fragile x syndrome,” Results and Problems in Cell Differentiation, vol. 54, pp. 15–31, 2012. View at Publisher · View at Google Scholar
  4. D. D. Wang and A. Bordey, “The astrocyte odyssey,” Progress in Neurobiology, vol. 86, no. 4, pp. 342–367, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. H. K. Kimelberg, “The problem of astrocyte identity,” Neurochemistry International, vol. 45, no. 2-3, pp. 191–202, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Araque, G. Carmignoto, and P. G. Haydon, “Dynamic signaling between astrocytes and neurons,” Annual Review of Physiology, vol. 63, pp. 795–813, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. A. L. Bhakar, G. Dolen, and M. F. Bear, “The Pathophysiology of Fragile X, (and what it teaches us about synapses),” Annual Review of Neuroscience, vol. 35, pp. 417–443, 2012. View at Google Scholar
  8. L. K. K. Pacey and L. C. Doering, “Developmental expression of FMRP in the astrocyte lineage: implications for fragile X syndrome,” GLIA, vol. 55, no. 15, pp. 1601–1609, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Zhang and B. A. Barres, “Astrocyte heterogeneity: an underappreciated topic in neurobiology,” Current Opinion in Neurobiology, vol. 20, no. 5, pp. 588–594, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Kettemann and B. R. Ransom, The Concept of Neuroglia: A Historical Perspective, Oxford University Press, Oxford, UK, 2 edition, 2005.
  11. H. Kettenmann and A. Verkhratsky, “Neuroglia: the 150 years after,” Trends in Neurosciences, vol. 31, no. 12, pp. 653–659, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Kettenmann and A. Verkhratsky, “Neuroglia—living nerve glue,” Fortschritte der Neurologie-Psychiatrie, vol. 79, no. 10, pp. 588–597, 2011. View at Publisher · View at Google Scholar
  13. M. V. Sofroniew and H. V. Vinters, “Astrocytes: biology and pathology,” Acta Neuropathologica, vol. 119, no. 1, pp. 7–35, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. M. R. Witcher, Y. D. Park, M. R. Lee, S. Sharma, K. M. Harris, and S. A. Kirov, “Three-dimensional relationships between perisynaptic astroglia and human hippocampal synapses,” GLIA, vol. 58, no. 5, pp. 572–587, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. M. R. Freeman, “Specification and morphogenesis of astrocytes,” Science, vol. 330, no. 6005, pp. 774–778, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. E. A. Bushong, M. E. Martone, Y. Z. Jones, and M. H. Ellisman, “Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains,” Journal of Neuroscience, vol. 22, no. 1, pp. 183–192, 2002. View at Google Scholar · View at Scopus
  17. J. D. Cahoy, B. Emery, A. Kaushal et al., “A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function,” Journal of Neuroscience, vol. 28, no. 1, pp. 264–278, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. J. D. Rothstein, L. Martin, A. I. Levey et al., “Localization of neuronal and glial glutamate transporters,” Neuron, vol. 13, no. 3, pp. 713–725, 1994. View at Publisher · View at Google Scholar · View at Scopus
  19. J. A. Hewett, “Determinants of regional and local diversity within the astroglial lineage of the normal central nervous system,” Journal of Neurochemistry, vol. 110, no. 6, pp. 1717–1736, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Alonso, I. Ortega-Pérez, M. S. Grubb, J. P. Bourgeois, P. Charneau, and P. M. Lledo, “Turning astrocytes from the rostral migratory stream into neurons: a role for the olfactory sensory organ,” Journal of Neuroscience, vol. 28, no. 43, pp. 11089–11102, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Morrens, W. van den Broeck, and G. Kempermann, “Glial cells in adult neurogenesis,” GLIA, vol. 60, no. 2, pp. 159–174, 2012. View at Publisher · View at Google Scholar
  22. A. Kriegstein and A. Alvarez-Buylla, “The glial nature of embryonic and adult neural stem cells,” Annual Review of Neuroscience, vol. 32, pp. 149–184, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. I. Allaman, M. Bélanger, and P. J. Magistretti, “Astrocyte-neuron metabolic relationships: for better and for worse,” Trends in Neurosciences, vol. 34, no. 2, pp. 76–87, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. D. T. Theodosis, D. A. Poulain, and S. H. R. Oliet, “Activity-dependent structural and functional plasticity of astrocyte-neuron interactions,” Physiological Reviews, vol. 88, no. 3, pp. 983–1008, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Ventura and K. M. Harris, “Three-dimensional relationships between hippocampal synapses and astrocytes,” Journal of Neuroscience, vol. 19, no. 16, pp. 6897–6906, 1999. View at Google Scholar · View at Scopus
  26. M. M. Halassa, T. Fellin, H. Takano, J. H. Dong, and P. G. Haydon, “Synaptic islands defined by the territory of a single astrocyte,” Journal of Neuroscience, vol. 27, no. 24, pp. 6473–6477, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. A. J. Barker and E. M. Ullian, “Astrocytes and synaptic plasticity,” Neuroscientist, vol. 16, no. 1, pp. 40–50, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. F. W. Pfrieger and B. A. Barres, “Synaptic efficacy enhanced by glial cells in vitro,” Science, vol. 277, no. 5332, pp. 1684–1687, 1997. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Nägler, D. H. Mauch, and F. W. Pfrieger, “Glia-derived signals induce synapse formation in neurones of the rat central nervous system,” Journal of Physiology, vol. 533, no. 3, pp. 665–679, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. E. M. Ullian, S. K. Sapperstein, K. S. Christopherson, and B. A. Barres, “Control of synapse number by glia,” Science, vol. 291, no. 5504, pp. 657–661, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Bornstein and E. H. Sage, “Matricellular proteins: extracellular modulators of cell function,” Current Opinion in Cell Biology, vol. 14, no. 5, pp. 608–616, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. D. H. Mauch, K. Nagler, S. Schumacher et al., “CNS synaptogenesis promoted by glia-derived cholesterol,” Science, vol. 294, no. 5545, pp. 1354–1357, 2001. View at Publisher · View at Google Scholar
  33. C. Thiele, M. J. Hannah, F. Fahrenholz, and W. B. Huttner, “Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles,” Nature Cell Biology, vol. 2, no. 1, pp. 42–49, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. K. S. Christopherson, E. M. Ullian, C. C. A. Stokes et al., “Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis,” Cell, vol. 120, no. 3, pp. 421–433, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Adams and J. C. Lawler, “The thrombospondins,” The International Journal of Biochemistry & Cell Biology, vol. 36, no. 6, pp. 961–968, 2004. View at Publisher · View at Google Scholar
  36. C. Eroglu, N. J. Allen, M. W. Susman et al., “Gabapentin receptor α2δ-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis,” Cell, vol. 139, no. 2, pp. 380–392, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. A. V. Molofsky, R. Krenick, E. Ullian et al., “Astrocytes and disease: a neurodevelopmental perspective,” Genes & Development, vol. 26, no. 9, pp. 891–907, 2012. View at Publisher · View at Google Scholar
  38. A. Faissner, M. Pyka, M. Geissler et al., “Contributions of astrocytes to synapse formation and maturation-potential functions of the perisynaptic extracellular matrix,” Brain Research Reviews, vol. 63, no. 1-2, pp. 26–38, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. C. S. Barros, S. J. Franco, and U. Müller, “Extracellular matrix: functions in the nervous system,” Cold Spring Harbor perspectives in biology, vol. 3, no. 1, p. a005108, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Bartsch, U. Bartsch, U. Dorries et al., “Expression of tenascin in the developing and adult cerebellar cortex,” Journal of Neuroscience, vol. 12, no. 3, pp. 736–749, 1992. View at Google Scholar · View at Scopus
  41. M. Nakic, D. Manahan-Vaughan, K. G. Reymann, and M. Schachner, “Long-term potentiation in vivo increases rat hippocampal tenascin-C expression,” Journal of Neurobiology, vol. 37, no. 3, pp. 393–404, 1998. View at Publisher · View at Google Scholar
  42. M. R. Evers, B. Salmen, O. Bukalo et al., “Impairment of L-type Ca2+ channel-dependent forms of hippocampal synaptic plasticity in mice deficient in the extracellular matrix glycoprotein tenascin-C,” Journal of Neuroscience, vol. 22, no. 16, pp. 7177–7194, 2002. View at Google Scholar · View at Scopus
  43. M. Pyka, C. Busse, C. Seidenbecher, E. D. Gundelfinger, and A. Faissner, “Astrocytes are crucial for survival and maturation of embryonic hippocampal neurons in a neuron-glia cell-insert coculture assay,” Synapse, vol. 65, no. 1, pp. 41–53, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. H. Kucukdereli, N. J. Allen, A. T. Lee et al., “Control of excitatory CNS synaptogenesis by astrocyte-secreted proteins Hevin and SPARC,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 32, pp. 440–449, 2011. View at Publisher · View at Google Scholar
  45. C. Eroglu, “The role of astrocyte-secreted matricellular proteins in central nervous system development and function,” Journal of Cell Communication and Signaling, vol. 3, no. 3-4, pp. 167–176, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. B. Stevens, N. J. Allen, L. E. Vazquez et al., “The classical complement cascade mediates CNS synapse elimination,” Cell, vol. 131, no. 6, pp. 1164–1178, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. Chu, X. Jin, I. Parada et al., “Enhanced synaptic connectivity and epilepsy in C1q knockout mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 17, pp. 7975–7980, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. H. Hama, C. Hara, K. Yamaguchi, and A. Miyawaki, “PKC signaling mediates global enhancement of excitatory synaptogenesis in neurons triggered by local contact with astrocytes,” Neuron, vol. 41, no. 3, pp. 405–415, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. K. K. Murai, L. N. Nguyen, F. Irie, Y. Yu, and E. B. Pasquale, “Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling,” Nature Neuroscience, vol. 6, no. 2, pp. 153–160, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. E. B. Murai and K. K. Pasquale, “Eph receptors and ephrins in neuron-astrocyte communication at synapses,” GLIA, vol. 59, no. 11, pp. 1567–1578, 2011. View at Publisher · View at Google Scholar
  51. T. Fellin, “Communication between neurons and astrocytes: relevance to the modulation of synaptic and network activity,” Journal of Neurochemistry, vol. 108, no. 3, pp. 533–544, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. P. Penzes, M. E. Cahill, K. A. Jones, J. E. Vanleeuwen, and K. M. Woolfrey, “Dendritic spine pathology in neuropsychiatric disorders,” Nature Neuroscience, vol. 14, no. 3, pp. 285–293, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. J. C. Fiala, J. Spacek, and K. M. Harris, “Dendritic spine pathology: cause or consequence of neurological disorders?” Brain Research Reviews, vol. 39, no. 1, pp. 29–54, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. K. J. Harms and A. Dunaevsky, “Dendritic spine plasticity: looking beyond development,” Brain Research, vol. 1184, no. 1, pp. 65–71, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Haber, L. Zhou, and K. K. Murai, “Cooperative astrocyte and dendritic spine dynamics at hippocampal excitatory synapses,” Journal of Neuroscience, vol. 26, no. 35, pp. 8881–8891, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. H. Nishida and S. Okabe, “Direct astrocytic contacts regulate local maturation of dendritic spines,” Journal of Neuroscience, vol. 27, no. 2, pp. 331–340, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. C. Dillon and Y. Goda, “The actin cytoskeleton: integrating form and function at the synapse,” Annual Review of Neuroscience, vol. 28, pp. 25–55, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. Q. S. Liu, Q. Xu, J. Kang, and M. Nedergaard, “Astrocyte activation of presynaptic metabotropic glutamate receptors modulates hippocampal inhibitory synaptic transmission,” Neuron Glia Biology, vol. 1, no. 4, pp. 307–316, 2004. View at Google Scholar
  59. Y. X. Li, Y. Zhang, H. A. Lester, E. M. Schuman, and N. Davidson, “Enhancement of neurotransmitter release induced by brain-derived neurotrophic factor in cultured hippocampal neurons,” Journal of Neuroscience, vol. 18, no. 24, pp. 10231–10240, 1998. View at Google Scholar · View at Scopus
  60. T. K. Hensch and M. Fagiolini, “Excitatory-inhibitory balance and critical period plasticity in developing visual cortex,” Progress in Brain Research, vol. 147, pp. 115–124, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. T. K. Hensch, “Critical period plasticity in local cortical circuits,” Nature Reviews Neuroscience, vol. 6, no. 11, pp. 877–888, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. P. G. Haydon, “Glia: listening and talking to the synapse,” Nature Reviews Neuroscience, vol. 2, no. 3, pp. 185–193, 2001. View at Publisher · View at Google Scholar · View at Scopus
  63. G. Perea and A. Araque, “Glial calcium signaling and neuron-glia communication,” Cell Calcium, vol. 38, no. 3-4, pp. 375–382, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Volterra and J. Meldolesi, “Astrocytes, from brain glue to communication elements: The revolution continues,” Nature Reviews Neuroscience, vol. 6, no. 8, pp. 626–640, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. R. Zorec, A. Araque, G. Carmignoto, P. G. Haydon, A. Verkhratsky, and V. Parpura, “Astroglial excitability and gliotransmission: an appraisal of Ca2+ as a signalling route,” ASN Neuro, vol. 4, no. 2, Article ID e00080, 2012. View at Publisher · View at Google Scholar
  66. A. Verkhratsky, J. J. Rodriguez, and V. Parpura, “Calcium signalling in astroglia,” Molecular and Cellular Endocrinology, vol. 353, no. 1-2, pp. 45–56, 2012. View at Publisher · View at Google Scholar
  67. M. M. Halassa, T. Fellin, and P. G. Haydon, “The tripartite synapse: roles for gliotransmission in health and disease,” Trends in Molecular Medicine, vol. 13, no. 2, pp. 54–63, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. A. Araque and M. Navarrete, “Glial cells in neuronal network function,” Philosophical Transactions of the Royal Society B, vol. 365, no. 1551, pp. 2375–2381, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. A. Parpura and V. Verkhratsky, “Neuroglia at the crossroads of homeostasis, metabolism and signaling: evolution of the concept,” ASN Neuro, vol. 4, no. 4, Article ID e00087, 2012. View at Publisher · View at Google Scholar
  70. S. Paixão and R. Klein, “Neuron-astrocyte communication and synaptic plasticity,” Current Opinion in Neurobiology, vol. 20, no. 4, pp. 466–473, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. P. Bezzi, M. Domercq, S. Vesce, and A. Volterra, “Neuron-astrocyte cross-talk during synaptic transmission: physiological and neuropathological implications,” Progress in Brain Research, vol. 132, pp. 255–265, 2001. View at Publisher · View at Google Scholar · View at Scopus
  72. V. Parpura, T. A. Basarsky, F. Liu, K. Jeftinija, S. Jeftinija, and P. G. Haydon, “Glutamate-mediated astrocyte-neuron signalling,” Nature, vol. 369, no. 6483, pp. 744–747, 1994. View at Publisher · View at Google Scholar · View at Scopus
  73. A. M. Butt, “ATP: a ubiquitous gliotransmitter integrating neuron-glial networks,” Seminars in Cell and Developmental Biology, vol. 22, no. 2, pp. 205–213, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. S. H. R. Oliet and J. P. Mothet, “Regulation of N-methyl-d-aspartate receptors by astrocytic d-serine,” Neuroscience, vol. 158, no. 1, pp. 275–283, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. A. Panatier, D. T. Theodosis, J. P. Mothet et al., “Glia-derived d-serine controls NMDA receptor activity and synaptic memory,” Cell, vol. 125, no. 4, pp. 775–784, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. C. Bonansco, A. Couve, G. Perea, C. A. Ferradas, M. Roncagliolo, and M. Fuenzalida, “Glutamate released spontaneously from astrocytes sets the threshold for synaptic plasticity,” European Journal of Neuroscience, vol. 33, no. 8, pp. 1483–1492, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. G. Perea, M. Navarrete, and A. Araque, “Tripartite synapses: astrocytes process and control synaptic information,” Trends in Neurosciences, vol. 32, no. 8, pp. 421–431, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. A. Araque, “Astrocytes process synaptic information,” Neuron Glia Biology, vol. 4, no. 1, pp. 3–10, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. B. A. Barres, “The mystery and magic of glia: a perspective on their roles in health and disease,” Neuron, vol. 60, no. 3, pp. 430–440, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. H. K. Kimelberg and M. Nedergaard, “Functions of astrocytes and their potential as therapeutic targets,” Neurotherapeutics, vol. 7, no. 4, pp. 338–353, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. Y. C. Lin and A. J. Koleske, “Mechanisms of synapse and dendrite maintenance and their disruption in psychiatric and neurodegenerative disorders,” Annual Review of Neuroscience, vol. 33, pp. 349–378, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. G. Ricci, L. Volpi, L. Pasquali, L. Petrozzi, and G. Siciliano, “Astrocyte-neuron interactions in neurological disorders,” Journal of Biological Physics, vol. 35, no. 4, pp. 317–336, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. J. C. McGann, D. T. Lioy, and G. Mandel, “Astrocytes conspire with neurons during progression of neurological disease,” Current Opinion in Neurobiology. In press.
  84. V. Parpura, M. T. Heneka, V. Montana et al., “Glial cells in (patho)physiology,” Journal of Neurochemistry, vol. 121, no. 1, pp. 4–27, 2012. View at Publisher · View at Google Scholar
  85. C. Portera-Cailliau, “Which comes first in fragile X syndrome, dendritic spine dysgenesis or defects in circuit plasticity?” Neuroscientist, vol. 18, no. 1, pp. 28–44, 2011. View at Google Scholar
  86. W. E. Kaufmann, R. Cortell, A. S. M. Kau et al., “Autism spectrum disorder in fragile X syndrome: communication, social interaction, and specific behaviors,” American Journal of Medical Genetics, vol. 129, no. 3, pp. 225–234, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. F. Rousseau, Y. Labelle, J. Bussieres, and C. Lindsay, “The fragile x mental retardation syndrome 20 years after the FMR1 gene discovery: an expanding universe of knowledge,” Clinical Biochemist Reviews, vol. 32, no. 3, pp. 135–162, 2011. View at Google Scholar
  88. M. R. Santoro, S. M. Bray, and S. T. Warren, “Molecular mechanisms of fragile X syndrome: a twenty-year perspective,” Annual Review of Pathology, vol. 7, pp. 219–245, 2012. View at Publisher · View at Google Scholar
  89. G. J. Bassell and S. T. Warren, “Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function,” Neuron, vol. 60, no. 2, pp. 201–214, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. L. N. Antar, C. Li, H. Zhang, R. C. Carroll, and G. J. Bassell, “Local functions for FMRP in axon growth cone motility and activity-dependent regulation of filopodia and spine synapses,” Molecular and Cellular Neuroscience, vol. 32, no. 1-2, pp. 37–48, 2006. View at Publisher · View at Google Scholar · View at Scopus
  91. J. A. Ronesi and K. M. Huber, “Metabotropic glutamate receptors and fragile x mental retardation protein: partners in translational regulation at the synapse,” Science signaling, vol. 1, no. 5, p. pe6, 2008. View at Publisher · View at Google Scholar · View at Scopus
  92. K. M. Huber, S. M. Gallagher, S. T. Warren, and M. F. Bear, “Altered synaptic plasticity in a mouse model of fragile X mental retardation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 11, pp. 7746–7750, 2002. View at Publisher · View at Google Scholar · View at Scopus
  93. M. F. Bear, “Therapeutic implications of the mGluR theory of fragile X mental retardation,” Genes, Brain and Behavior, vol. 4, no. 6, pp. 393–398, 2005. View at Publisher · View at Google Scholar · View at Scopus
  94. K. Garber, K. T. Smith, D. Reines, and S. T. Warren, “Transcription, translation and fragile X syndrome,” Current Opinion in Genetics and Development, vol. 16, no. 3, pp. 270–275, 2006. View at Publisher · View at Google Scholar · View at Scopus
  95. C. D'Hulst and R. F. Kooy, “Fragile X syndrome: from molecular genetics to therapy,” Journal of Medical Genetics, vol. 46, no. 9, pp. 577–584, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. C. E. Bakker, C. Verheij, R. Willemsen et al., “Fmr1 knockout mice: a model to study fragile X mental retardation,” Cell, vol. 78, no. 1, pp. 23–33, 1994. View at Google Scholar · View at Scopus
  97. B. Tucker, R. I. Richards, and M. Lardelli, “Contribution of mGluR and Fmr1 functional pathways to neurite morphogenesis, craniofacial development and fragile X syndrome,” Human Molecular Genetics, vol. 15, no. 23, pp. 3446–3458, 2006. View at Publisher · View at Google Scholar · View at Scopus
  98. Y. Q. Zhang, A. M. Bailey, H. J. G. Matthies et al., “Drosophila fragile x-related gene regulates the MAP1B homolog Futsch to control synaptic structure and function,” Cell, vol. 107, no. 5, pp. 591–603, 2001. View at Publisher · View at Google Scholar · View at Scopus
  99. M. J. den Broeder, H. van der Linde, J. R. Brouwer, B. A. Oostra, R. Willemsen, and R. F. Ketting, “Generation and characterization of Fmr1 knockout zebrafish,” PLoS ONE, vol. 4, no. 11, Article ID e7910, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. I. M. Dansie and L. E. Ethell, “Casting a net on dendritic spines: the extracellular matrix and its receptors,” Developmental Neurobiology, vol. 71, no. 11, pp. 956–981, 2011. View at Publisher · View at Google Scholar
  101. D. P. Purpura, “Dendritic spine 'dysgenesis' and mental retardation,” Science, vol. 186, no. 4169, pp. 1126–1128, 1974. View at Google Scholar · View at Scopus
  102. S. A. Irwin, B. Patel, M. Idupulapati et al., “Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination,” American Journal of Medical Genetics, vol. 98, no. 2, pp. 161–167, 2001. View at Publisher · View at Google Scholar
  103. J. Morales, P. R. Hiesinger, A. J. Schroeder et al., “Drosophila fragile X protein, DFXR, regulates neuronal morphology and function in the brain,” Neuron, vol. 34, no. 6, pp. 961–972, 2002. View at Publisher · View at Google Scholar · View at Scopus
  104. A. Lee, W. Li, K. Xu, B. A. Bogert, K. Su, and F. B. Gao, “Control of dendritic development by the Drosophila fragile X-related gene involves the small GTPase Rac1,” Development, vol. 130, no. 22, pp. 5543–5552, 2003. View at Publisher · View at Google Scholar · View at Scopus
  105. Y. Q. Zhang and K. Broadie, “Fathoming fragile X in fruit flies,” Trends in Genetics, vol. 21, no. 1, pp. 37–45, 2005. View at Publisher · View at Google Scholar · View at Scopus
  106. L. Pan, Y. Q. Zhang, E. Woodruff, and K. Broadie, “The Drosophila fragile X gene negatively regulates neuronal elaboration and synaptic differentiation,” Current Biology, vol. 14, no. 20, pp. 1863–1870, 2004. View at Publisher · View at Google Scholar · View at Scopus
  107. E. A. Nimchinsky, A. M. Oberlander, and K. Svoboda, “Abnormal development of dendritic spines in FMR1 knock-out mice,” Journal of Neuroscience, vol. 21, no. 14, pp. 5139–5146, 2001. View at Google Scholar · View at Scopus
  108. A. Cruz-Martín, M. Crespo, and C. Portera-Cailliau, “Delayed stabilization of dendritic spines in fragile X mice,” Journal of Neuroscience, vol. 30, no. 23, pp. 7793–7803, 2010. View at Publisher · View at Google Scholar · View at Scopus
  109. E. G. Harlow, S. M. Till, T. A. Russell, L. S. Wijetunge, P. Kind, and A. Contractor, “Critical period plasticity is disrupted in the barrel cortex of Fmr1 knockout mice,” Neuron, vol. 65, no. 3, pp. 385–398, 2010. View at Publisher · View at Google Scholar · View at Scopus
  110. H. Wang, L. Ku, D. J. Osterhout et al., “Developmentally-programmed FMRP expression in oligodendrocytes: a potential role of FMRP in regulating translation in oligodendroglia progenitors,” Human Molecular Genetics, vol. 13, no. 1, pp. 79–89, 2004. View at Publisher · View at Google Scholar · View at Scopus
  111. L. K. K. Pacey and L. C. Doering, “Developmental expression of FMRP in the astrocyte lineage: implications for fragile X syndrome,” GLIA, vol. 55, no. 15, pp. 1601–1609, 2007. View at Publisher · View at Google Scholar · View at Scopus
  112. S. Jacobs and L. C. Doering, “Astrocytes prevent abnormal neuronal development in the fragile X mouse,” Journal of Neuroscience, vol. 30, no. 12, pp. 4508–4514, 2010. View at Publisher · View at Google Scholar · View at Scopus
  113. S. Jacobs and L. C. Doering, Primary Dissociated Astrocyte and Neuron Co-Culture, Humana, New York, NY, USA, 4 edition, 2009.
  114. S. Jacobs, M. Nathwani, and L. C. Doering, “Fragile X astrocytes induce developmental delays in dendrite maturation and synaptic protein expression,” BMC Neuroscience, vol. 11, p. 132, 2010. View at Publisher · View at Google Scholar · View at Scopus
  115. Y. Sekino, N. Kojima, and T. Shirao, “Role of actin cytoskeleton in dendritic spine morphogenesis,” Neurochemistry International, vol. 51, no. 2–4, pp. 92–104, 2007. View at Publisher · View at Google Scholar · View at Scopus
  116. N. Ballas, D. T. Lioy, C. Grunseich, and G. Mandel, “Non-cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology,” Nature Neuroscience, vol. 12, no. 3, pp. 311–317, 2009. View at Publisher · View at Google Scholar · View at Scopus
  117. O. Garcia, M. Torres, P. Helguera, P. Coskun, and J. Busciglio, “A role for thrombospondin-1 deficits in astrocyte-mediated spine and synaptic pathology in down's syndrome,” PLoS ONE, vol. 5, no. 12, Article ID e14200, 2010. View at Publisher · View at Google Scholar · View at Scopus
  118. D. R. Hampson, D. C. Adusei, and L. K. K. Pacey, “The neurochemical basis for the treatment of autism spectrum disorders and Fragile X Syndrome,” Biochemical Pharmacology, vol. 81, no. 9, pp. 1078–1086, 2011. View at Publisher · View at Google Scholar · View at Scopus