Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2012, Article ID 279834, 8 pages
http://dx.doi.org/10.1155/2012/279834
Review Article

Synaptic Plasticity and Learning in Animal Models of Tuberous Sclerosis Complex

Oscar Langendorff Institute of Physiology, University of Rostock, Gertrudenstrasse 9, 18057 Rostock, Germany

Received 14 March 2012; Revised 11 May 2012; Accepted 16 May 2012

Academic Editor: Emma Frost

Copyright © 2012 Timo Kirschstein. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. B. Crino, K. L. Nathanson, and E. P. Henske, “Medical progress: the tuberous sclerosis complex,” The New England Journal of Medicine, vol. 355, no. 13, pp. 1345–1356, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Curatolo, R. Bombardieri, and S. Jozwiak, “Tuberous sclerosis,” The Lancet, vol. 372, no. 9639, pp. 657–668, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. P. R. Huttenlocher and R. L. Wollmann, “Cellular neuropathology of tuberous sclerosis,” Annals of the New York Academy of Sciences, vol. 615, pp. 140–148, 1991. View at Google Scholar · View at Scopus
  4. M. Mizuguchi and S. Takashima, “Neuropathology of tuberous sclerosis,” Brain and Development, vol. 23, no. 7, pp. 508–515, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. P. F. Bolton, R. J. Park, J. N. P. Higgins, P. D. Griffiths, and A. Pickles, “Neuro-epileptic determinants of autism spectrum disorders in tuberous sclerosis complex,” Brain, vol. 125, no. 6, pp. 1247–1255, 2002. View at Google Scholar · View at Scopus
  6. C. Joinson, F. J. O'Callaghan, J. P. Osborne, C. Martyn, T. Harris, and P. F. Bolton, “Learning disability and epilepsy in an epidemiological sample of individuals with tuberous sclerosis complex,” Psychological Medicine, vol. 33, no. 2, pp. 335–344, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Prather and P. J. de Vries, “Behavioral and cognitive aspects of tuberous sclerosis complex,” Journal of Child Neurology, vol. 19, no. 9, pp. 666–674, 2004. View at Google Scholar · View at Scopus
  8. P. de Vries, A. Humphrey, D. McCartney et al., “Consensus clinical guidelines for the assessment of cognitive and behavioural problems in Tuberous Sclerosis,” European Child and Adolescent Psychiatry, vol. 14, no. 4, pp. 183–190, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. E. B. Winterkorn, M. B. Pulsifer, and E. A. Thiele, “Cognitive prognosis of patients with tuberous sclerosis complex,” Neurology, vol. 68, no. 1, pp. 62–64, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. B. D. Manning and L. C. Cantley, “Rheb fills a GAP between TSC and TOR,” Trends in Biochemical Sciences, vol. 28, no. 11, pp. 573–576, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. A. R. Tee, B. D. Manning, P. P. Roux, L. C. Cantley, and J. Blenis, “Tuberous sclerosis complex gene products, tuberin and hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb,” Current Biology, vol. 13, no. 15, pp. 1259–1268, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Jozwiak, “Hamartin and tuberin: working together for tumour suppression,” International Journal of Cancer, vol. 118, no. 1, pp. 1–5, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. S. F. Tavazoie, V. A. Alvarez, D. A. Ridenour, D. J. Kwiatkowski, and B. L. Sabatini, “Regulation of neuronal morphology and function by the tumor suppressors Tsc1 and Tsc2,” Nature Neuroscience, vol. 8, no. 12, pp. 1727–1734, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Jaworski and M. Sheng, “The growing role of mTOR in neuronal development and plasticity,” Molecular Neurobiology, vol. 34, no. 3, pp. 205–219, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. P. J. de Vries and C. J. Howe, “The tuberous sclerosis complex proteins - a GRIPP on cognition and neurodevelopment,” Trends in Molecular Medicine, vol. 13, no. 8, pp. 319–326, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. J. D. Richter and E. Klann, “Making synaptic plasticity and memory last: mechanisms of translational regulation,” Genes and Development, vol. 23, no. 1, pp. 1–11, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. T. V. P. Bliss and T. Lomo, “Long lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path,” Journal of Physiology, vol. 232, no. 2, pp. 331–356, 1973. View at Google Scholar · View at Scopus
  18. T. V. P. Bliss and G. L. Collingridge, “A synaptic model of memory: long-term potentiation in the hippocampus,” Nature, vol. 361, no. 6407, pp. 31–39, 1993. View at Publisher · View at Google Scholar · View at Scopus
  19. E. R. Kandel, “The molecular biology of memory storage: a dialogue between genes and synapses,” Science, vol. 294, no. 5544, pp. 1030–1038, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. G. L. Collingridge, S. Peineau, J. G. Howland, and Y. T. Wang, “Long-term depression in the CNS,” Nature Reviews Neuroscience, vol. 11, no. 7, pp. 459–473, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. M. J. Palmer, A. J. Irving, G. R. Seabrook, D. E. Jane, and G. L. Collingridge, “The group I mGlu receptor agonist DHPG induces a novel form of LTD in the CA1 region of the hippocampus,” Neuropharmacology, vol. 36, no. 11-12, pp. 1517–1532, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. S. H. R. Oliet, R. C. Malenka, and R. A. Nicoll, “Two distinct forms of long-term depression coexist in CA1 hippocampal pyramidal cells,” Neuron, vol. 18, no. 6, pp. 969–982, 1997. View at Publisher · View at Google Scholar · View at Scopus
  23. K. M. Huber, M. S. Kayser, and M. F. Bear, “Role for rapid dendritic protein synthesis in hippocampal mGluR- dependent long-term depression,” Science, vol. 288, no. 5469, pp. 1254–1256, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. K. M. Huber, J. C. Roder, and M. F. Bear, “Chemical induction of mGluR5- and protein synthesis-dependent long-term depression in hippocampal area CA1,” Journal of Neurophysiology, vol. 86, no. 1, pp. 321–325, 2001. View at Google Scholar · View at Scopus
  25. E. M. Snyder, B. D. Philpot, K. M. Huber, X. Dong, J. R. Fallon, and M. F. Bear, “Internalization of ionotropic glutamate receptors in response to mGluR activation,” Nature Neuroscience, vol. 4, no. 11, pp. 1079–1085, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Waltereit, H. Welzl, J. Dichgans, H. P. Lipp, W. J. Schmidt, and M. Weller, “Enhanced episodic-like memory and kindling epilepsy in a rat model of tuberous sclerosis,” Journal of Neurochemistry, vol. 96, no. 2, pp. 407–413, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. C. von der Brelie, R. Waltereit, L. Zhang, H. Beck, and T. Kirschstein, “Impaired synaptic plasticity in a rat model of tuberous sclerosis,” European Journal of Neuroscience, vol. 23, no. 3, pp. 686–692, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Waltereit, B. Japs, M. Schneider, P. J. de Vries, and D. Bartsch, “Epilepsy and Tsc2 haploinsufficiency lead to autistic-like social deficit behaviors in rats,” Behavior Genetics, vol. 41, no. 3, pp. 364–372, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Ehninger, S. Han, C. Shilyansky et al., “Reversal of learning deficits in a Tsc2+/- mouse model of tuberous sclerosis,” Nature Medicine, vol. 14, no. 8, pp. 843–848, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. B. D. Auerbach, E. K. Osterweil, and M. F. Bear, “Mutations causing syndromic autism define an axis of synaptic pathophysiology,” Nature, vol. 480, no. 7375, pp. 63–68, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. I. Chévere-Torres, H. Kaphzan, A. Bhattacharya et al., “Metabotropic glutamate receptor-dependent long-term depression is impaired due to elevated ERK signaling in the ΔRG mouse model of tuberous sclerosis complex,” Neurobiology of Disease, vol. 45, no. 3, pp. 1101–1110, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Ehninger and A. J. Silva, “Increased levels of anxiety-related behaviors in a Tsc2 dominant negative transgenic mouse model of tuberous sclerosis,” Behavior Genetics, vol. 41, no. 3, pp. 357–363, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. I. Chévere-Torres, J. M. Maki, E. Santini, and E. Klann, “Impaired social interactions and motor learning skills in tuberous sclerosis complex model mice expressing a dominant/negative form of tuberin,” Neurobiology of Disease, vol. 45, no. 1, pp. 156–164, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. L. H. Zeng, Y. Ouyang, V. Gazit et al., “Abnormal glutamate homeostasis and impaired synaptic plasticity and learning in a mouse model of tuberous sclerosis complex,” Neurobiology of Disease, vol. 28, no. 2, pp. 184–196, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. H. S. Bateup, K. T. Takasaki, J. L. Saulnier, C. L. Denefrio, and B. L. Sabatini, “Loss of Tsc1 in vivo impairs hippocampal mGluR-LTD and increases excitatory synaptic function,” Journal of Neuroscience, vol. 31, no. 24, pp. 8862–8869, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. S. M. I. Goorden, G. M. van Woerden, L. van der Weerd, J. P. Cheadle, and Y. Elgersma, “Cognitive deficits in Tsc1+/- mice in the absence of cerebral lesions and seizures,” Annals of Neurology, vol. 62, no. 6, pp. 648–655, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. R. Eker, J. Mossige, J. Vincents Johannessen, and H. Aars, “Hereditary renal adenomas and adenocarcinomas in rats,” Diagnostic Histopathology, vol. 4, no. 1, pp. 99–110, 1981. View at Google Scholar · View at Scopus
  38. R. S. Yeung, C. D. Katsetos, and A. Klein-Szanto, “Subependymal astrocytic hamartomas in the Eker rat model of tuberous sclerosis,” American Journal of Pathology, vol. 151, no. 5, pp. 1477–1486, 1997. View at Google Scholar · View at Scopus
  39. M. Mizuguchi, S. Takashima, H. Yamanouchi, Y. Nakazato, H. Mitani, and O. Hino, “Novel cerebral lesions in the Eker rat model of tuberous sclerosis: cortical tuber and anaplastic ganglioglioma,” Journal of Neuropathology and Experimental Neurology, vol. 59, no. 3, pp. 188–196, 2000. View at Google Scholar · View at Scopus
  40. D. K. Takahashi, M. T. Dinday, N. M. Barbaro, and S. C. Baraban, “Abnormal cortical cells and astrocytomas in the Eker rat model of tuberous sclerosis complex,” Epilepsia, vol. 45, no. 12, pp. 1525–1530, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. H. J. Wenzel, L. S. Patel, C. A. Robbins, A. Emmi, R. S. Yeung, and P. A. Schwartzkroin, “Morphology of cerebral lesions in the Eker rat model of tuberous sclerosis,” Acta Neuropathologica, vol. 108, no. 2, pp. 97–108, 2004. View at Google Scholar · View at Scopus
  42. J. A. Chan, H. Zhang, P. S. Roberts et al., “Pathogenesis of tuberous sclerosis subependymal giant cell astrocytomas: biallelic inactivation of Tsc1 or Tsc2 leads to mTOR activation,” Journal of Neuropathology and Experimental Neurology, vol. 63, no. 12, pp. 1236–1242, 2004. View at Google Scholar · View at Scopus
  43. P. B. Crino, “Molecular pathogenesis of tuber formation in tuberous sclerosis complex,” Journal of Child Neurology, vol. 19, no. 9, pp. 716–725, 2004. View at Google Scholar · View at Scopus
  44. L. Stoica, P. J. Zhu, W. Huang, H. Zhou, S. C. Kozma, and M. Costa-Mattioli, “Selective pharmacogenetic inhibition of mammalian target of Rapamycin complex I (mTORC1) blocks long-term synaptic plasticity and memory storage,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 9, pp. 3791–3796, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. S. W. Way, J. Mckenna III, U. Mietzsch, R. M. Reith, H. C. J. Wu, and M. J. Gambello, “Loss of Tsc2 in radial glia models the brain pathology of tuberous sclerosis complex in the mouse,” Human Molecular Genetics, vol. 18, no. 7, pp. 1252–1265, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. S. J. Tang, G. Reis, H. Kang, A. C. Gingras, N. Sonenberg, and E. M. Schuman, “A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 1, pp. 467–472, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. U. Frey, M. Krug, K. G. Reymann, and H. Matthies, “Anisomycin, an inhibitor of protein synthesis, blocks late phases of LTP phenomena in the hippocampal CA1 region in vitro,” Brain Research, vol. 452, no. 1-2, pp. 57–65, 1988. View at Google Scholar · View at Scopus
  48. Y. Y. Huang and E. R. Kandel, “Recruitment of long-lasting and protein kinase A-dependent long-term potentiation in the CA1 region of hippocampus requires repeated tetanization,” Learning Memory, vol. 1, no. 1, pp. 74–82, 1994. View at Google Scholar · View at Scopus
  49. H. K. Lee, M. Barbarosie, K. Kameyama, M. F. Bear, and R. L. Huganir, “Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity,” Nature, vol. 405, no. 6789, pp. 955–959, 2000. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Lisman, H. Schulman, and H. Cline, “The molecular basis of CaMKII function in synaptic and behavioural memory,” Nature Reviews Neuroscience, vol. 3, no. 3, pp. 175–190, 2002. View at Publisher · View at Google Scholar · View at Scopus
  51. E. J. Uhlmann, M. Wong, R. L. Baldwin et al., “Astrocyte-specific Tsc1 conditional knockout mice exhibit abnormal neuronal organization and seizures,” Annals of Neurology, vol. 52, no. 3, pp. 285–296, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. K. C. Ess, E. J. Uhlmann, W. Li et al., “Expression profiling in tuberous sclerosis complex (TSC) knockout mouse astrocytes to characterize human TSC brain pathology,” Glia, vol. 46, no. 1, pp. 28–40, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Kurtz, A. Zimmer, F. Schnutgen, G. Bruning, F. Spener, and T. Muller, “The expression pattern of a novel gene encoding brain-fatty acid binding protein correlates with neuronal and glial cell development,” Development, vol. 120, no. 9, pp. 2637–2649, 1994. View at Google Scholar · View at Scopus
  54. E. Hartfuss, R. Galli, N. Heins, and M. Götz, “Characterization of CNS precursor subtypes and radial glia,” Developmental Biology, vol. 229, no. 1, pp. 15–30, 2001. View at Publisher · View at Google Scholar · View at Scopus
  55. L. Meikle, D. M. Talos, H. Onda et al., “A mouse model of tuberous sclerosis: neuronal loss of Tsc1 causes dysplastic and ectopic neurons, reduced myelination, seizure activity, and limited survival,” Journal of Neuroscience, vol. 27, no. 21, pp. 5546–5558, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. J. A. Ronesi and K. M. Huber, “Homer interactions are necessary for metabotropic glutamate receptor-induced long-term depression and translational activation,” Journal of Neuroscience, vol. 28, no. 2, pp. 543–547, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. M. W. Waung, B. E. Pfeiffer, E. D. Nosyreva, J. A. Ronesi, and K. M. Huber, “Rapid Translation of Arc/Arg3.1 Selectively Mediates mGluR-Dependent LTD through Persistent Increases in AMPAR Endocytosis Rate,” Neuron, vol. 59, no. 1, pp. 84–97, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. L. Hou and E. Klann, “Activation of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin signaling pathway is required for metabotropic glutamate receptor-dependent long-term depression,” Journal of Neuroscience, vol. 24, no. 28, pp. 6352–6361, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. J. L. Banko, L. Hou, and E. Klann, “NMDA receptor activation results in PKA- and ERK-dependent Mnk1 activation and increased eIF4E phosphorylation in hippocampal area CA1,” Journal of Neurochemistry, vol. 91, no. 2, pp. 462–470, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. S. M. Gallagher, C. A. Daly, M. F. Bear, and K. M. Huber, “Extracellular signal-regulated protein kinase activation is required for metabotropic glutamate receptor-dependent long-term depression in hippocampal area CA1,” Journal of Neuroscience, vol. 24, no. 20, pp. 4859–4864, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. D. J. Kwiatkowski, H. Zhang, J. L. Bandura et al., “A mouse model of Tsc1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells,” Human Molecular Genetics, vol. 11, no. 5, pp. 525–534, 2002. View at Google Scholar · View at Scopus
  62. R. J. Kelleher III and M. F. Bear, “The autistic neuron: troubled translation?” Cell, vol. 135, no. 3, pp. 401–406, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. B. Govindarajan, D. J. Brat, M. Csete et al., “Transgenic expression of dominant negative tuberin through a strong constitutive promoter results in a tissue-specific tuberous sclerosis phenotype in the skin and brain,” Journal of Biological Chemistry, vol. 280, no. 7, pp. 5870–5874, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. K. B. S. Pasumarthi, H. Nakajima, H. O. Nakajima, S. Jing, and L. J. Field, “Enhanced cardiomyocyte DNA synthesis during myocardial hypertrophy in mice expressing a modified Tsc2 transgene,” Circulation Research, vol. 86, no. 10, pp. 1069–1077, 2000. View at Google Scholar · View at Scopus
  65. R. J. Steele and R. G. M. Morris, “Delay-dependent impairment of a matching-to-place task with chronic and intrahippocampal infusion of the NMDA-antagonist D-AP5,” Hippocampus, vol. 9, no. 2, pp. 118–136, 1999. View at Publisher · View at Google Scholar · View at Scopus
  66. I. C. Reid and C. A. Stewart, “Seizures, memory and synaptic plasticity,” Seizure, vol. 6, no. 5, pp. 351–359, 1997. View at Publisher · View at Google Scholar · View at Scopus
  67. H. Beck, I. V. Goussakov, A. Lie, C. Helmstaedter, and C. E. Elger, “Synaptic plasticity in the human dentate gyrus,” Journal of Neuroscience, vol. 20, no. 18, pp. 7080–7086, 2000. View at Google Scholar · View at Scopus
  68. T. Kirschstein, M. Bauer, L. Müller et al., “Loss of metabotropic glutamate receptor-dependent long-term depression via downregulation of mGluR5 after status epilepticus,” Journal of Neuroscience, vol. 27, no. 29, pp. 7696–7704, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. C. Sgobio, V. Ghiglieri, C. Costa et al., “Hippocampal synaptic plasticity, memory, and epilepsy: effects of long-term valproic acid treatment,” Biological Psychiatry, vol. 67, no. 6, pp. 567–574, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. M. Wong, K. C. Ess, E. J. Uhlmann et al., “Impaired glial glutamate transport in a mouse tuberous sclerosis epilepsy model,” Annals of Neurology, vol. 54, no. 2, pp. 251–256, 2003. View at Publisher · View at Google Scholar · View at Scopus
  71. C. Ménard and R. Quirion, “Successful cognitive aging in rats: a role for mGluR5 glutamate receptors, homer 1 proteins and downstream signaling pathways,” PLoS ONE, vol. 7, no. 1, Article ID e28666, 2012. View at Publisher · View at Google Scholar · View at Scopus
  72. K. Radwanska, N. I. Medvedev, G. S. Pereira et al., “Mechanism for long-term memory formation when synaptic strengthening is impaired,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 45, pp. 18471–18475, 2011. View at Publisher · View at Google Scholar · View at Scopus