Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2012, Article ID 283829, 9 pages
http://dx.doi.org/10.1155/2012/283829
Research Article

Increases in Doublecortin Immunoreactivity in the Dentate Gyrus following Extinction of Heroin-Seeking Behavior

1Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
2Department of Psychology, Arizona State University, 950 S. McAllister Avenue, P.O. Box 871104, Tempe, AZ 85287, USA
3Interdisciplinary Graduate Program in Neuroscience, Arizona State University, Tempe, AZ 85287, USA

Received 16 June 2012; Revised 3 October 2012; Accepted 6 October 2012

Academic Editor: Chitra D. Mandyam

Copyright © 2012 Megan P. Hicks et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. T. Balu and I. Lucki, “Adult hippocampal neurogenesis: regulation, functional implications, and contribution to disease pathology,” Neuroscience and Biobehavioral Reviews, vol. 33, no. 3, pp. 232–252, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. G. L. Ming and H. Song, “Adult neurogenesis in the mammalian brain: significant answers and significant questions,” Neuron, vol. 70, no. 4, pp. 687–702, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Koehl and D. N. Abrous, “A new chapter in the field of memory: adult hippocampal neurogenesis,” European Journal of Neuroscience, vol. 33, no. 6, pp. 1101–1114, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. W. Deng, J. B. Aimone, and F. H. Gage, “New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory?” Nature Reviews Neuroscience, vol. 11, no. 5, pp. 339–350, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Leuner, E. Gould, and T. J. Shors, “Is there a link between adult neurogenesis and learning?” Hippocampus, vol. 16, no. 3, pp. 216–224, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Zhao, W. Deng, and F. H. Gage, “Mechanisms and functional implications of adult neurogenesis,” Cell, vol. 132, no. 4, pp. 645–660, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. M. F. Olive, Drug Addiction and Adult Neurogenesis, Research Signpost/Transworld Research Network Publishers, Karala, India, 2011.
  8. A. J. Eisch, H. A. Cameron, J. M. Encinas, L. A. Meltzer, G. L. Ming, and L. S. Overstreet-Wadiche, “Adult neurogenesis, mental health, and mental illness: hope or hype?” Journal of Neuroscience, vol. 28, no. 46, pp. 11785–11791, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. N. A. DeCarolis and A. J. Eisch, “Hippocampal neurogenesis as a target for the treatment of mental illness: a critical evaluation,” Neuropharmacology, vol. 58, no. 6, pp. 884–893, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Kempermann, J. Krebs, and K. Fabel, “The contribution of failing adult hippocampal neurogenesis to psychiatric disorders,” Current Opinion in Psychiatry, vol. 21, no. 3, pp. 290–295, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Kubesova, V. Bubenikova-Valesova, M. Mertlova, T. Palenicek, and J. Horacek, “Impact of psychotropic drugs on adult hippocampal neurogenesis,” Neuroscience Research, vol. 73, no. 2, pp. 93–98, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. A. J. Eisch, M. Barrot, C. A. Schad, D. W. Self, and E. J. Nestler, “Opiates inhibit neurogenesis in the adult rat hippocampus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 13, pp. 7579–7584, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. A. J. Eisch and G. C. Harburg, “Opiates, psychostimulants, and adult hippocampal neurogenesis: insights for addiction and stem cell biology,” Hippocampus, vol. 16, no. 3, pp. 271–286, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Nixon, “Alcohol and adult neurogenesis: roles in Neurodegeneration and recovery in chronic alcoholism,” Hippocampus, vol. 16, no. 3, pp. 287–295, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. T. A. Powrozek, Y. Sari, R. P. Singh, and F. C. Zhou, “Neurotransmitters and substances of abuse: effects on adult neurogenesis,” Current Neurovascular Research, vol. 1, no. 3, pp. 251–260, 2004. View at Google Scholar · View at Scopus
  16. A. Venkatesan, A. Nath, G. L. Ming, and H. Song, “Adult hippocampal neurogenesis: regulation by HIV and drugs of abuse,” Cellular and Molecular Life Sciences, vol. 64, no. 16, pp. 2120–2132, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. J. J. Canales, “Adult neurogenesis and the memories of drug addiction,” European Archives of Psychiatry and Clinical Neuroscience, vol. 257, no. 5, pp. 261–270, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. J. J. Canales, “Comparative neuroscience of stimulant-induced memory dysfunction: role for neurogenesis in the adult hippocampus,” Behavioural Pharmacology, vol. 21, no. 5-6, pp. 379–393, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. C. D. Mandyam and G. F. Koob, “The addicted brain craves new neurons: putative role for adult-born progenitors in promoting recovery,” Trends in Neurosciences, vol. 35, no. 4, pp. 250–260, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Schmidt-Hieber, P. Jones, and J. Bischofberger, “Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus,” Nature, vol. 429, no. 6988, pp. 184–187, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Ge, C. H. Yang, K. S. Hsu, G. L. Ming, and H. Song, “A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain,” Neuron, vol. 54, no. 4, pp. 559–566, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. J. P. Brown, S. Couillard-Després, C. M. Cooper-Kuhn, J. Winkler, L. Aigner, and H. G. Kuhn, “Transient expression of doublecortin during adult neurogenesis,” Journal of Comparative Neurology, vol. 467, no. 1, pp. 1–10, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. O. Von Bohlen Und Halbach, “Immunohistological markers for staging neurogenesis in adult hippocampus,” Cell and Tissue Research, vol. 329, no. 3, pp. 409–420, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. W. Deng, M. D. Saxe, I. S. Gallina, and F. H. Gage, “Adult-born hippocampal dentate granule cells undergoing maturation modulate learning and memory in the brain,” Journal of Neuroscience, vol. 29, no. 43, pp. 13532–13542, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. K. M. Myers and W. A. Carlezon, “Extinction of drug- and withdrawal-paired cues in animal models: relevance to the treatment of addiction,” Neuroscience and Biobehavioral Reviews, vol. 35, no. 2, pp. 285–302, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. M. E. Bouton and D. Swartzentruber, “Sources of relapse after extinction in Pavlovian and instrumental learning,” Clinical Psychology Review, vol. 11, no. 2, pp. 123–140, 1991. View at Publisher · View at Google Scholar · View at Scopus
  27. K. M. Kantak and B. A. Nic Dhonnchadha, “Pharmacological enhancement of drug cue extinction learning: translational challenges,” Annals of the New York Academy of Sciences, vol. 1216, no. 1, pp. 122–137, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. M. E. Bouton, “A learning theory perspective on lapse, relapse, and the maintenance of behavior change,” Health Psychology, vol. 19, no. 1, pp. 57–63, 2000. View at Google Scholar · View at Scopus
  29. T. G. Bush, T. C. Savidge, T. C. Freeman et al., “Fulminant jejuno-ileitis following ablation of enteric gila in adult transgenic mice,” Cell, vol. 93, no. 2, pp. 189–201, 1998. View at Publisher · View at Google Scholar · View at Scopus
  30. M. V. Sofroniew, T. G. Bush, N. Blumauer, Lawrence Kruger, L. Mucke, and M. H. Johnson, “Genetically-targeted and conditionally-regulated ablation of astroglial cells in the central, enteric and peripheral nervous systems in adult transgenic mice,” Brain Research, vol. 835, no. 1, pp. 91–95, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. A. D. R. Garcia, N. B. Doan, T. Imura, T. G. Bush, and M. V. Sofroniew, “GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain,” Nature Neuroscience, vol. 7, no. 11, pp. 1233–1241, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, Academic Press, San Diego, Calif, USA, 2007.
  33. J. M. Wojtowicz and N. Kee, “BrdU assay for neurogenesis in rodents,” Nature Protocols, vol. 1, no. 3, pp. 1399–1405, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. A. J. Roberts, I. Y. Polis, and L. H. Gold, “Intravenous self-administration of heroin, cocaine, and the combination in Balb/c mice,” European Journal of Pharmacology, vol. 326, no. 2-3, pp. 119–125, 1997. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Rapanelli, L. R. Frick, and B. S. Zanutto, “Learning an operant conditioning task differentially induces gliogenesis in the medial prefrontal cortex and neurogenesis in the hippocampus,” PLoS ONE, vol. 6, no. 2, Article ID e14713, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. M. A. Noonan, S. E. Bulin, D. C. Fuller, and A. J. Eisch, “Reduction of adult hippocampal neurogenesis confers vulnerability in an animal model of cocaine addiction,” Journal of Neuroscience, vol. 30, no. 1, pp. 304–315, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. M. S. Rao and A. K. Shetty, “Efficacy of doublecortin as a marker to analyse the absolute number and dendritic growth of newly generated neurons in the adult dentate gyrus,” European Journal of Neuroscience, vol. 19, no. 2, pp. 234–246, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. J. S. Snyder, J. S. Choe, M. A. Clifford et al., “Adult-born hippocampal neurons are more numerous, faster maturing, and more involved in behavior in rats than in mice,” Journal of Neuroscience, vol. 29, no. 46, pp. 14484–14495, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. R. A. Fuchs, K. A. Evans, C. C. Ledford et al., “The role of the dorsomedial prefrontal cortex, basolateral amygdala, and dorsal hippocampus in contextual reinstatement of cocaine seeking in rats,” Neuropsychopharmacology, vol. 30, no. 2, pp. 296–309, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. R. A. Fuchs, J. L. Eaddy, Z. I. Su, and G. H. Bell, “Interactions of the basolateral amygdala with the dorsal hippocampus and dorsomedial prefrontal cortex regulate drug context-induced reinstatement of cocaine-seeking in rats,” European Journal of Neuroscience, vol. 26, no. 2, pp. 487–498, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. D. R. Ramirez, G. H. Bell, H. C. Lasseter, X. Xie, S. A. Traina, and R. A. Fuchs, “Dorsal hippocampal regulation of memory reconsolidation processes that facilitate drug context-induced cocaine-seeking behavior in rats,” European Journal of Neuroscience, vol. 30, no. 5, pp. 901–912, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. M. A. Noonan, K. H. Choi, D. W. Self, and A. J. Eisch, “Withdrawal from cocaine self-administration normalizes deficits in proliferation and enhances maturity of adult-generated hippocampal neurons,” Journal of Neuroscience, vol. 28, no. 10, pp. 2516–2526, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Sahay and R. Hen, “Adult hippocampal neurogenesis in depression,” Nature Neuroscience, vol. 10, no. 9, pp. 1110–1115, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Sankararaman, I. Masiulis, D. R. Richardson, J. M. Andersen, J. Mørland, and A. J. Eisch, “Methadone does not alter key parameters of adult hippocampal neurogenesis in the heroin-naïve rat,” Neuroscience Letters, vol. 516, no. 1, pp. 99–104, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. L. Kahn, G. Alonso, E. Normand, and O. J. Manzoni, “Repeated morphine treatment alters polysialylated neural cell adhesion molecule, glutamate decarboxylase-67 expression and cell proliferation in the adult rat hippocampus,” European Journal of Neuroscience, vol. 21, no. 2, pp. 493–500, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. A. A. Arguello, S. J. Fischer, J. R. Schonborn, R. W. Markus, R. A. Brekken, and A. J. Eisch, “Effect of chronic morphine on the dentate gyrus neurogenic microenvironment,” Neuroscience, vol. 159, no. 3, pp. 1003–1010, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. A. A. Arguello, G. C. Harburg, J. R. Schonborn, C. D. Mandyam, M. Yamaguchi, and A. J. Eisch, “Time course of morphine's effects on adult hippocampal subgranular zone reveals preferential inhibition of cells in S phase of the cell cycle and a subpopulation of immature neurons,” Neuroscience, vol. 157, no. 1, pp. 70–79, 2008. View at Publisher · View at Google Scholar · View at Scopus