Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2012, Article ID 486402, 10 pages
http://dx.doi.org/10.1155/2012/486402
Review Article

Plasticity and mTOR: Towards Restoration of Impaired Synaptic Plasticity in mTOR-Related Neurogenetic Disorders

1Tuberous Sclerosis Center, Hugo Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD 21205, USA
2Department of Neurology and Developmental Medicine, Hugo Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD 21205, USA
3The Clinical Trials Unit, Hugo Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD 21205, USA
4Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
5Departments of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
6Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA

Received 12 December 2011; Accepted 14 February 2012

Academic Editor: Emma Frost

Copyright © 2012 Tanjala T. Gipson and Michael V. Johnston. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Objective. To review the recent literature on the clinical features, genetic mutations, neurobiology associated with dysregulation of mTOR (mammalian target of rapamycin), and clinical trials for tuberous sclerosis complex (TSC), neurofibromatosis-1 (NF1) and fragile X syndrome (FXS), and phosphatase and tensin homolog hamartoma syndromes (PTHS), which are neurogenetic disorders associated with abnormalities in synaptic plasticity and mTOR signaling. Methods. Pubmed and Clinicaltrials.gov were searched using specific search strategies. Results/Conclusions. Although traditionally thought of as irreversible disorders, significant scientific progress has been made in both humans and preclinical models to understand how pathologic features of these neurogenetic disorders can be reduced or reversed. This paper revealed significant similarities among the conditions. Not only do they share features of impaired synaptic plasticity and dysregulation of mTOR, but they also share clinical features—autism, intellectual disability, cutaneous lesions, and tumors. Although scientific advances towards discovery of effective treatment in some disorders have outpaced others, progress in understanding the signaling pathways that connect the entire group indicates that the lesser known disorders will become treatable as well.