Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2012, Article ID 486402, 10 pages
http://dx.doi.org/10.1155/2012/486402
Review Article

Plasticity and mTOR: Towards Restoration of Impaired Synaptic Plasticity in mTOR-Related Neurogenetic Disorders

1Tuberous Sclerosis Center, Hugo Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD 21205, USA
2Department of Neurology and Developmental Medicine, Hugo Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD 21205, USA
3The Clinical Trials Unit, Hugo Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD 21205, USA
4Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
5Departments of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
6Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA

Received 12 December 2011; Accepted 14 February 2012

Academic Editor: Emma Frost

Copyright © 2012 Tanjala T. Gipson and Michael V. Johnston. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. V. Johnston, A. Ishida, W. N. Ishida, H. B. Matsushita, A. Nishimura, and M. Tsuji, “Plasticity and injury in the developing brain,” Brain and Development, vol. 31, no. 1, pp. 1–10, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. T. F. Haydar, L. L. Bambrick, B. K. Krueger, and P. Rakic, “Organotypic slice cultures for analysis of proliferation, cell death, and migration in the embryonic neocortex,” Brain Research Protocols, vol. 4, no. 3, pp. 425–437, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. S. G. Kernie and J. M. Parent, “Forebrain neurogenesis after focal ischemic and traumatic brain injury,” Neurobiology of Disease, vol. 37, no. 2, pp. 267–274, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Gomez, J. R. Sampson, and V. H. Whittemore, Tuberous Sclerosis Complex, Oxford University Press, Oxford, UK, 3rd edition, 1999.
  5. F. E. Jansen, K. L. Vincken, A. Algra et al., “Cognitive impairment in tuberous sclerosis complex is a multifactorial condition,” Neurology, vol. 70, no. 12, pp. 916–923, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Rosner, M. Hanneder, N. Siegel, A. Valli, and M. Hengstschläger, “The tuberous sclerosis gene products hamartin and tuberin are multifunctional proteins with a wide spectrum of interacting partners,” Mutation Research, vol. 658, no. 3, pp. 234–246, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. I. C. Gillberg, C. Gillberg, and G. Ahlsen, “Autistic behaviour and attention deficits in tuberous sclerosis: a population-based study,” Developmental Medicine and Child Neurology, vol. 36, no. 1, pp. 50–56, 1994. View at Google Scholar
  8. D. W. Webb, A. E. Fryer, and J. P. Osborne, “Morbidity associated with tuberous sclerosis: a population study,” Developmental Medicine and Child Neurology, vol. 38, no. 2, pp. 146–155, 1996. View at Google Scholar · View at Scopus
  9. C. Joinson, F. J. O'Callaghan, J. P. Osborne, C. Martyn, T. Harris, and P. F. Bolton, “Learning disability and epilepsy in an epidemiological sample of individuals with tuberous sclerosis complex,” Psychological Medicine, vol. 33, no. 2, pp. 335–344, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. B. A. Staley, M. A. Montenegro, P. Major et al., “Self-injurious behavior and tuberous sclerosis complex: frequency and possible associations in a population of 257 patients,” Epilepsy and Behavior, vol. 13, no. 4, pp. 650–653, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. C. A. Hoeffer and E. Klann, “mTOR signaling: at the crossroads of plasticity, memory and disease,” Trends in Neurosciences, vol. 33, no. 2, pp. 67–75, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Von Der Brelie, R. Waltereit, L. Zhang, H. Beck, and T. Kirschstein, “Impaired synaptic plasticity in a rat model of tuberous sclerosis,” European Journal of Neuroscience, vol. 23, no. 3, pp. 686–692, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Ehninger, S. Han, C. Shilyansky et al., “Reversal of learning deficits in a TSC2+/- mouse model of tuberous sclerosis,” Nature Medicine, vol. 14, no. 8, pp. 843–848, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. B. D. Auerbach, E. K. Osterweil, and M. F. Bear, “Mutations causing syndromic autism define an axis of synaptic pathophysiology,” Nature, vol. 480, no. 7375, pp. 63–68, 2011. View at Publisher · View at Google Scholar
  15. H. S. Bateup, K. T. Takasaki, J. L. Saulnier, C. L. Denefrio, and B. L. Sabatini, “Loss of Tsc1 in vivo impairs hippocampal mGluR-LTD and increases excitatory synaptic function,” Journal of Neuroscience, vol. 31, no. 24, pp. 8862–8869, 2011. View at Publisher · View at Google Scholar
  16. V. Napolioni, R. Moavero, and P. Curatolo, “Recent advances in neurobiology of tuberous sclerosis complex,” Brain and Development, vol. 31, no. 2, pp. 104–113, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. D. M. Talos, D. J. Kwiatkowski, K. Cordero, P. M. Black, and F. E. Jensen, “Cell-specific alterations of glutamate receptor expression in tuberous sclerosis complex cortical tubers,” Annals of Neurology, vol. 63, no. 4, pp. 454–465, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Meikle, D. M. Talos, H. Onda et al., “A mouse model of tuberous sclerosis: neuronal loss of Tsc1 causes dysplastic and ectopic neurons, reduced myelination, seizure activity, and limited survival,” Journal of Neuroscience, vol. 27, no. 21, pp. 5546–5558, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Wang, J. S. F. Greenwood, M. E. Calcagnotto, H. E. Kirsch, N. M. Barbaro, and S. C. Baraban, “Neocortical hyperexcitability in a human case of tuberous sclerosis complex and mice lacking neuronal expression of Tsc1,” Annals of Neurology, vol. 61, no. 2, pp. 139–152, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. L. H. Zeng, Y. Ouyang, V. Gazit et al., “Abnormal glutamate homeostasis and impaired synaptic plasticity and learning in a mouse model of tuberous sclerosis complex,” Neurobiology of Disease, vol. 28, no. 2, pp. 184–196, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. L. A. Jansen, E. J. Uhlmann, P. B. Crino, D. H. Gutmann, and M. Wong, “Epileptogenesis and reduced inward rectifier potassium current in tuberous sclerosis complex-1-deficient astrocytes,” Epilepsia, vol. 46, no. 12, pp. 1871–1880, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. D. N. Franz, J. Leonard, C. Tudor et al., “Rapamycin causes regression of astrocytomas in tuberous sclerosis complex,” Annals of Neurology, vol. 59, no. 3, pp. 490–498, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. D. N. Franz, “Everolimus: an mTOR inhibitor for the treatment of tuberous sclerosis,” Expert Review of Anticancer Therapy, vol. 11, no. 8, pp. 1181–1192, 2011. View at Publisher · View at Google Scholar
  24. D. A. Krueger, M. M. Care, K. Holland et al., “Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis,” The New England Journal of Medicine, vol. 363, no. 19, pp. 1801–1811, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Ehninger and A. J. Silva, “Rapamycin for treating tuberous sclerosis and autism spectrum disorders,” Trends in Molecular Medicine, vol. 17, no. 2, pp. 78–87, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Huson, “The neurofibromatoses: classification, clinical features and genetic counselling,” in Neurofibromatoses (Monographs in Human Genetics), D. Kaufmann, Ed., pp. 1–20, S. Karger A.G., Basel, Switzerland, 1st edition, 2008. View at Google Scholar
  27. S. L. Hyman, A. Shores, and K. N. North, “The nature and frequency of cognitive deficits in children with neurofibromatosis type 1,” Neurology, vol. 65, no. 7, pp. 1037–1044, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. L. E. Cutting, K. L. Cooper, C. W. Koth et al., “Megalencephaly in NF1: predominantly white matter contribution and mitigation by adhd,” Neurology, vol. 59, no. 9, pp. 1388–1394, 2002. View at Google Scholar · View at Scopus
  29. N. Pride, J. M. Payne, R. Webster, E. A. Shores, C. Rae, and K. N. North, “Corpus callosum morphology and its relationship to cognitive function in neurofibromatosis type 1,” Journal of Child Neurology, vol. 25, no. 7, pp. 834–841, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. M. B. Denckla, K. Hofman, M. M. M. Mazzocco et al., “Relationship between T2-weighted hyperintensities (unidentified bright objects) and lower iqs in children with neurofibromatosis-1,” American Journal of Medical Genetics A, vol. 67, no. 1, pp. 98–102, 1996. View at Google Scholar · View at Scopus
  31. C. Chabernaud, D. Sirinelli, C. Barbier et al., “Thalamo-striatal T2-weighted hyperintensities (unidentified bright objects) correlate with cognitive impairments in neurofibromatosis type 1 during childhood,” Developmental Neuropsychology, vol. 34, no. 6, pp. 736–748, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. S. L. Hyman, D. S. Gill, E. A. Shores, A. Steinberg, and K. N. North, “T2 hyperintensities in children with neurofibromatosis type 1 and their relationship to cognitive functioning,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 78, no. 10, pp. 1088–1091, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. M. A. Kraut, J. P. Gerring, K. L. Cooper, R. E. Thompson, M. B. Denckla, and W. E. Kaufman, “Longitudinal evolution of unidentified bright objects in children with neurofibromatosis-1,” American Journal of Medical Genetics A, vol. 129, no. 2, pp. 113–119, 2004. View at Google Scholar · View at Scopus
  34. B. Dasgupta, Y. Yi, D. Y. Chen, J. D. Weber, and D. H. Gutmann, “Proteomic analysis reveals hyperactivation of the mammalian target of rapamycin pathway in neurofibromatosis 1-associated human and mouse brain tumors,” Cancer Research, vol. 65, no. 7, pp. 2755–2760, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Banerjee, N. R. Crouse, R. J. Emnett, S. M. Gianino, and D. H. Gutmann, “Neurofibromatosis-1 regulates mTOR-mediated astrocyte growth and glioma formation in a TSC/Rheb-independent manner,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 38, pp. 15996–16001, 2011. View at Publisher · View at Google Scholar
  36. S. Banerjee, S. M. Gianino, F. Gao, U. Christians, and D. H. Gutmann, “Interpreting mammalian target of rapamycin and cell growth inhibition in a genetically engineered mouse model of NF1-deficient astrocytes,” Molecular Cancer Therapeutics, vol. 10, no. 2, pp. 279–291, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Boyanapalli, O. B. Lahoud, L. Messiaen et al., “Neurofibromin binds to caveolin-1 and regulates ras, fak, and akt,” Biochemical and Biophysical Research Communications, vol. 340, no. 4, pp. 1200–1208, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. D. K. Sandsmark, H. Zhang, B. Hegedus, C. L. Pelletier, J. D. Weber, and D. H. Gutmann, “Nucleophosmin mediates mammalian target of rapamycin-dependent actin cytoskeleton dynamics and proliferation in neurofibromin-deficient astrocytes,” Cancer Research, vol. 67, no. 10, pp. 4790–4799, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. W. Li, Y. Cui, S. A. Kushner et al., “The hmg-coa reductase inhibitor lovastatin reverses the learning and attention deficits in a mouse model of neurofibromatosis type 1,” Current Biology, vol. 15, no. 21, pp. 1961–1967, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. R. M. Costa, N. B. Federov, J. H. Kogan et al., “Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1,” Nature, vol. 415, no. 6871, pp. 526–530, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. C. L. Gau, J. Kato-Stankiewicz, C. Jiang, S. Miyamoto, L. Guo, and F. Tamanoi, “Farnesyltransferase inhibitors reverse altered growth and distribution of actin filaments in tsc-deficient cells via inhibition of both rapamycin-sensitive and -insensitive pathways,” Molecular Cancer Therapeutics, vol. 4, no. 6, pp. 918–926, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Guilding, K. McNair, T. W. Stone, and B. J. Morris, “Restored plasticity in a mouse model of neurofibromatosis type 1 via inhibition of hyperactive erk and creb,” European Journal of Neuroscience, vol. 25, no. 1, pp. 99–105, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. L. C. Krab, A. de Goede-Bolder, F. K. Aarsen et al., “Effect of simvastatin on cognitive functioning in children with neurofibromatosis type 1: a randomized controlled trial,” Journal of the American Medical Association, vol. 300, no. 3, pp. 287–294, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. M. T. Acosta, P. G. Kardel, K. S. Walsh, K. N. Rosenbaum, G. A. Gioia, and R. J. Packer, “Lovastatin as treatment for neurocognitive deficits in neurofibromatosis type 1: phase I study,” Pediatric Neurology, vol. 45, no. 4, pp. 241–245, 2011. View at Publisher · View at Google Scholar
  45. R. J. Hagerman, K. Amiri, and A. Cronister, “Fragile X checklist,” American Journal of Medical Genetics A, vol. 38, no. 2-3, pp. 283–287, 1991. View at Publisher · View at Google Scholar · View at Scopus
  46. P. J. Hagerman, “The fragile X prevalence paradox,” Journal of Medical Genetics, vol. 45, no. 8, pp. 498–499, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. R. J. Hagerman and P. J. Hagerman, “Fragile X syndrome: a model of gene-brain-behavior relationships,” Molecular Genetics and Metabolism, vol. 74, no. 1-2, pp. 89–97, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. S. J. Rogers, E. A. Wehner, and R. Hagerman, “The behavioral phenotype in fragile X: symptoms of autism in very young children with fragile X syndrome, idiopathic autism, and other developmental disorders,” Journal of Developmental and Behavioral Pediatrics, vol. 22, no. 6, pp. 409–417, 2001. View at Google Scholar · View at Scopus
  49. A. J. M. H. Verkerk, M. Pieretti, J. S. Sutcliffe et al., “Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome,” Cell, vol. 65, no. 5, pp. 905–914, 1991. View at Google Scholar · View at Scopus
  50. D. Devys, Y. Lutz, N. Rouyer, J. P. Bellocq, and J. L. Mandel, “The FMR-1 protein is cytoplasmic, most abundant in neurons and appears normal in carriers of a fragile X premutation,” Nature Genetics, vol. 4, no. 4, pp. 335–340, 1993. View at Publisher · View at Google Scholar · View at Scopus
  51. O. Penagarikano, J. G. Mulle, and S. T. Warren, “The pathophysiology of fragile X syndrome,” Annual Review of Genomics and Human Genetics, vol. 8, pp. 109–129, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. M. F. Bear, K. M. Huber, and S. T. Warren, “The mGluR theory of fragile X mental retardation,” Trends in Neurosciences, vol. 27, no. 7, pp. 370–377, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. R. S. Muddashetty, S. Kelić, C. Gross, M. Xu, and G. J. Bassell, “Dysregulated metabotropic glutamate receptor-dependent translation of AMPA receptor and postsynaptic density-95 mRNAs at synapses in a mouse model of fragile X syndrome,” Journal of Neuroscience, vol. 27, no. 20, pp. 5338–5348, 2007. View at Publisher · View at Google Scholar
  54. R. S. Muddashetty, V. C. Nalavadi, C. Gross et al., “Reversible inhibition of PSD-95 mRNA translation by miR-125a, FMRP phosphorylation, and mGluR signaling,” Molecular Cell, vol. 42, no. 5, pp. 673–688, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Sharma, C. A. Hoeffer, Y. Takayasu et al., “Dysregulation of mTOR signaling in fragile X syndrome,” Journal of Neuroscience, vol. 30, no. 2, pp. 694–702, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. S. M. J. McBride, C. H. Choi, Y. Wang et al., “Pharmacological rescue of synaptic plasticity, courtship behavior, and mushroom body defects in a drosophila model of fragile X syndrome,” Neuron, vol. 45, no. 5, pp. 753–764, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. G. Dölen, E. Osterweil, B. S. S. Rao et al., “Correction of fragile X syndrome in mice,” Neuron, vol. 56, no. 6, pp. 955–962, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. A. M. Thomas, N. Bui, D. Graham, J. R. Perkins, L. A. Yuva-Paylor, and R. Paylor, “Genetic reduction of group 1 metabotropic glutamate receptors alters select behaviors in a mouse model for fragile X syndrome,” Behavioural Brain Research, vol. 223, no. 2, pp. 310–321, 2011. View at Publisher · View at Google Scholar
  59. J. Blundell, P. S. Kaeser, T. C. Südhof, and C. M. Powell, “RIM1α and interacting proteins involved in presynaptic plasticity mediate prepulse inhibition and additional behaviors linked to schizophrenia,” Journal of Neuroscience, vol. 30, no. 15, pp. 5326–5333, 2010. View at Publisher · View at Google Scholar
  60. S. A. Hays, K. M. Huber, and J. R. Gibson, “Altered neocortical rhythmic activity states in Fmr1 KO mice are due to enhanced mGluR5 signaling and involve changes in excitatory circuitry,” Journal of Neuroscience, vol. 31, no. 40, pp. 14223–14234, 2011. View at Publisher · View at Google Scholar
  61. P. Y. Deng, D. Sojka, and V. A. Klyachko, “Abnormal presynaptic short-term plasticity and information processing in a mouse model of fragile X syndrome,” Journal of Neuroscience, vol. 31, no. 30, pp. 10971–10982, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. J. L. Olmos-Serrano, J. G. Corbin, and M. P. Burns, “The GABAA receptor agonist THIP ameliorates specific behavioral deficits in the mouse model of fragile X syndrome,” Developmental Neuroscience, vol. 33, no. 5, pp. 395–403, 2011. View at Publisher · View at Google Scholar
  63. D. B. Budimirovic, I. Bukelis, C. Cox, R. M. Gray, E. Tierney, and W. E. Kaufmann, “Autism spectrum disorder in fragile X syndrome: differential contribution of adaptive socialization and social withdrawal,” American Journal of Medical Genetics A, vol. 140, no. 17, pp. 1814–1826, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. D. B. Budimirovic and W. E. Kaufmann, “What can we learn about autism from studying fragile X syndrome?” Developmental Neuroscience, vol. 33, no. 5, pp. 379–394, 2011. View at Publisher · View at Google Scholar
  65. W. E. Kaufmann, R. Cortell, A. S. M. Kau et al., “Autism spectrum disorder in fragile X syndrome: communication, social interaction, and specific behaviors,” American Journal of Medical Genetics A, vol. 129, no. 3, pp. 225–234, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. N. A. Meguid, C. Fahim, R. Sami et al., “Cognition and lobar morphology in full mutation boys with fragile X syndrome,” Brain and Cognition, vol. 78, no. 1, pp. 74–84, 2012. View at Publisher · View at Google Scholar
  67. S. Jacquemont, A. Curie, V. des Portes et al., “Epigenetic modification of the fmr1 gene in fragile X syndrome is associated with differential response to the mGluR5 antagonist AFQ056,” Science Translational Medicine, vol. 3, no. 64, Article ID 64ra1, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. E. Berry-Kravis, D. Hessl, S. Coffey et al., “A pilot open label, single dose trial of fenobam in adults with fragile X syndrome,” Journal of Medical Genetics, vol. 46, no. 4, pp. 266–271, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. C. A. Erickson, J. E. Mullett, and C. J. McDougle, “Brief report: acamprosate in fragile X syndrome,” Journal of Autism and Developmental Disorders, vol. 40, no. 11, pp. 1412–1416, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. E. Berry-Kravis, A. Sumis, C. Hervey et al., “Open-label treatment trial of lithium to target the underlying defect in fragile X syndrome,” Journal of Developmental and Behavioral Pediatrics, vol. 29, no. 4, pp. 293–302, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. A. Arai, M. Kessler, P. Xiao, J. Ambros-Ingerson, G. Rogers, and G. Lynch, “A centrally active drug that modulates AMPA receptor gated currents,” Brain Research, vol. 638, no. 1-2, pp. 343–346, 1994. View at Google Scholar · View at Scopus
  72. A. Arai, M. Kessler, G. Rogers, and G. Lynch, “Effects of a memory-enhancing drug on dl-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor currents and synaptic transmission in hippocampus,” Journal of Pharmacology and Experimental Therapeutics, vol. 278, no. 2, pp. 627–638, 1996. View at Google Scholar · View at Scopus
  73. E. Berry-Kravis, S. E. Krause, S. S. Block et al., “Effect of CX516, an ampa-modulating compound, on cognition and behavior in fragile X syndrome: a controlled trial,” Journal of Child and Adolescent Psychopharmacology, vol. 16, no. 5, pp. 525–540, 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Imbesi, T. Uz, R. Manev, R. P. Sharma, and H. Manev, “Minocycline increases phosphorylation and membrane insertion of neuronal glur1 receptors,” Neuroscience Letters, vol. 447, no. 2-3, pp. 134–137, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. T. V. Bilousova, L. Dansie, M. Ngo et al., “Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model,” Journal of Medical Genetics, vol. 46, no. 2, pp. 94–102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. S. S. Siller and K. Broadie, “Neural circuit architecture defects in a Drosophila model of fragile X syndrome are alleviated by minocycline treatment and genetic removal of matrix metalloproteinase,” DMM Disease Models and Mechanisms, vol. 4, no. 5, pp. 673–685, 2011. View at Publisher · View at Google Scholar
  77. C. Paribello, L. Tao, A. Folino et al., “Open-label add-on treatment trial of minocycline in fragile X syndrome,” BMC Neurology, vol. 10, article 91, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. S. R. Kesler, A. A. Lightbody, and A. L. Reiss, “Cholinergic dysfunction in fragile X syndrome and potential intervention: a preliminary 1h mrs study,” American Journal of Medical Genetics A, vol. 149, no. 3, pp. 403–407, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. C. A. Erickson, N. Weng, I. J. Weiler et al., “Open-label riluzole in fragile X syndrome,” Brain Research, vol. 1380, pp. 264–270, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. S. S. Hall, A. A. Lightbody, B. E. McCarthy, K. J. Parker, and A. L. Reiss, “Effects of intranasal oxytocin on social anxiety in males with fragile X syndrome,” Psychoneuroendocrinology, vol. 37, no. 4, pp. 509–518, 2012. View at Publisher · View at Google Scholar
  81. C. A. Erickson, K. A. Stigler, D. J. Posey, and C. J. McDougle, “Aripiprazole in autism spectrum disorders and fragile X syndrome,” Neurotherapeutics, vol. 7, no. 3, pp. 258–263, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. L. K. K. Pacey, S. P. Heximer, and D. R. Hampson, “Increased gabab receptor-mediated signaling reduces the susceptibility of fragile X knockout mice to audiogenic seizures,” Molecular Pharmacology, vol. 76, no. 1, pp. 18–24, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. S. Conti, M. Condo, A. Posar et al., “Phosphatase and tensin homolog (PTEN) gene mutations and autism: literature review and a case report of a patient with Cowden syndrome, autistic disorder, and epilepsy,” Journal of Child Neurology, vol. 27, no. 3, pp. 392–397, 2012. View at Google Scholar
  84. M. T. Stein, E. R. Elias, M. Saenz, L. Pickler, and A. Reynolds, “Autistic spectrum disorder in a 9-year-old girl with macrocephaly,” Journal of Developmental and Behavioral Pediatrics, vol. 31, no. 7, pp. 632–634, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. E. A. Varga, M. Pastore, T. Prior, G. E. Herman, and K. L. McBride, “The prevalence of PTEN mutations in a clinical pediatric cohort with autism spectrum disorders, developmental delay, and macrocephaly,” Genetics in Medicine, vol. 11, no. 2, pp. 111–117, 2009. View at Publisher · View at Google Scholar
  86. J. D. Buxbaum, G. Cai, P. Chaste et al., “Mutation screening of the PTEN gene in patients with autism spectrum disorders and macrocephaly,” American Journal of Medical Genetics B, vol. 144, no. 4, pp. 484–491, 2007. View at Publisher · View at Google Scholar
  87. J. Perriard, J. H. Saurat, and M. Harms, “An overlap of Cowden's disease and bannayan-riley-ruvalcaba syndrome in the same family,” Journal of the American Academy of Dermatology, vol. 42, no. 2, pp. 348–350, 2000. View at Google Scholar · View at Scopus
  88. I. Rodríguez-Escudero, M. D. Oliver, A. Andrés-Pons, M. Molina, V. J. Cid, and R. Pulido, “A comprehensive functional analysis of PTEN mutations: Implications in tumor- and autism-related syndromes,” Human Molecular Genetics, vol. 20, no. 21, pp. 4132–4142, 2011. View at Publisher · View at Google Scholar
  89. M. M. Fraser, I. T. Bayazitov, S. S. Zakharenko, and S. J. Baker, “Phosphatase and tensin homolog, deleted on chromosome 10 deficiency in brain causes defects in synaptic structure, transmission and plasticity, and myelination abnormalities,” Neuroscience, vol. 151, no. 2, pp. 476–488, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. C. H. Kwon, B. W. Luikart, C. M. Powell et al., “Pten regulates neuronal arborization and social interaction in mice,” Neuron, vol. 50, no. 3, pp. 377–388, 2006. View at Publisher · View at Google Scholar · View at Scopus
  91. E. Klann and T. E. Dever, “Biochemical mechanisms for translational regulation in synaptic plasticity,” Nature Reviews Neuroscience, vol. 5, no. 12, pp. 931–942, 2004. View at Publisher · View at Google Scholar · View at Scopus
  92. J. D. Richter and N. Sonenberg, “Regulation of cap-dependent translation by eIF4E inhibitory proteins,” Nature, vol. 433, no. 7025, pp. 477–480, 2005. View at Publisher · View at Google Scholar · View at Scopus
  93. G. D. Schellenberg, G. Dawson, Y. J. Sung et al., “Evidence for multiple loci from a genome scan of autism kindreds,” Molecular Psychiatry, vol. 11, no. 11, pp. 1049–1060, 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. A. L. Yonan, M. Alarcón, R. Cheng et al., “A genomewide screen of 345 families for autism-susceptibility loci,” American Journal of Human Genetics, vol. 73, no. 4, pp. 886–897, 2003. View at Publisher · View at Google Scholar · View at Scopus
  95. M. Neves-Pereira, B. Müller, D. Massie et al., “Deregulation of eIF4E: a novel mechanism for autism,” Journal of Medical Genetics, vol. 46, no. 11, pp. 759–765, 2009. View at Publisher · View at Google Scholar · View at Scopus