Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2012, Article ID 589524, 9 pages
http://dx.doi.org/10.1155/2012/589524
Review Article

Animal Models of Psychiatric Disorders That Reflect Human Copy Number Variation

1Laboratory of Integrative Bioscience, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami, Hiroshima 734-8553, Japan
2Japan Science and Technology Agency (JST), CREST, Chiyoda, Tokyo 102-0075, Japan

Received 12 March 2012; Revised 11 June 2012; Accepted 13 June 2012

Academic Editor: Hansen Wang

Copyright © 2012 Jun Nomura and Toru Takumi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. J. Iafrate, L. Feuk, M. N. Rivera et al., “Detection of large-scale variation in the human genome,” Nature Genetics, vol. 36, no. 9, pp. 949–951, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Sebat, B. Lakshmi, J. Troge et al., “Large-scale copy number polymorphism in the human genome,” Science, vol. 305, no. 5683, pp. 525–528, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Redon, S. Ishikawa, K. R. Fitch et al., “Global variation in copy number in the human genome,” Nature, vol. 444, no. 7118, pp. 444–454, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. N. P. Carter, “Methods and strategies for analyzing copy number variation using DNA microarrays,” Nature Genetics, vol. 39, no. 1, pp. S16–S21, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. H. V. Firth, S. M. Richards, A. P. Bevan et al., “DECIPHER: database of chromosomal imbalance and phenotype in humans using ensembl resources,” American Journal of Human Genetics, vol. 84, no. 4, pp. 524–533, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. S. A. McCarroll, F. G. Kuruvilla, J. M. Korn et al., “Integrated detection and population-genetic analysis of SNPs and copy number variation,” Nature Genetics, vol. 40, no. 10, pp. 1166–1174, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. A. K. Merikangas, A. P. Corvin, and L. Gallagher, “Copy-number variants in neurodevelopmental disorders: promises and challenges,” Trends in Genetics, vol. 25, no. 12, pp. 536–544, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. B. J. Crespi and D. L. Thiselton, “Comparative immunogenetics of autism and schizophrenia,” Genes, Brain and Behavior, vol. 10, no. 7, pp. 689–701, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. H. H. Li, M. Roy, U. Kuscuoglu et al., “Induced chromosome deletions cause hypersociability and other features of Williams-Beuren syndrome in mice,” EMBO Molecular Medicine, vol. 1, no. 1, pp. 50–65, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Nakatani, K. Tamada, F. Hatanaka et al., “Abnormal behavior in a chromosome-engineered mouse model for human 15q11-13 duplication seen in autism,” Cell, vol. 137, no. 7, pp. 1235–1246, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Tamada, S. Tomonaga, F. Hatanaka et al., “Decreased exploratory activity in a mouse model of 15q duplication syndrome; implications for disturbance of serotonin signaling,” PLoS ONE, vol. 5, no. 12, Article ID e15126, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Horev, J. Ellegood, J. P. Lerch et al., “Dosage-dependent phenotypes in models of 16p11.2 lesions found in autism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 41, pp. 17076–17081, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Walz, S. Caratini-Rivera, W. Bi et al., “Modeling del(17)(p11.2p11.2) and dup(17)(p11.2p11.2) contiguous gene syndromes by chromosome engineering in mice: phenotypic consequences of gene dosage imbalance,” Molecular and Cellular Biology, vol. 23, no. 10, pp. 3646–3655, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. K. L. Stark, B. Xu, A. Bagchi et al., “Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model,” Nature Genetics, vol. 40, no. 6, pp. 751–760, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Sigurdsson, K. L. Stark, M. Karayiorgou, J. A. Gogos, and J. A. Gordon, “Impaired hippocampal-prefrontal synchrony in a genetic mouse model of schizophrenia,” Nature, vol. 464, no. 7289, pp. 763–767, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Huang, A. R. Snyder, and W. F. Morgan, “Radiation-induced genomic instability and its implications for radiation carcinogenesis,” Oncogene, vol. 22, no. 37, pp. 5848–5854, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Gondo, “Trends in large-scale mouse mutagenesis: from genetics to functional genomics,” Nature Reviews Genetics, vol. 9, no. 10, pp. 803–810, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Gondo, T. Murata, S. Makino, R. Fukumura, and Y. Ishitsuka, “Mouse mutagenesis and disease models for neuropsychiatric disorders,” Current Topics of Behavioral Neurosciences, vol. 7, pp. 1–35, 2011. View at Google Scholar
  19. D. M. Sayah, A. H. Khan, T. L. Gasperoni, and D. J. Smith, “A genetic screen for novel behavioral mutations in mice,” Molecular Psychiatry, vol. 5, no. 4, pp. 369–377, 2000. View at Google Scholar · View at Scopus
  20. P. Liu, H. Zhang, A. McLellan, H. Vogel, and A. Bradley, “Embryonic lethality and tumorigenesis caused by segmental aneuploidy on mouse chromosome 11,” Genetics, vol. 150, no. 3, pp. 1155–1168, 1998. View at Google Scholar · View at Scopus
  21. K. Walz, S. Caratini-Rivera, W. Bi et al., “Modeling del(17)(p11.2p11.2) and dup(17)(p11.2p11.2) contiguous gene syndromes by chromosome engineering in mice: phenotypic consequences of gene dosage imbalance,” Molecular and Cellular Biology, vol. 23, no. 10, pp. 3646–3655, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Zheng, M. Sage, W. W. Cai et al., “Engineering a mouse balancer chromosome,” Nature Genetics, vol. 22, no. 4, pp. 375–378, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. I. Nishijima, A. Mills, Y. Qi, M. Mills, and A. Bradley, “Two new balancer chromosomes on mouse chromosome 4 to facilitate functional annotation of human chromosome lp,” Genesis, vol. 36, no. 3, pp. 142–148, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. D. J. Adams, P. J. Biggs, T. Cox et al., “Mutagenic insertion and chromosome engineering resource (MICER),” Nature Genetics, vol. 36, no. 8, pp. 867–871, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Hasty, J. Rivera-Perez, C. Chang, and A. Bradley, “Target frequency and integration pattern for insertion and replacement vectors in embryonic stem cells,” Molecular and Cellular Biology, vol. 11, no. 9, pp. 4509–4517, 1991. View at Google Scholar · View at Scopus
  26. T. Takumi, “The neurobiology of mouse models syntenic to human chromosome 15q,” Journal of Neurodevelopmental Disorders, vol. 3, no. 3, pp. 270–281, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Runte, A. Hüttenhofer, S. Groß, M. Kiefmann, B. Horsthemke, and K. Buiting, “The IC-SNURF-SNRPN transcript serves as a host for multiple small nucleolar RNA species and as an antisense RNA for UBE3A,” Human Molecular Genetics, vol. 10, no. 23, pp. 2687–2700, 2001. View at Google Scholar · View at Scopus
  28. J. Cavaillé, K. Buiting, M. Kiefmann et al., “Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 26, pp. 14311–14316, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. S. B. Cassidy, E. Dykens, and C. A. Williams, “Prader-Willi and Angelman syndromes: sister imprinted disorders,” American Journal of Medical Genetics, vol. 97, no. 2, pp. 136–146, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. E. Roof, W. Stone, W. MacLean, I. D. Feurer, T. Thompson, and M. G. Butler, “Intellectual characteristics of Prader-Willi syndrome: comparison of genetic subtypes,” Journal of Intellectual Disability Research, vol. 44, no. 1, pp. 25–30, 2000. View at Publisher · View at Google Scholar · View at Scopus
  31. C. A. Williams, A. L. Beaudet, J. Clayton-Smith et al., “Angelman syndrome 2005: updated consensus for diagnostic criteria,” American Journal of Medical Genetics, vol. 140, no. 5, pp. 413–418, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Steffenburg, C. L. Gillberg, U. Steffenburg, and M. Kyllerman, “Autism in Angelman syndrome: s population-based study,” Pediatric Neurology, vol. 14, no. 2, pp. 131–136, 1996. View at Publisher · View at Google Scholar · View at Scopus
  33. S. U. Peters, A. L. Beaudet, N. Madduri, and C. A. Bacino, “Autism in Angelman syndrome: implications for autism research,” Clinical Genetics, vol. 66, no. 6, pp. 530–536, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Gillberg, S. Steffenburg, J. Wahlstrom et al., “Autism associated with marker chromosome,” Journal of the American Academy of Child and Adolescent Psychiatry, vol. 30, no. 3, pp. 489–494, 1991. View at Google Scholar · View at Scopus
  35. P. Baker, J. Piven, S. Schwartz, and S. Patil, “Brief report: duplication of chromosome 15q11-13 in two individuals with autistic disorder,” Journal of Autism and Developmental Disorders, vol. 24, no. 4, pp. 529–535, 1994. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Hogart, D. Wu, J. M. LaSalle, and N. C. Schanen, “The comorbidity of autism with the genomic disorders of chromosome 15q11.2-q13,” Neurobiology of Disease, vol. 38, no. 2, pp. 181–191, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. J. A. S. Vorstman, W. G. Staal, E. Van Daalen, H. Van Engeland, P. F. R. Hochstenbach, and L. Franke, “Identification of novel autism candidate regions through analysis of reported cytogenetic abnormalities associated with autism,” Molecular Psychiatry, vol. 11, no. 1, pp. 18–28, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Michelson, A. Eden, C. Vinkler et al., “Familial partial trisomy 15q11-13 presenting as intractable epilepsy in the child and schizophrenia in the mother,” European Journal of Paediatric Neurology, vol. 15, no. 3, pp. 230–233, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. E. H. Cook, V. Lindgren, B. L. Leventhal et al., “Autism or atypical autism in maternally but not paternally derived proximal 15q duplication,” American Journal of Human Genetics, vol. 60, no. 4, pp. 928–934, 1997. View at Google Scholar · View at Scopus
  40. E. H. Cook, R. Y. Courchesne, N. J. Cox et al., “Linkage-disequilibrium mapping of autistic disorder, with 15q11-13 markers,” American Journal of Human Genetics, vol. 62, no. 5, pp. 1077–1083, 1998. View at Publisher · View at Google Scholar · View at Scopus
  41. R. J. Schroer, M. C. Phelan, R. C. Michaelis et al., “Autism and maternally derived aberrations of chromosome 15q,” American Journal of Medical Genetics, vol. 76, no. 4, pp. 327–336, 1998. View at Publisher · View at Google Scholar · View at Scopus
  42. P. F. Bolton, N. R. Dennis, C. E. Browne et al., “The phenotypic manifestations of interstitial duplications of proximal 15q with special reference to the autistic spectrum disorders,” American Journal of Medical Genetics, vol. 105, no. 8, pp. 675–685, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. C. E. Browne, N. R. Dennis, E. Maher et al., “Inherited interstitial duplications of proximal 15q: genotype-phenotype correlations,” American Journal of Human Genetics, vol. 61, no. 6, pp. 1342–1352, 1997. View at Publisher · View at Google Scholar · View at Scopus
  44. R. Mao, S. M. Jalal, K. Snow, V. V. Michels, S. M. Szabo, and D. Babovic-Vuksanovic, “Characteristics of two cases with dup(15)(q11.2-q12): one of maternal and one of paternal origin,” Genetics in Medicine, vol. 2, no. 2, pp. 131–135, 2000. View at Google Scholar · View at Scopus
  45. G. M. Repetto, L. M. White, P. J. Bader, D. Johnson, and J. H. M. Knoll, “Interstitial duplications of chromosome region 15qllql3: clinical and molecular characterization,” American Journal of Medical Genetics, vol. 79, no. 2, pp. 82–89, 1998. View at Google Scholar · View at Scopus
  46. S. E. Roberts, N. R. Dennis, C. E. Browne et al., “Characterisation of interstitial duplications and triplications of chromosome 15q11-q13,” Human Genetics, vol. 110, no. 3, pp. 227–234, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. P. F. Bolton, M. W. M. Veltman, E. Weisblatt et al., “Chromosome 15q11-13 abnormalities and other medical conditions in individuals with autism spectrum disorders,” Psychiatric Genetics, vol. 14, no. 3, pp. 131–137, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. T. K. Mohandas, J. P. Park, R. A. Spellman et al., “Paternally derived de novo interstitial duplication of proximal 15q in a patient with developmental delay,” American Journal of Medical Genetics, vol. 82, no. 4, pp. 294–300, 1999. View at Publisher · View at Google Scholar · View at Scopus
  49. M. W. M. Veltman, R. J. Thompson, E. E. Craig et al., “A paternally inherited duplication in the Prader-Willi/Angelman Syndrome Critical Region: a case and family study,” Journal of Autism and Developmental Disorders, vol. 35, no. 1, pp. 117–127, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. C. J. McDougle, C. A. Erickson, K. A. Stigler, and D. J. Posey, “Neurochemistry in the pathophysiology of autism,” Journal of Clinical Psychiatry, vol. 66, no. 10, pp. 9–18, 2005. View at Google Scholar · View at Scopus
  51. A. Bonnin and P. Levitt, “Placental source for 5-HT that tunes fetal brain development,” Neuropsychopharmacology, vol. 37, no. 1, pp. 299–300, 2012. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Bonnin, N. Goeden, K. Chen et al., “A transient placental source of serotonin for the fetal forebrain,” Nature, vol. 472, no. 7343, pp. 347–350, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. L. West, S. H. Brunssen, and J. Waldrop, “Review of the evidence for treatment of children with autism with selective serotonin reuptake inhibitors,” Journal for Specialists in Pediatric Nursing, vol. 14, no. 3, pp. 183–191, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Yang, J. L. Silverman, and J. N. Crawley, “Automated three-chambered social approach task for mice,” Current Protocols in Neuroscience, supplement 56, Article ID 8.26, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Fischer and K. Hammerschmidt, “Ultrasonic vocalizations in mouse models for speech and socio-cognitive disorders: insights into the evolution of vocal communication,” Genes, Brain and Behavior, vol. 10, no. 1, pp. 17–27, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. J. L. Silverman, M. Yang, C. Lord, and J. N. Crawley, “Behavioural phenotyping assays for mouse models of autism,” Nature Reviews Neuroscience, vol. 11, no. 7, pp. 490–502, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. F. I. Roullet and J. N. Crawley, “Mouse models of autism: testing hypotheses about molecular mechanisms,” Current Topics in Behavioral Neurosciences, vol. 7, pp. 187–212, 2011. View at Google Scholar
  58. S. A. Green, A. Ben-Sasson, T. W. Soto, and A. S. Carter, “Anxiety and sensory over-responsivity in toddlers with Autism spectrum disorders: bidirectional effects across time,” Journal of Autism and Developmental Disorders, vol. 42, no. 6, pp. 1112–1119, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. P. H. Patterson, “Modeling autistic features in animals,” Pediatric Research, vol. 69, no. 5, pp. 34R–40R, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. L. A. Weiss, Y. Shen, J. M. Korn et al., “Association between microdeletion and microduplication at 16p11.2 and autism,” New England Journal of Medicine, vol. 358, no. 7, pp. 667–675, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. R. A. Kumar, C. R. Marshall, J. A. Badner et al., “Association and mutation analyses of 16p11.2 autism candidate genes.,” PLoS ONE, vol. 4, no. 2, p. e4582, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. C. R. Marshall, A. Noor, J. B. Vincent et al., “Structural variation of chromosomes in Autism spectrum disorder,” American Journal of Human Genetics, vol. 82, no. 2, pp. 477–488, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. K. M. Walsh and M. B. Bracken, “Copy number variation in the dosage-sensitive 16p11.2 interval accounts for only a small proportion of autism incidence: a systematic review and meta-analysis,” Genetics in Medicine, vol. 13, no. 5, pp. 377–384, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. R. Bachmann-Gagescu, H. C. Mefford, C. Cowan et al., “Recurrent 200-kb deletions of 16p11.2 that include the SH2B1 gene are associated with developmental delay and obesity,” Genetics in Medicine, vol. 12, no. 10, pp. 641–647, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. S. E. McCarthy, V. Makarov, G. Kirov et al., “Microduplications of 16p11.2 are associated with schizophrenia,” Nature Genetics, vol. 41, no. 11, pp. 1223–1227, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. B. A. Fernandez, W. Roberts, B. Chung et al., “Phenotypic spectrum associated with de novo and inherited deletions and duplications at 16p11.2 in individuals ascertained for diagnosis of autism spectrum disorder,” Journal of Medical Genetics, vol. 47, no. 3, pp. 195–203, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Shinawi, P. Liu, S. H. L. Kang et al., “Recurrent reciprocal 16p11.2 rearrangements associated with global developmental delay, behavioural problems, dysmorphism, epilepsy, and abnormal head size,” Journal of Medical Genetics, vol. 47, no. 5, pp. 332–341, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. P. J. Scambler, “The 22q11 deletion syndromes,” Human Molecular Genetics, vol. 9, no. 16, pp. 2421–2426, 2000. View at Google Scholar · View at Scopus
  69. R. J. Shprintzen, R. B. Goldberg, and M. L. Lewin, “A new syndrome involving cleft palate, cardiac anomalies, typical facies, and learning disabilities: velo-cardio-facial syndrome,” Cleft Palate Journal, vol. 15, no. 1, pp. 56–62, 1978. View at Google Scholar · View at Scopus
  70. A. K. Ryan, J. A. Goodship, D. I. Wilson et al., “Spectrum of clinical features associated with interstitial chromosome 22q11 deletions: a European collaborative study,” Journal of Medical Genetics, vol. 34, no. 10, pp. 798–804, 1997. View at Google Scholar · View at Scopus
  71. L. J. Kobrynski and K. E. Sullivan, “Velocardiofacial syndrome, DiGeorge syndrome: the chromosome 22q11.2 deletion syndromes,” The Lancet, vol. 370, no. 9596, pp. 1443–1452, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. M. Karayiorgou, T. J. Simon, and J. A. Gogos, “22q11.2 microdeletions: linking DNA structural variation to brain dysfunction and schizophrenia,” Nature Reviews Neuroscience, vol. 11, no. 6, pp. 402–416, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Karayiorgou, M. A. Morris, B. Morrow et al., “Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 17, pp. 7612–7616, 1995. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Karayiorgou, J. A. Gogos, B. L. Galke et al., “Genotype and phenotype analysis at the 22q11 schizophrenia susceptibility locus,” Cold Spring Harbor Symposia on Quantitative Biology, vol. 61, pp. 835–843, 1996. View at Google Scholar · View at Scopus
  75. B. Xu, J. L. Roos, S. Levy, E. J. Van Rensburg, J. A. Gogos, and M. Karayiorgou, “Strong association of de novo copy number mutations with sporadic schizophrenia,” Nature Genetics, vol. 40, no. 7, pp. 880–885, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. L. J. Drew, G. W. Crabtree, S. Markx et al., “The 22q11.2 microdeletion: fifteen years of insights into the genetic and neural complexity of psychiatric disorders,” International Journal of Developmental Neuroscience, vol. 29, no. 3, pp. 259–281, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. S. Eliez, J. E. Schmitt, C. D. White, and A. L. Reiss, “Children and adolescents with velocardiofacial syndrome: a volumetric MRI study,” American Journal of Psychiatry, vol. 157, no. 3, pp. 409–415, 2000. View at Publisher · View at Google Scholar · View at Scopus
  78. G. M. Tan, D. Arnone, A. M. McIntosh, and K. P. Ebmeier, “Meta-analysis of magnetic resonance imaging studies in chromosome 22q11.2 deletion syndrome (velocardiofacial syndrome),” Schizophrenia Research, vol. 115, no. 2-3, pp. 173–181, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. T. Van Amelsvoort, E. Daly, D. Robertson et al., “Structural brain abnormalities associated with deletion at chromosome 22q11: quantitative neuroimaging study of adults with velo-cardio-facial syndrome,” British Journal of Psychiatry, vol. 178, pp. 412–419, 2001. View at Publisher · View at Google Scholar · View at Scopus
  80. C. E. Bearden, T. G. M. Van Erp, R. A. Dutton et al., “Alterations in midline cortical thickness and gyrification patterns mapped in children with 22q11.2 deletions,” Cerebral Cortex, vol. 19, no. 1, pp. 115–126, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. C. E. Bearden, T. G. M. Van Erp, R. A. Dutton et al., “Mapping cortical thickness in children with 22q11.2 deletions,” Cerebral Cortex, vol. 17, no. 8, pp. 1889–1898, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. V. Shashi, T. R. Kwapil, J. Kaczorowski et al., “Evidence of gray matter reduction and dysfunction in chromosome 22q11.2 deletion syndrome,” Psychiatry Research, vol. 181, no. 1, pp. 1–8, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. J. P. Bish, A. Pendyal, L. Ding et al., “Specific cerebellar reductions in children with chromosome 22q11.2 deletion syndrome,” Neuroscience Letters, vol. 399, no. 3, pp. 245–248, 2006. View at Publisher · View at Google Scholar · View at Scopus
  84. W. R. Kates, A. M. Miller, N. AbdulSabur et al., “Temporal lobe anatomy and psychiatric symptoms in velocardiofacial syndrome (22q11.2 deletion syndrome),” Journal of the American Academy of Child and Adolescent Psychiatry, vol. 45, no. 5, pp. 587–595, 2006. View at Publisher · View at Google Scholar · View at Scopus
  85. D. Gothelf, M. Schaer, and S. Eliez, “Genes, brain development and psychiatric phenotypes in velo-cardio-facial syndrome,” Developmental Disabilities Research Reviews, vol. 14, no. 1, pp. 59–68, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. D. Gothelf, S. Eliez, T. Thompson et al., “COMT genotype predicts longitudinal cognitive decline and psychosis in 22q11.2 deletion syndrome,” Nature Neuroscience, vol. 8, no. 11, pp. 1500–1502, 2005. View at Publisher · View at Google Scholar · View at Scopus
  87. C. Carlson, H. Sirotkin, R. Pandita et al., “Molecular definition of 22q11 deletions in 151 velo-cardio-facial syndrome patients,” American Journal of Human Genetics, vol. 61, no. 3, pp. 620–629, 1997. View at Google Scholar · View at Scopus
  88. S. Merscher, B. Funke, J. A. Epstein et al., “TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome,” Cell, vol. 104, no. 4, pp. 619–629, 2001. View at Publisher · View at Google Scholar · View at Scopus
  89. K. L. Stark, R. A. Burt, J. A. Gogos, and M. Karayiorgou, “Analysis of prepulse inhibition in mouse lines overexpressing 22q11.2 orthologues,” International Journal of Neuropsychopharmacology, vol. 12, no. 7, pp. 983–989, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. J. M. Long, P. LaPorte, S. Merscher et al., “Behavior of mice with mutations in the conserved region deleted in velocardiofacial/DiGeorge syndrome,” Neurogenetics, vol. 7, no. 4, pp. 247–257, 2006. View at Publisher · View at Google Scholar · View at Scopus
  91. R. Paylor, K. L. McIlwain, R. McAninch et al., “Mice deleted for the DiGeorge/velocardiofacial syndrome region show abnormal sensorimotor gating and learning and memory impairments,” Human Molecular Genetics, vol. 10, no. 23, pp. 2645–2650, 2001. View at Google Scholar · View at Scopus
  92. R. Paylor, B. Glaser, A. Mupo et al., “Tbx1 haploinsufficiency is linked to behavioral disorders in mice and humans: implications for 22q11 deletion syndrome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 20, pp. 7729–7734, 2006. View at Publisher · View at Google Scholar · View at Scopus
  93. D. W. Meechan, E. S. Tucker, T. M. Maynard, and A. S. LaMantia, “Diminished dosage of 22q11 genes disrupts neurogenesis and cortical development in a mouse model of 22q11 deletion/DiGeorge syndrome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 38, pp. 16434–16445, 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. J. Mukai, A. Dhilla, L. J. Drew et al., “Palmitoylation-dependent neurodevelopmental deficits in a mouse model of 22q11 microdeletion,” Nature Neuroscience, vol. 11, no. 11, pp. 1302–1310, 2008. View at Publisher · View at Google Scholar · View at Scopus
  95. S. Ruf, O. Symmons, V. V. Uslu et al., “Large-scale analysis of the regulatory architecture of the mouse genome with a transposon-associated sensor,” Nature Genetics, vol. 43, no. 4, pp. 379–387, 2011. View at Publisher · View at Google Scholar · View at Scopus
  96. C. Golzio, J. Willer, M. E. Talkowski et al., “KCTD13 is a major driver of mirrored neuroanatomical phenotypes of the 16p11.2 copy number variant,” Nature, vol. 485, no. 7398, pp. 363–367, 2012. View at Publisher · View at Google Scholar · View at Scopus