Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2012, Article ID 710943, 10 pages
http://dx.doi.org/10.1155/2012/710943
Review Article

Understanding the Pathogenesis of Angelman Syndrome through Animal Models

Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, Gurgaon 122 050, India

Received 2 February 2012; Revised 10 May 2012; Accepted 11 May 2012

Academic Editor: Cara J. Westmark

Copyright © 2012 Nihar Ranjan Jana. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. M. Buntinx, R. C. M. Hennekam, O. F. Brouwer et al., “Clinical profile of Angelman syndrome at different ages,” American Journal of Medical Genetics, vol. 56, no. 2, pp. 176–183, 1995. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Clayton-Smith and L. Laan, “Angelman syndrome: a review of the clinical and genetic aspects,” Journal of Medical Genetics, vol. 40, no. 2, pp. 87–95, 2003. View at Google Scholar · View at Scopus
  3. L. A. E. M. Laan, A. V. Haeringen, and O. F. Brouwer, “Angelman syndrome: a review of clinical and genetic aspects,” Clinical Neurology and Neurosurgery, vol. 101, no. 3, pp. 161–170, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. S. U. Peters, A. L. Beaudet, N. Madduri, and C. A. Bacino, “Autism in Angelman syndrome: implications for autism research,” Clinical Genetics, vol. 66, no. 6, pp. 530–536, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. C. A. Williams, A. Lossie, and D. Driscoll, “Angelman syndrome: mimicking conditions and phenotypes,” American Journal of Medical Genetics, vol. 101, no. 1, pp. 59–64, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. R. J. Schroer, M. C. Phelan, R. C. Michaelis, E. C. Crawford, S. A. Skinner, M. Cuccaro et al., “Autism and maternally derived aberrations of chromosome 15q,” American Journal of Medical Genetics, vol. 76, pp. 327–336, 1998. View at Google Scholar
  7. L. C. Kaplan, R. Wharton, E. Elias, F. Mandell, T. Donlon, and S. A. Latt, “Clinical heterogeneity associated with deletions in the long arm of chromosome 15: report of 3 new cases and their possible genetic significance,” American Journal of Medical Genetics, vol. 28, no. 1, pp. 45–53, 1987. View at Google Scholar · View at Scopus
  8. R. E. Magenis, M. G. Brown, D. A. Lacy, S. Budden, and S. LaFranchi, “Is Angelman syndrome an alternative result of del(15)(q11q13)?” American Journal of Medical Genetics, vol. 28, no. 4, pp. 829–838, 1987. View at Google Scholar · View at Scopus
  9. M. G. Butler and C. G. Palmer, “Parental origin of chromosome 15 deletion in Prader-Willi syndrome,” The Lancet, vol. 1, no. 8336, pp. 1285–1286, 1983. View at Google Scholar · View at Scopus
  10. D. H. Ledbetter, J. T. Mascarello, and V. M. Riccardi, “Chromosome 15 abnormalities and the Prader-Willi syndrome: a follow-up report of 40 cases,” American Journal of Human Genetics, vol. 34, no. 2, pp. 278–285, 1982. View at Google Scholar · View at Scopus
  11. M. Pembrey, S. J. Fennell, J. Van den Berghe et al., “The association of Angelman's syndrome with deletions within 15p11-13,” Journal of Medical Genetics, vol. 26, no. 2, pp. 73–77, 1989. View at Google Scholar · View at Scopus
  12. J. H. M. Knoll, R. D. Nicholls, R. E. Magenis et al., “Angelman syndrome: three molecular classes identified with chromosome 15q1 1q13-specific DNA markers,” American Journal of Human Genetics, vol. 47, no. 1, pp. 149–154, 1990. View at Google Scholar · View at Scopus
  13. R. E. Magenis, S. Toth-Fejel, L. J. Allen et al., “Comparison of the 15q deletions in Prader-Willi and Angelman syndromes: specific regions, extent of deletions, parental origin, and clinical consequences,” American Journal of Medical Genetics, vol. 35, no. 3, pp. 333–349, 1990. View at Google Scholar · View at Scopus
  14. J. H. M. Knoll, R. D. Nicholls, and M. Lalande, “On the parental origin of the deletion in Angelman syndrome,” Human Genetics, vol. 83, no. 2, pp. 205–207, 1989. View at Publisher · View at Google Scholar · View at Scopus
  15. J. H. M. Knoll, K. A. Glatt, R. D. Nicholls, S. Malcolm, and M. Lalande, “Chromosome 15 uniparental disomy is not frequent in Angelman syndrome,” American Journal of Human Genetics, vol. 48, no. 1, pp. 16–21, 1991. View at Google Scholar · View at Scopus
  16. J. Clayton-Smith, T. Webb, X. J. Cheng, M. E. Pembrey, and S. Malcolm, “Duplication of chromosome 15 in the region 15q11-13 in a patient with developmental delay and ataxia with similarities to Angelman,” Journal of Medical Genetics, vol. 30, no. 6, pp. 529–531, 1993. View at Google Scholar · View at Scopus
  17. J. Clayton-Smith, T. Webb, S. A. Robb et al., “Further evidence for dominant inheritance at the chromosome 15q11–13 locus in familial Angelman syndrome,” American Journal of Medical Genetics, vol. 44, no. 2, pp. 256–260, 1992. View at Google Scholar · View at Scopus
  18. M. Vendrame, T. Loddenkemper, M. Zarowski, M. Gregas, H. Shuhaiber, and D. P. Sarco, “Analysis of EEG patterns and genotypes in patients with Angelman syndrome,” Epilepsy & Behavior, vol. 23, pp. 261–265, 2012. View at Google Scholar
  19. A. C. Lossie, M. M. Whitney, D. Amidon et al., “Distinct phenotypes distinguish the molecular classes of Angelman syndrome,” Journal of Medical Genetics, vol. 38, no. 12, pp. 834–845, 2001. View at Google Scholar · View at Scopus
  20. P. Malzac, H. Webber, A. Moncla et al., “Mutation analysis of UBE3A in angelman syndrome patients,” American Journal of Human Genetics, vol. 62, no. 6, pp. 1353–1360, 1998. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Moncla, P. Malzac, M. O. Livet et al., “Angelman syndrome resulting from UBE3A mutations in 14 patients from eight families: clinical manifestations and genetic counselling,” Journal of Medical Genetics, vol. 36, no. 7, pp. 554–560, 1999. View at Google Scholar · View at Scopus
  22. Y. H. Jiang, T. Sahoo, R. C. Michaelis et al., “A mixed epigenetic/genetic model for oligogenic inheritance of autism with a limited role for UBE3A,” American Journal of Medical Genetics, vol. 131, no. 1, pp. 1–10, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. N. C. Schanen, “Epigenetics of autism spectrum disorders,” Human Molecular Genetics, vol. 15, no. 2, pp. R138–R150, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. T. H. Vu and A. R. Hoffman, “Imprinting of the Angelman syndrome gene, UBE3A, is restricted to brain,” Nature genetics, vol. 17, no. 1, pp. 12–13, 1997. View at Google Scholar · View at Scopus
  25. J. T. Glessner, K. Wang, G. Cai et al., “Autism genome-wide copy number variation reveals ubiquitin and neuronal genes,” Nature, vol. 459, no. 7246, pp. 569–573, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Kishino and J. Wagstaff, “Genomic organization of the UBE3A/E6-AP gene and related pseudogenes,” Genomics, vol. 47, no. 1, pp. 101–107, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. J. M. Huibregtse, M. Scheffner, and P. M. Howley, “Cloning and expression of the cDNA for E6-AP, a protein that mediates the interaction of the human papillomavirus E6 oncoprotein with p53,” Molecular and Cellular Biology, vol. 13, no. 2, pp. 775–784, 1993. View at Google Scholar · View at Scopus
  28. M. Scheffner, J. M. Huibregtse, R. D. Vierstra, and P. M. Howley, “The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53,” Cell, vol. 75, no. 3, pp. 495–505, 1993. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Yamamoto, J. M. Huibregtse, and P. M. Howley, “The human E6-AP gene (UBE3A) encodes three potential protein isoforms generated by differential splicing,” Genomics, vol. 41, no. 2, pp. 263–266, 1997. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Hershko and A. Ciechanover, “The ubiquitin system for protein degradation,” Annual Review of Biochemistry, vol. 61, pp. 761–807, 1992. View at Google Scholar · View at Scopus
  31. J. M. Huibregtse, M. Scheffner, S. Beaudenon, and P. M. Howley, “A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 11, p. 5249, 1995. View at Google Scholar · View at Scopus
  32. M. Scheffner, U. Nuber, and J. M. Huibregtse, “Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade,” Nature, vol. 373, no. 6509, pp. 81–83, 1995. View at Google Scholar · View at Scopus
  33. Y. H. Jiang, D. Armstrong, U. Albrecht et al., “Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation,” Neuron, vol. 21, no. 4, pp. 799–811, 1998. View at Publisher · View at Google Scholar · View at Scopus
  34. S. V. Dindot, B. A. Antalffy, M. B. Bhattacharjee, and A. L. Beaudet, “The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology,” Human Molecular Genetics, vol. 17, no. 1, pp. 111–118, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Yashiro, T. T. Riday, K. H. Condon et al., “Ube3a is required for experience-dependent maturation of the neocortex,” Nature Neuroscience, vol. 12, no. 6, pp. 777–783, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. E. J. Weeber, Y. H. Jiang, Y. Elgersma et al., “Derangements of hippocampal calcium/calmodulin-dependent protein kinase II in a mouse model for Angelman mental retardation syndrome,” Journal of Neuroscience, vol. 23, no. 7, pp. 2634–2644, 2003. View at Google Scholar · View at Scopus
  37. M. Sato and M. P. Stryker, “Genomic imprinting of experience-dependent cortical plasticity by the ubiquitin ligase gene Ube3a,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 12, pp. 5611–5616, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. K. Miura, T. Kishino, E. Li et al., “Neurobehavioral and electroencephalographic abnormalities in Ube3a maternal-deficient mice,” Neurobiology of Disease, vol. 9, no. 2, pp. 149–159, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. Y. H. Jiang, Y. Pan, L. Zhu et al., “Altered ultrasonic vocalization and impaired learning and memory in Angelman syndrome mouse model with a large maternal deletion from Ube3a to Gabrb3,” PLoS ONE, vol. 5, no. 8, article 1–14, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. B. M. Cattanach, J. A. Barr, C. V. Beechey, J. Martin, J. Noebels, and J. Jones, “A candidate model for Angelman syndrome in the mouse,” Mammalian Genome, vol. 8, no. 7, pp. 472–478, 1997. View at Publisher · View at Google Scholar · View at Scopus
  41. J. M. Gabriel, M. Merchant, T. Ohta et al., “A transgene insertion creating a heritable chromosome deletion mouse model of Prader-Willi and Angelman syndromes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 16, pp. 9258–9263, 1999. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Nakatani, K. Tamada, F. Hatanaka et al., “Abnormal behavior in a chromosome-engineered mouse model for human 15q11-13 duplication seen in Autism,” Cell, vol. 137, no. 7, pp. 1235–1246, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Y. Wu, K. S. Chen, J. Bressler, A. Hou, T. F. Tsai, and A. L. Beaudet, “Mouse imprinting defect mutations that model angelman syndrome,” Genesis, vol. 44, no. 1, pp. 12–22, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. F. Ding, Y. Prints, M. S. Dhar et al., “Lack of Pwcr1/MBII-85 snoRNA is critical for neonatal lethality in Prader-Willi syndrome mouse models,” Mammalian Genome, vol. 16, no. 6, pp. 424–431, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. Z. Nawaz, D. M. Lonard, C. L. Smith et al., “The Angelman syndrome-associated protein, E6-AP, is a coactivator for the nuclear hormone receptor superfamily,” Molecular and Cellular Biology, vol. 19, no. 2, pp. 1182–1189, 1999. View at Google Scholar · View at Scopus
  46. O. Y. Khan, G. Fu, A. Ismail et al., “Multifunction steroid receptor coactivator, E6-associated protein, is involved in development of the prostate gland,” Molecular Endocrinology, vol. 20, no. 3, pp. 544–559, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. C. L. Smith, D. G. DeVera, D. J. Lamb et al., “Genetic ablation of the steroid receptor coactivator-ubiquitin ligase, E6-AP, results in tissue-selective steroid hormone resistance and defects in reproduction,” Molecular and Cellular Biology, vol. 22, no. 2, pp. 525–535, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Mishra, S. K. Godavarthi, and N. R. Jana, “UBE3A/E6-AP regulates cell proliferation by promoting proteasomal degradation of p27,” Neurobiology of Disease, vol. 36, no. 1, pp. 26–34, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Mishra and N. R. Jana, “Regulation of turnover of tumor suppressor p53 and cell growth by E6-AP, a ubiquitin protein ligase mutated in Angelman mental retardation syndrome,” Cellular and Molecular Life Sciences, vol. 65, no. 4, pp. 656–666, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Kumar, A. L. Talis, and P. M. Howley, “Identification of HHR23A as a substrate for E6-associated protein-mediated ubiquitination,” Journal of Biological Chemistry, vol. 274, no. 26, pp. 18785–18792, 1999. View at Publisher · View at Google Scholar · View at Scopus
  51. I. Louria-Hayon, O. Alsheich-Bartok, Y. Levav-Cohen et al., “E6AP promotes the degradation of the PML tumor suppressor,” Cell Death and Differentiation, vol. 16, no. 8, pp. 1156–1166, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. H. Oda, S. Kumar, and P. M. Howley, “Regulation of the Src family tyrosine kinase Blk through E6AP-mediated ubiquitination,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 17, pp. 9557–9562, 1999. View at Publisher · View at Google Scholar · View at Scopus
  53. H. Kaphzan, P. Hernandez, J.I. Jung, K.K. Cowansage, K. Deinhardt, and M.V. Chao, “Reversal of impaired hippocampal long-term potentiation and contextual fear memory deficits in angelman syndrome model Mice by ErbB inhibitors,” Biological Psychiatry. In press.
  54. P. L. Greer, R. Hanayama, B. L. Bloodgood et al., “The Angelman syndrome protein Ube3A regulates synapse development by ubiquitinating Arc,” Cell, vol. 140, no. 5, pp. 704–716, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. A. M. Mabb, M. C. Judson, M. J. Zylka, and B. D. Philpot, “Angelman syndrome: insights into genomic imprinting and neurodevelopmental phenotypes,” Trends in Neurosciences, vol. 34, no. 6, pp. 293–303, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. S. S. Margolis, J. Salogiannis, D. M. Lipton et al., “EphB-mediated degradation of the RhoA GEF Ephexin5 relieves a developmental brake on excitatory synapse formation,” Cell, vol. 143, no. 3, pp. 442–455, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. H. Kaphzan, S. A. Buffington, J. I. Jung, M. N. Rasband, and E. Klann, “Alterations in intrinsic membrane properties and the axon initial segment in a mouse model of Angelman syndrome,” The Journal of Neuroscience, vol. 31, pp. 17637–17648, 2011. View at Google Scholar
  58. L. T. Reiter, T. N. Seagroves, M. Bowers, and E. Bier, “Expression of the Rho-GEF Pbl/ECT2 is regulated by the UBE3A E3 ubiquitin ligase,” Human Molecular Genetics, vol. 15, no. 18, pp. 2825–2835, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Mishra, P. Dikshit, S. Purkayastha, J. Sharma, N. Nukina, and N. R. Jana, “E6-AP promotes misfolded polyglutamine proteins for proteasomal degradation and suppresses polyglutamine protein aggregation and toxicity,” Journal of Biological Chemistry, vol. 283, no. 12, pp. 7648–7656, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Mishra, S. K. Godavarthi, M. Maheshwari, A. Goswami, and N. R. Jana, “The ubiquitin ligase E6-AP is induced and recruited to aggresomes in response to proteasome inhibition and may be involved in the ubiquitination of Hsp70-bound misfolded proteins,” Journal of Biological Chemistry, vol. 284, no. 16, pp. 10537–10545, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. S. A. Mulherkar, J. Sharma, and N. R. Jana, “The ubiquitin ligase E6-AP promotes degradation of α-synuclein,” Journal of Neurochemistry, vol. 110, no. 6, pp. 1955–1964, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. B. M. Cattanach, J. A. Barr, E. P. Evans et al., “A candidate mouse model for Prader-Willi syndrome which shows an absence of Snrpn expression,” Nature Genetics, vol. 2, no. 4, pp. 270–274, 1992. View at Google Scholar · View at Scopus
  63. S. G. Boyd, A. Harden, and M. A. Patton, “The EEG in early diagnosis of the Angelman (Happy Puppet) syndrome,” European Journal of Pediatrics, vol. 147, no. 5, pp. 508–513, 1988. View at Google Scholar · View at Scopus
  64. S. Buoni, S. Grosso, L. Pucci, and A. Fois, “Diagnosis of Angelman syndrome: clinical and EEG criteria,” Brain and Development, vol. 21, no. 5, pp. 296–302, 1999. View at Publisher · View at Google Scholar · View at Scopus
  65. T. Kishino, M. Lalande, and J. Wagstaff, “UBE3A/E6-AP mutations cause Angelman syndrome,” Nature Genetics, vol. 15, no. 1, pp. 70–73, 1997. View at Publisher · View at Google Scholar · View at Scopus
  66. T. Matsuura, J. S. Sutcliffe, P. Fang et al., “De novo truncating mutations in E6-Ap ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome,” Nature Genetics, vol. 15, no. 1, pp. 74–77, 1997. View at Publisher · View at Google Scholar · View at Scopus
  67. U. Albrecht, J. S. Sutcliffe, B. M. Cattanach et al., “Imprinted expression of the murine angelman syndrome gene, Ube3a, in hippocampal and Purkinje neurons,” Nature Genetics, vol. 17, no. 1, pp. 75–78, 1997. View at Publisher · View at Google Scholar · View at Scopus
  68. C. Rougeulle, H. Glatt, and M. Lalande, “The Angelman syndrome candidate gene, UBE3A/E6-AP, is imprinted in brain,” Nature Genetics, vol. 17, no. 1, pp. 14–15, 1997. View at Google Scholar · View at Scopus
  69. R. M. Gustin, T. J. Bichell, M. Bubser et al., “Tissue-specific variation of Ube3a protein expression in rodents and in a mouse model of Angelman syndrome,” Neurobiology of Disease, vol. 39, no. 3, pp. 283–291, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. D. H. Heck, Y. Zhao, S. Roy, M. S. Ledoux, and L. T. Reiter, “Analysis of cerebellar function in Ube3a-deficient mice reveals novel genotype-specific behaviors,” Human Molecular Genetics, vol. 17, no. 14, pp. 2181–2189, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. M. C. Varela, F. Kok, P. A. Otto, and C. P. Koiffmann, “Phenotypic variability in Angelman syndrome: comparison among different deletion classes and between deletion and UPD subjects,” European Journal of Human Genetics, vol. 12, no. 12, pp. 987–992, 2004. View at Publisher · View at Google Scholar · View at Scopus
  72. G. Cheron, L. Servais, B. Dan, D. Gall, C. Roussel, and S. N. Schiffmann, “Fast oscillation in the cerebellar cortex of calcium binding protein-deficient mice: a new sensorimotor arrest rhythm,” Progress in Brain Research, vol. 148, pp. 165–180, 2005. View at Google Scholar · View at Scopus
  73. B. Dan and G. Chéron, “Postural rhythmic muscle bursting activity in Angelman syndrome,” Brain and Development, vol. 26, no. 6, pp. 389–393, 2004. View at Publisher · View at Google Scholar · View at Scopus
  74. S. A. Mulherkar and N. R. Jana, “Loss of dopaminergic neurons and resulting behavioural deficits in mouse model of Angelman syndrome,” Neurobiology of Disease, vol. 40, no. 3, pp. 586–592, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. M. Harbord, “Levodopa responsive Parkinsonism in adults with Angelman Syndrome,” Journal of Clinical Neuroscience, vol. 8, no. 5, pp. 421–422, 2001. View at Publisher · View at Google Scholar · View at Scopus
  76. R. Guerrini, T. M. De Lorey, P. Bonanni et al., “Cortical myoclonus in Angelman syndrome,” Annals of Neurology, vol. 40, no. 1, pp. 39–48, 1996. View at Publisher · View at Google Scholar · View at Scopus
  77. M. M. Stecker and S. M. Myers, “Reserpine responsive myoclonus and hyperpyrexia in a patient with Angelman syndrome,” Clinical Neurology and Neurosurgery, vol. 105, no. 3, pp. 183–187, 2003. View at Publisher · View at Google Scholar · View at Scopus
  78. G. M. Van Woerden, K. D. Harris, M. R. Hojjati et al., “Rescue of neurological deficits in a mouse model for Angelman syndrome by reduction of αCaMKII inhibitory phosphorylation,” Nature Neuroscience, vol. 10, no. 3, pp. 280–282, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. A. L. Dorrn, K. Yuan, A. J. Barker, C. E. Schreiner, and R. C. Froemke, “Developmental sensory experience balances cortical excitation and inhibition,” Nature, vol. 465, no. 7300, pp. 932–936, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. J. C. Engert, P. Bérubé, J. Mercier et al., “ARSACS, a spastic ataxia common in northeastern Quebec, is caused by mutations in a new gene encoding an 11.5-kb ORF,” Nature Genetics, vol. 24, no. 2, pp. 120–125, 2000. View at Publisher · View at Google Scholar · View at Scopus
  81. D. A. Parfitt, G. J. Michael, E. G. M. Vermeulen et al., “The ataxia protein sacsin is a functional co-chaperone that protects against polyglutamine-expanded ataxin-1,” Human Molecular Genetics, vol. 18, no. 9, pp. 1556–1565, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. V. Jay, L. E. Becker, F. W. Chan, and T. L. Perry, “Puppet-like syndrome of Angelman: a pathologic and neurochemical study,” Neurology, vol. 41, no. 3, pp. 416–422, 1991. View at Google Scholar · View at Scopus
  83. S. Ramamoorthy and Z. Nawaz, “E6-associated protein (E6-AP) is a dual function coactivator of steroid hormone receptors,” Nuclear receptor signaling, vol. 6, article e006, 2008. View at Google Scholar · View at Scopus
  84. S. K. Godavarthi, P. Dey, M. Maheshwari, and N. Ranjan Jana, “Defective glucocorticoid hormone receptor signaling leads to increased stress and anxiety in a mouse model of Angelman syndrome,” Human Molecular Genetics, vol. 21, no. 8, pp. 1824–1834, 2012. View at Google Scholar
  85. K. Yamasaki, K. Joh, T. Ohta et al., “Neurons but not glial cells show reciprocal imprinting of sense and antisense transcripts of Ube3a,” Human Molecular Genetics, vol. 12, no. 8, pp. 837–847, 2003. View at Publisher · View at Google Scholar · View at Scopus
  86. K. Pelc, G. Cheron, S. G. Boyd, and B. Dan, “Are there distinctive sleep problems in Angelman syndrome?” Sleep Medicine, vol. 9, no. 4, pp. 434–441, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. S. Mardirossian, C. Rampon, D. Salvert, P. Fort, and N. Sarda, “Impaired hippocampal plasticity and altered neurogenesis in adult Ube3a maternal deficient mouse model for Angelman syndrome,” Experimental Neurology, vol. 220, no. 2, pp. 341–348, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. T. M. DeLorey, A. Handforth, S. G. Anagnostaras et al., “Mice lacking the β3 subunit of the GABA(A) receptor have the epilepsy phenotype and many of the behavioral characteristics of Angelman syndrome,” Journal of Neuroscience, vol. 18, no. 20, pp. 8505–8514, 1998. View at Google Scholar · View at Scopus
  89. R. D. Nicholls, W. Gottlieb, L. B. Russell, M. Davda, B. Horsthemke, and E. M. Rinchik, “Evaluation of potential models for imprinted and nonimprinted components of human chromosome 15q11-q13 syndromes by fine-structure homology mapping in the mouse,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 5, pp. 2050–2054, 1993. View at Google Scholar · View at Scopus
  90. B. Dan and S. G. Boyd, “Angelman syndrome reviewed from a neurophysiological perspective. The UBE3A-GABRB3 hypothesis,” Neuropediatrics, vol. 34, no. 4, pp. 169–176, 2003. View at Publisher · View at Google Scholar · View at Scopus
  91. K. A. Johnstone, A. J. DuBose, C. R. Futtner, M. D. Elmore, C. I. Brannan, and J. L. Resnick, “A human imprinting centre demonstrates conserved acquisition but diverged maintenance of imprinting in a mouse model for Angelman syndrome imprinting defects,” Human Molecular Genetics, vol. 15, no. 3, pp. 393–404, 2006. View at Publisher · View at Google Scholar · View at Scopus
  92. S. E. Smith, Y. D. Zhou, G. Zhang, Z. Jin, D. C. Stoppel, and M. P. Anderson, “Increased gene dosage of Ube3a results in autism traits and decreased glutamate synaptic transmission in mice,” Science Translational Medicine, vol. 3, Article ID 103ra197, 2011. View at Google Scholar
  93. C. Kohama, H. Kato, K. Numata, M. Hirose, T. Takemasa, A. Ogura et al., “ES cell differentiation system recapitulates the establishment of imprinted gene expression in a cell-type-specific manner,” Human Molecular Genetics, vol. 21, pp. 1391–1401, 2011. View at Google Scholar
  94. S. J. Chamberlain, P. F. Chen, K. Y. Ng et al., “Induced pluripotent stem cell models of the genomic imprinting disorders Angelman and Prader-Willi syndromes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 41, pp. 17668–17673, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. Y. Wu, F. V. Bolduc, K. Bell et al., “A Drosophila model for Angelman syndrome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 34, pp. 12399–12404, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. Y. Lu, F. Wang, Y. Li, J. Ferris, J. A. Lee, and F. B. Gao, “The Drosophila homologue of the Angelman syndrome ubiquitin ligase regulates the formation of terminal dendritic branches,” Human Molecular Genetics, vol. 18, no. 3, pp. 454–462, 2009. View at Publisher · View at Google Scholar · View at Scopus
  97. T. K. Hensch, “Critical period regulation,” Annual Review of Neuroscience, vol. 27, pp. 549–579, 2004. View at Publisher · View at Google Scholar · View at Scopus
  98. J. L. Daily, K. Nash, U. Jinwal, T. Golde, J. Rogers, M. M. Peters et al., “Adeno-associated virus-mediated rescue of the cognitive defects in a mouse model for Angelman syndrome,” PloS ONE, vol. 6, Article ID e27221, 2011. View at Google Scholar
  99. L. M. Bird, W. H. Tan, C. A. Bacino, S. U. Peters, S. A. Skinner, and I. Anselm, “A therapeutic trial of pro-methylation dietary supplements in Angelman syndrome,” American Journal of Medical Genetics, vol. 155, pp. 2956–2963, 2011. View at Google Scholar
  100. S. U. Peters, L. M. Bird, V. Kimonis et al., “Double-blind therapeutic trial in Angelman syndrome using betaine and folic acid,” American Journal of Medical Genetics, Part A, vol. 152, no. 8, pp. 1994–2001, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. H. S. Huang, J. A. Allen, A. M. Mabb, I. F. King, J. Miriyala, B. Taylor-Blake et al., “Topoisomerase inhibitors unsilence the dormant allele of Ube3a in neurons,” Nature, vol. 481, pp. 185–189, 2012. View at Google Scholar