Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2013, Article ID 537265, 21 pages
http://dx.doi.org/10.1155/2013/537265
Review Article

Neural Plasticity and Proliferation in the Generation of Antidepressant Effects: Hippocampal Implication

1Departamento de Fisiología y Farmacología, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-IDICAN, Santander, Cantabria, Spain
2Centro de Investigación Biomédica en Red de SaludMental (CIBERSAM), Instituto de Salud Carlos III, Santander, Cantabria, Spain
3Stem Center, Clínica Palmaplanas, Camí dels Reis 308, Palma de Mallorca, Spain
4The Research Group for Neurobiology and Gene Therapy, KU Leuven, Leuven, Belgium
5Department of Physiology and Pharmacology, School of Medicine, Cardenal Herrera Oria s/n, University of Cantabria 39011 Santander, Spain

Received 4 March 2013; Revised 1 May 2013; Accepted 8 May 2013

Academic Editor: Chitra D. Mandyam

Copyright © 2013 Fuencisla Pilar-Cuéllar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. WHO, “The world health report,” 2001.
  2. American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders (DSM-IV), APA Press, 1994.
  3. L. M. Bylsma, B. H. Morris, and J. Rottenberg, “A meta-analysis of emotional reactivity in major depressive disorder,” Clinical Psychology Review, vol. 28, no. 4, pp. 676–691, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. M. T. Treadway and D. H. Zald, “Reconsidering anhedonia in depression: lessons from translational neuroscience,” Neuroscience and Biobehavioral Reviews, vol. 35, no. 3, pp. 537–555, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Koenigs and J. Grafman, “The functional neuroanatomy of depression: distinct roles for ventromedial and dorsolateral prefrontal cortex,” Behavioural Brain Research, vol. 201, no. 2, pp. 239–243, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. J. L. Price and W. C. Drevets, “Neurocircuitry of mood disorders,” Neuropsychopharmacology, vol. 35, no. 1, pp. 192–216, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. J. L. Price and W. C. Drevets, “Neural circuits underlying the pathophysiology of mood disorders,” Trends in Cognitive Sciences, vol. 16, pp. 61–71, 2012. View at Google Scholar
  8. J. Pascual-Brazo, E. Castro, A. Diaz et al., “Modulation of neuroplasticity pathways and antidepressant-like behavioural responses following the short-term (3 and 7 days) administration of the 5-HT(4) receptor agonist RS67333,” International Journal of Neuropsychopharmacology, vol. 15, no. 5, pp. 631–643, 2012. View at Publisher · View at Google Scholar
  9. L. Xia, C. Delomenie, I. David et al., “Ventral hippocampal molecular pathways and impaired neurogenesis associated with 5-HT(1)A and 5-HT(1)B receptors disruption in mice,” Neuroscience Letters, vol. 521, no. 1, pp. 20–25, 2012. View at Publisher · View at Google Scholar
  10. R. Mostany, E. M. Valdizán, and A. Pazos, “A role for nuclear β-catenin in SNRI antidepressant-induced hippocampal cell proliferation,” Neuropharmacology, vol. 55, no. 1, pp. 18–26, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Tardito, J. Perez, E. Tiraboschi, L. Musazzi, G. Racagni, and M. Popoli, “Signaling pathways regulating gene expression, neuroplasticity, and neurotrophic mechanisms in the action of antidepressants: a critical overview,” Pharmacological Reviews, vol. 58, no. 1, pp. 115–134, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. E. J. Nestler, M. Barrot, R. J. DiLeone, A. J. Eisch, S. J. Gold, and L. M. Monteggia, “Neurobiology of depression,” Neuron, vol. 34, no. 1, pp. 13–25, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. O. Berton and E. J. Nestler, “New approaches to antidepressant drug discovery: beyond monoamines,” Nature Reviews Neuroscience, vol. 7, no. 2, pp. 137–151, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Caspi, K. Sugden, T. E. Moffitt et al., “Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene,” Science, vol. 301, no. 5631, pp. 386–389, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. T. A. Ban, “Pharmacotherapy of depression: a historical analysis,” Journal of Neural Transmission, vol. 108, no. 6, pp. 707–716, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. J. J. Schildkraut, “The catecholamine hypothesis of affective disorders: a review of supporting evidence,” The American Journal of Psychiatry, vol. 122, no. 5, pp. 509–522, 1965. View at Google Scholar · View at Scopus
  17. H. G. Ruhé, N. S. Mason, and A. H. Schene, “Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies,” Molecular Psychiatry, vol. 12, no. 4, pp. 331–359, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. R. S. Duman, G. R. Heninger, and E. J. Nestler, “A molecular and cellular theory of depression,” Archives of General Psychiatry, vol. 54, no. 7, pp. 597–606, 1997. View at Google Scholar · View at Scopus
  19. R. S. Duman, J. Malberg, and J. Thome, “Neural plasticity to stress and antidepressant treatment,” Biological Psychiatry, vol. 46, no. 9, pp. 1181–1191, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Czéh, T. Michaelis, T. Watanabe et al., “Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 22, pp. 12796–12801, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. J. E. Malberg and R. S. Duman, “Cell proliferation in adult hippocampus is decreased by inescapable stress: reversal by fluoxetine treatment,” Neuropsychopharmacology, vol. 28, no. 9, pp. 1562–1571, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. J. L. Warner-Schmidt and R. S. Duman, “Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment,” Hippocampus, vol. 16, no. 3, pp. 239–249, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Sahay and R. Hen, “Adult hippocampal neurogenesis in depression,” Nature Neuroscience, vol. 10, no. 9, pp. 1110–1115, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Sahay, M. R. Drew, and R. Hen, “Dentate gyrus neurogenesis and depression,” Progress in Brain Research, vol. 163, pp. 697–722, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. C. H. Duman, L. Schlesinger, D. S. Russell, and R. S. Duman, “Voluntary exercise produces antidepressant and anxiolytic behavioral effects in mice,” Brain Research C, vol. 1199, pp. 148–158, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. T. M. Madsen, S. S. Newton, M. E. Eaton, D. S. Russell, and R. S. Duman, “Chronic electroconvulsive seizure up-regulates β-catenin expression in rat hippocampus: role in adult neurogenesis,” Biological Psychiatry, vol. 54, no. 10, pp. 1006–1014, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. N. Li, B. Lee, R. J. Liu et al., “mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists,” Science, vol. 329, no. 5994, pp. 959–964, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. H. J. Lee, J. W. Kim, S. V. Yim et al., “Fluoxetine enhances cell proliferation and prevents apoptosis in dentate gyrus of maternally separated rats,” Molecular Psychiatry, vol. 6, no. 6, pp. 725–728, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. V. M. Heine, S. Maslam, J. Zareno, M. Joëls, and P. J. Lucassen, “Suppressed proliferation and apoptotic changes in the rat dentate gyrus after acute and chronic stress are reversible,” European Journal of Neuroscience, vol. 19, no. 1, pp. 131–144, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Jaako-Movits, T. Zharkovsky, M. Pedersen, and A. Zharkovsky, “Decreased hippocampal neurogenesis following olfactory bulbectomy is reversed by repeated citalopram administration,” Cellular and Molecular Neurobiology, vol. 26, no. 7-8, pp. 1559–1570, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Xu, P. A. Barish, J. Pan, W. O. Ogle, and J. M. O'Donnell, “Animal models of depression and neuroplasticity: assessing drug action in relation to behavior and neurogenesis,” Methods in Molecular Biology, vol. 829, pp. 103–124, 2012. View at Google Scholar
  32. Y. I. Sheline, P. W. Wang, M. H. Gado, J. G. Csernansky, and M. W. Vannier, “Hippocampal atrophy in recurrent major depression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 9, pp. 3908–3913, 1996. View at Publisher · View at Google Scholar · View at Scopus
  33. J. D. Bremner, M. Narayan, E. R. Anderson, L. H. Staib, H. L. Miller, and D. S. Charney, “Hippocampal volume reduction in major depression,” American Journal of Psychiatry, vol. 157, no. 1, pp. 115–117, 2000. View at Google Scholar · View at Scopus
  34. C. A. Stockmeier, G. J. Mahajan, L. C. Konick et al., “Cellular changes in the postmortem hippocampus in major depression,” Biological Psychiatry, vol. 56, no. 9, pp. 640–650, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Beauquis, P. Roig, F. Homo-Delarche, A. De Nicola, and F. Saravia, “Reduced hippocampal neurogenesis and number of hilar neurones in streptozotocin-induced diabetic mice: reversion by antidepressant treatment,” European Journal of Neuroscience, vol. 23, no. 6, pp. 1539–1546, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. B. Czéh, J. I. H. Müller-Keuker, R. Rygula et al., “Chronic social stress inhibits cell proliferation in the adult medial prefrontal cortex: hemispheric asymmetry and reversal by fluoxetine treatment,” Neuropsychopharmacology, vol. 32, no. 7, pp. 1490–1503, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Tochigi, K. Iwamoto, M. Bundo, T. Sasaki, N. Kato, and T. Kato, “Gene expression profiling of major depression and suicide in the prefrontal cortex of postmortem brains,” Neuroscience Research, vol. 60, no. 2, pp. 184–191, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. R. M. Tordera, A. L. Garcia-García, N. Elizalde et al., “Chronic stress and impaired glutamate function elicit a depressive-like phenotype and common changes in gene expression in the mouse frontal cortex,” European Neuropsychopharmacology, vol. 21, no. 1, pp. 23–32, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Blugeot, C. Rivat, E. Bouvier et al., “Vulnerability to depression: from brain neuroplasticity to identification of biomarkers,” Journal of Neuroscience, vol. 31, no. 36, pp. 12889–12899, 2011. View at Google Scholar
  40. M. Kodama, T. Fujioka, and R. S. Duman, “Chronic olanzapine or fluoxetine administration increases cell proliferation in hippocampus and prefrontal cortex of adult rat,” Biological Psychiatry, vol. 56, no. 8, pp. 570–580, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. J. E. Castro, E. Varea, C. Márquez, M. I. Cordero, G. Poirier, and C. Sandi, “Role of the amygdala in antidepressant effects on hippocampal cell proliferation and survival and on depression-like behavior in the rat,” PLoS ONE, vol. 5, no. 1, Article ID e8618, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. D. M. Diamond, A. Campbell, C. R. Park, and R. M. Vouimba, “Preclinical research on stress, memory, and the brain in the development of pharmacotherapy for depression,” European Neuropsychopharmacology, vol. 14, supplement 5, pp. S491–S495, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Thome, N. Sakai, K. H. Shin et al., “cAMP response element-mediated gene transcription is upregulated by chronic antidepressant treatment,” Journal of Neuroscience, vol. 20, no. 11, pp. 4030–4036, 2000. View at Google Scholar · View at Scopus
  44. A. C. H. Chen, Y. Shirayama, K. H. Shin, R. L. Neve, and R. S. Duman, “Expression of the cAMP response element binding protein (CREB) in hippocampus produces an antidepressant effect,” Biological Psychiatry, vol. 49, no. 9, pp. 753–762, 2001. View at Publisher · View at Google Scholar · View at Scopus
  45. P. Penzes, M. E. Cahill, K. A. Jones, J. E. Vanleeuwen, and K. M. Woolfrey, “Dendritic spine pathology in neuropsychiatric disorders,” Nature Neuroscience, vol. 14, no. 3, pp. 285–293, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. S. C. Cook and C. L. Wellman, “Chronic stress alters dendritic morphology in rat medial prefrontal cortex,” Journal of Neurobiology, vol. 60, no. 2, pp. 236–248, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. J. J. Radley, H. M. Sisti, J. Hao et al., “Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex,” Neuroscience, vol. 125, no. 1, pp. 1–6, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. D. Öngür, W. C. Drevets, and J. L. Price, “Glial reduction in the subgenual prefrontal cortex in mood disorders,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 22, pp. 13290–13295, 1998. View at Publisher · View at Google Scholar · View at Scopus
  49. M. P. Bowley, W. C. Drevets, D. Öngür, and J. L. Price, “Low glial numbers in the amygdala in major depressive disorder,” Biological Psychiatry, vol. 52, no. 5, pp. 404–412, 2002. View at Publisher · View at Google Scholar · View at Scopus
  50. G. Rajkowska, J. J. Miguel-Hidalgo, J. Wei et al., “Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression,” Biological Psychiatry, vol. 45, no. 9, pp. 1085–1098, 1999. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Popoli, Z. Yan, B. S. McEwen, and G. Sanacora, “The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission,” Nature Reviews Neuroscience, vol. 13, pp. 22–37, 2012. View at Google Scholar
  52. J. J. Cerqueira, F. Mailliet, O. F. X. Almeida, T. M. Jay, and N. Sousa, “The prefrontal cortex as a key target of the maladaptive response to stress,” Journal of Neuroscience, vol. 27, no. 11, pp. 2781–2787, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. P. J. Lucassen, M. B. Müller, F. Holsboer et al., “Hippocampal apoptosis in major depression is a minor event and absent from subareas at risk for glucocorticoid overexposure,” American Journal of Pathology, vol. 158, no. 2, pp. 453–468, 2001. View at Google Scholar · View at Scopus
  54. A. Bachis, M. I. Cruz, R. L. Nosheny, and I. Mocchetti, “Chronic unpredictable stress promotes neuronal apoptosis in the cerebral cortex,” Neuroscience Letters, vol. 442, no. 2, pp. 104–108, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. T. A. Kosten, M. P. Galloway, R. S. Duman, D. S. Russell, and C. D'Sa, “Repeated unpredictable stress and antidepressants differentially regulate expression of the Bcl-2 family of apoptotic genes in rat cortical, hippocampal, and limbic brain structures,” Neuropsychopharmacology, vol. 33, no. 7, pp. 1545–1558, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Nibuya, S. Morinobu, and R. S. Duman, “Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments,” Journal of Neuroscience, vol. 15, no. 11, pp. 7539–7547, 1995. View at Google Scholar · View at Scopus
  57. T. Saarelainen, P. Hendolin, G. Lucas et al., “Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects,” Journal of Neuroscience, vol. 23, no. 1, pp. 349–357, 2003. View at Google Scholar · View at Scopus
  58. P. J. Lucassen, E. Fuchs, and B. Czéh, “Antidepressant treatment with tianeptine reduces apoptosis in the hippocampal dentate gyrus and temporal cortex,” Biological Psychiatry, vol. 55, no. 8, pp. 789–796, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Ueda, S. Sakakibara, and K. Yoshimoto, “Effect of long-lasting serotonin depletion on environmental enrichment-induced neurogenesis in adult rat hippocampus and spatial learning,” Neuroscience, vol. 135, no. 2, pp. 395–402, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. J. E. Malberg, A. J. Eisch, E. J. Nestler, and R. S. Duman, “Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus,” Journal of Neuroscience, vol. 20, no. 24, pp. 9104–9110, 2000. View at Google Scholar · View at Scopus
  61. M. Sairanen, G. Lucas, P. Ernfors, M. Castrén, and E. Castrén, “Brain-derived neurotrophic factor and antidepressant drugs have different but coordinated effects on neuronal turnover, proliferation, and survival in the adult dentate gyrus,” Journal of Neuroscience, vol. 25, no. 5, pp. 1089–1094, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. R. Alonso, G. Griebel, G. Pavone, J. Stemmelin, G. Le Fur, and P. Soubrié, “Blockade of CRF1 or V1b receptors reverses stress-induced suppression of neurogenesis in a mouse model of depression,” Molecular Psychiatry, vol. 9, no. 3, pp. 278–286, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. G. Lucas, J. Du, T. Romeas et al., “Selective serotonin reuptake inhibitors potentiate the rapid antidepressant-like effects of serotonin4 receptor agonists in the rat,” PLoS ONE, vol. 5, no. 2, Article ID e9253, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. G. Lucas, V. V. Rymar, J. Du et al., “Serotonin4 (5-HT4) receptor agonists are putative antidepressants with a rapid onset of action,” Neuron, vol. 55, no. 5, pp. 712–725, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Tamburella, V. Micale, A. Navarria, and F. Drago, “Antidepressant properties of the 5-HT4 receptor partial agonist, SL65.0155: behavioral and neurochemical studies in rats,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 33, no. 7, pp. 1205–1210, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. A. Ferres-Coy, F. Pilar-Cuellar, R. Vidal et al., “RNAi-mediated serotonin transporter suppression rapidly increases serotonergic neurotransmission and hippocampal neurogenesis,” Translational Psychiatry, vol. 3, article e211, 2013. View at Google Scholar
  67. O. F. O'Leary, S. Zandy, T. G. Dinan, and J. F. Cryan, “Lithium augmentation of the effects of desipramine in a mouse model of treatment-resistant depression: a role for hippocampal cell proliferation,” Neuroscience, vol. 228, pp. 36–46, 2013. View at Google Scholar
  68. K. Huo, Y. Sun, H. Li et al., “Lithium reduced neural progenitor apoptosis in the hippocampus and ameliorated functional deficits after irradiation to the immature mouse brain,” Molecular and Cellular Neuroscience, vol. 51, pp. 32–42, 2012. View at Google Scholar
  69. J. M. Encinas, A. Vaahtokari, and G. Enikolopov, “Fluoxetine targets early progenitor cells in the adult brain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 21, pp. 8233–8238, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. E. Segi-Nishida, J. L. Warner-Schmidt, and R. S. Duman, “Electroconvulsive seizure and VEGF increase the proliferation of neural stem-like cells in rat hippocampus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 32, pp. 11352–11357, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. L. Santarelli, M. Saxe, C. Gross et al., “Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants,” Science, vol. 301, no. 5634, pp. 805–809, 2003. View at Publisher · View at Google Scholar · View at Scopus
  72. J. E. Malberg and L. E. Schecter, “Increasing hippocampal neurogenesis: a novel mechanism for antidepressant drugs,” Current Pharmaceutical Design, vol. 11, no. 2, pp. 145–155, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. A. Dranovsky and R. Hen, “Hippocampal eurogenesis: regulation by stress and antidepressants,” Biological Psychiatry, vol. 59, no. 12, pp. 1136–1143, 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Banasr, M. Hery, R. Printemps, and A. Daszuta, “Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone,” Neuropsychopharmacology, vol. 29, no. 3, pp. 450–460, 2004. View at Publisher · View at Google Scholar · View at Scopus
  75. J. W. Wang, D. J. David, J. E. Monckton, F. Battaglia, and R. Hen, “Chronic fluoxetine stimulates maturation and synaptic plasticity of adult-born hippocampal granule cells,” Journal of Neuroscience, vol. 28, no. 6, pp. 1374–1384, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. A. Surget, M. Saxe, S. Leman et al., “Drug-dependent requirement of hippocampal neurogenesis in a model of depression and of antidepressant reversal,” Biological Psychiatry, vol. 64, no. 4, pp. 293–301, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. S. A. Arnold and T. Hagg, “Serotonin 1A receptor agonist increases species- and region-selective adult CNS proliferation, but not through CNTF,” Neuropharmacology, vol. 63, pp. 1238–1247, 2012. View at Google Scholar
  78. F. Pilar-Cuéllar, R. Vidal, A. Díaz et al., “Pathways involved in antidepressant-induced proliferation and synaptic plasticity,” Current Pharmaceutical Design. In press.
  79. G. J. Huang and J. Herbert, “The role of 5-HT1A receptors in the proliferation and survival of progenitor cells in the dentate gyrus of the adult hippocampus and their regulation by corticoids,” Neuroscience, vol. 135, no. 3, pp. 803–813, 2005. View at Google Scholar · View at Scopus
  80. A. D. Fricker, C. Rios, L. A. Devi, and I. Gomes, “Serotonin receptor activation leads to neurite outgrowth and neuronal survival,” Molecular Brain Research, vol. 138, no. 2, pp. 228–235, 2005. View at Publisher · View at Google Scholar · View at Scopus
  81. S. Jha, R. Rajendran, K. A. Fernandes, and V. A. Vaidya, “5-HT2A/2C receptor blockade regulates progenitor cell proliferation in the adult rat hippocampus,” Neuroscience Letters, vol. 441, no. 2, pp. 210–214, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. A. Soumier, M. Banasr, S. Lortet et al., “Mechanisms contributing to the phase-dependent regulation of neurogenesis by the novel antidepressant, agomelatine, in the adult rat hippocampus,” Neuropsychopharmacology, vol. 34, no. 11, pp. 2390–2403, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. F. Pilar-Cuellar, R. Vidal, and A. Pazos, “Subchronic treatment with fluoxetine and ketanserin increases hippocampal brain-derived neurotrophic factor, beta-catenin and antidepressant-like effects,” British Journal of Pharmacology, vol. 165, pp. 1046–1057, 2012. View at Google Scholar
  84. A. G. Foley, W. D. Hirst, H. C. Gallagher et al., “The selective 5-HT6 receptor antagonists SB-271046 and SB-399885 potentiate NCAM PSA immunolabeling of dentate granule cells, but not neurogenesis, in the hippocampal formation of mature Wistar rats,” Neuropharmacology, vol. 54, no. 8, pp. 1166–1174, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. O. Mnie-Filali, C. Faure, L. Lambas-Senas et al., “Pharmacological blockade of 5-HT7 receptors as a putative fast acting antidepressant strategy,” Neuropsychopharmacology, vol. 36, no. 6, pp. 1275–1288, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. G. Sarkisyan and P. B. Hedlund, “The 5-HT7 receptor is involved in allocentric spatial memory information processing,” Behavioural Brain Research, vol. 202, no. 1, pp. 26–31, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. J. A. Menninger and B. Tabakoff, “Forskolin-stimulated platelet adenylyl cyclase activity is lower in persons with major depression,” Biological Psychiatry, vol. 42, no. 1, pp. 30–38, 1997. View at Publisher · View at Google Scholar · View at Scopus
  88. E. M. Valdizán, O. Gutierrez, and A. Pazos, “Adenylate cyclase activity in postmortem brain of suicide subjects: reduced response to β-adrenergic stimulation,” Biological Psychiatry, vol. 54, no. 12, pp. 1457–1464, 2003. View at Publisher · View at Google Scholar · View at Scopus
  89. I. Extein, J. Tallman, C. C. Smith, and F. K. Goodwin, “Changes in lymphocyte beta-adrenergic receptors in depression and mania,” Psychiatry Research, vol. 1, no. 2, pp. 191–197, 1979. View at Publisher · View at Google Scholar · View at Scopus
  90. J. P. Halper, R. P. Brown, J. A. Sweeney, J. H. Kocsis, A. Peters, and J. J. Mann, “Blunted β-adrenergic responsivity of peripheral blood mononuclear cells in endogenous depression. Isoproterenol dose-response studies,” Archives of General Psychiatry, vol. 45, no. 3, pp. 241–244, 1988. View at Google Scholar · View at Scopus
  91. J. J. Mann, J. P. Halper, P. J. Wilner et al., “Subsensitivity of adenylyl cyclase-coupled receptors on mononuclear leukocytes from drug-free inpatients with a major depressive episode,” Biological Psychiatry, vol. 42, no. 10, pp. 859–870, 1997. View at Publisher · View at Google Scholar · View at Scopus
  92. P. Mazzola-Pomietto, J. M. Azorin, V. Tramoni, and R. Jeanningros, “Relation between lymphocyte beta-adrenergic responsivity and the severity of depressive disorders,” Biological Psychiatry, vol. 35, pp. 920–925, 1994. View at Google Scholar
  93. G. N. Pandey, P. Sudershan, and J. M. Davis, “Beta adrenergic receptor function in depression and the effect of antidepressant drugs,” Acta Pharmacologica et Toxicologica Supplementum, vol. 56, no. 1, pp. 66–79, 1985. View at Google Scholar · View at Scopus
  94. E. M. Valdizn, R. Dez-Alarcia, J. Gonzlez-Maeso et al., “α2-adrenoceptor functionality in postmortem frontal cortex of depressed suicide victims,” Biological Psychiatry, vol. 68, no. 9, pp. 869–872, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. H. Ozawa and M. M. Rasenick, “Chronic electroconvulsive treatment augments coupling of the GTP-binding protein G(s) to the catalytic moiety of adenylyl cyclase in a manner similar to that seen with chronic antidepressant drugs,” Journal of Neurochemistry, vol. 56, no. 1, pp. 330–338, 1991. View at Publisher · View at Google Scholar · View at Scopus
  96. V. J. Watts and K. A. Neve, “Sensitization of adenylate cyclase by Galpha i/o-coupled receptors,” Pharmacology & Therapeutics, vol. 106, pp. 405–421, 2005. View at Google Scholar
  97. R. Vidal, E. M. Valdizan, R. Mostany, A. Pazos, and E. Castro, “Long-term treatment with fluoxetine induces desensitization of 5-HT4 receptor-dependent signalling and functionality in rat brain,” Journal of Neurochemistry, vol. 110, no. 3, pp. 1120–1127, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. R. Vidal, E. M. Valdizan, M. T. Vilaro, A. Pazos, and E. Castro, “Reduced signal transduction by 5-HT4 receptors after long-term venlafaxine treatment in rats,” British Journal of Pharmacology, vol. 161, no. 3, pp. 695–706, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. H. T. Zhang, “Cyclic AMP-specific phosphodiesterase-4 as a target for the development of antidepressant drugs,” Current Pharmaceutical Design, vol. 15, no. 14, pp. 1688–1698, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. S. Mato, R. Vidal, E. Castro, A. Díaz, A. Pazos, and E. M. Valdizán, “Long-term fluoxetine treatment modulates cannabinoid type 1 receptor-mediated inhibition of adenylyl cyclase in the rat prefrontal cortex through 5-hydroxytryptamine 1A receptor-dependent mechanisms,” Molecular Pharmacology, vol. 77, no. 3, pp. 424–434, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. E. J. Nestler, R. Z. Terwilliger, and R. S. Duman, “Chronic antidepressant administration alters the subcellular distribution of cyclic AMP-dependent protein kinase in rat frontal cortex,” Journal of Neurochemistry, vol. 53, no. 5, pp. 1644–1647, 1989. View at Google Scholar · View at Scopus
  102. J. Alfonso, L. R. Frick, D. M. Silberman, M. L. Palumbo, A. M. Genaro, and A. C. Frasch, “Regulation of hippocampal gene expression is conserved in two species subjected to different stressors and antidepressant treatments,” Biological Psychiatry, vol. 59, no. 3, pp. 244–251, 2006. View at Publisher · View at Google Scholar · View at Scopus
  103. S. Morley-Fletcher, J. Mairesse, A. Soumier et al., “Chronic agomelatine treatment corrects behavioral, cellular, and biochemical abnormalities induced by prenatal stress in rats,” Psychopharmacology, vol. 217, no. 3, pp. 301–313, 2011. View at Publisher · View at Google Scholar · View at Scopus
  104. D. Dowlatshahi, G. M. MacQueen, J. F. Wang, and L. T. Young, “Increased temporal cortex CREB concentrations and antidepressant treatment in major depression,” Lancet, vol. 352, no. 9142, pp. 1754–1755, 1998. View at Google Scholar · View at Scopus
  105. D. Dowlatshahi, G. M. MacQueen, J. F. Wang, J. S. Reiach, and L. T. Young, “G protein-coupled cyclic AMP signaling in postmortem brain of subjects with mood disorders: effects of diagnosis, suicide, and treatment at the time of death,” Journal of Neurochemistry, vol. 73, no. 3, pp. 1121–1126, 1999. View at Publisher · View at Google Scholar · View at Scopus
  106. Y. Odagaki, J. A. García-Sevilla, P. Huguelet, R. La Harpe, T. Koyama, and J. Guimón, “Cyclic AMP-mediated signaling components are upregulated in the prefrontal cortex of depressed suicide victims,” Brain Research, vol. 898, no. 2, pp. 224–231, 2001. View at Publisher · View at Google Scholar · View at Scopus
  107. S. Yamada, M. Yamamoto, H. Ozawa, P. Riederer, and T. Saito, “Reduced phosphorylation of cyclic AMP-responsive element binding protein in the postmortem orbitofrontal cortex of patients with major depressive disorder,” Journal of Neural Transmission, vol. 110, no. 6, pp. 671–680, 2003. View at Publisher · View at Google Scholar · View at Scopus
  108. D. Laifenfeld, R. Karry, E. Grauer, E. Klein, and D. Ben-Shachar, “Antidepressants and prolonged stress in rats modulate CAM-L1, laminin, and pCREB, implicated in neuronal plasticity,” Neurobiology of Disease, vol. 20, no. 2, pp. 432–441, 2005. View at Publisher · View at Google Scholar · View at Scopus
  109. T. L. Wallace, K. E. Stellitano, R. L. Neve, and R. S. Duman, “Effects of cyclic adenosine monophosphate response element binding protein overexpression in the basolateral amygdala on behavioral models of depression and anxiety,” Biological Psychiatry, vol. 56, no. 3, pp. 151–160, 2004. View at Publisher · View at Google Scholar · View at Scopus
  110. D. H. Manier, R. C. Shelton, and F. Sulser, “Noradrenergic antidepressants: does chronic treatment increase or decrease nuclear CREB-P?” Journal of Neural Transmission, vol. 109, no. 1, pp. 91–99, 2002. View at Publisher · View at Google Scholar · View at Scopus
  111. A. M. Pliakas, R. R. Carlson, R. L. Neve, C. Konradi, E. J. Nestler, and W. A. Carlezon, “Altered responsiveness to cocaine and increased immobility in the forced swim test associated with elevated cAMP response element-binding protein expression in nucleus accumbens,” Journal of Neuroscience, vol. 21, no. 18, pp. 7397–7403, 2001. View at Google Scholar · View at Scopus
  112. Y. Dwivedi, A. C. Mondal, H. S. Rizavi et al., “Differential and brain region-specific regulation of Rap-1 and Epac in depressed suicide victims,” Archives of General Psychiatry, vol. 63, no. 6, pp. 639–648, 2006. View at Publisher · View at Google Scholar · View at Scopus
  113. R. Liu, W. Dang, M. Jianting et al., “Citalopram alleviates chronic stress induced depression-like behaviors in rats by activating GSK3 beta signaling in dorsal hippocampus,” Brain Research, vol. 1467, pp. 10–17, 2012. View at Publisher · View at Google Scholar
  114. G. Chen, L. D. Huang, Y. M. Jiang, and H. K. Manji, “The mood-stabilizing agent valproate inhibits the activity of glycogen synthase kinase-3,” Journal of Neurochemistry, vol. 72, no. 3, pp. 1327–1330, 1999. View at Publisher · View at Google Scholar · View at Scopus
  115. T. D. Gould, G. Chen, and H. K. Manji, “In vivo evidence in the brain for lithium inhibition of glycogen synthase kinase-3,” Neuropsychopharmacology, vol. 29, no. 1, pp. 32–38, 2004. View at Publisher · View at Google Scholar · View at Scopus
  116. X. Li, W. Zhu, M. S. Roh, A. B. Friedman, K. Rosborough, and R. S. Jope, “In vivo regulation of glycogen synthase kinase-3β (GSK3β) by serotonergic activity in mouse brain,” Neuropsychopharmacology, vol. 29, no. 8, pp. 1426–1431, 2004. View at Publisher · View at Google Scholar · View at Scopus
  117. J. M. Beaulieu, X. Zhang, R. M. Rodriguiz et al., “Role of GSK3β in behavioral abnormalities induced by serotonin deficiency,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 4, pp. 1333–1338, 2008. View at Publisher · View at Google Scholar · View at Scopus
  118. O. Kaidanovich-Beilin, A. Milman, A. Weizman, C. G. Pick, and H. Eldar-Finkelman, “Rapid antidepressive-like activity of specific glycogen synthase kinase-3 inhibitor and its effect on β-catenin in mouse hippocampus,” Biological Psychiatry, vol. 55, no. 8, pp. 781–784, 2004. View at Publisher · View at Google Scholar · View at Scopus
  119. W. T. O'Brien, A. D. Harper, F. Jové et al., “Glycogen synthase kinase-3β haploinsufficiency mimics the behavioral and molecular effects of lithium,” Journal of Neuroscience, vol. 24, no. 30, pp. 6791–6798, 2004. View at Publisher · View at Google Scholar · View at Scopus
  120. C. Latapy, V. Rioux, M. J. Guitton, and J. M. Beaulieu, “Selective deletion of forebrain glycogen synthase kinase 3beta reveals a central role in serotonin-sensitive anxiety and social behaviour,” Philosophical Transactions of the Royal Society B, vol. 367, pp. 2460–2474, 2012. View at Google Scholar
  121. A. Polter, E. Beurel, S. Yang et al., “Deficiency in the inhibitory serine-phosphorylation of glycogen synthase kinase-3 increases sensitivity to mood disturbances,” Neuropsychopharmacology, vol. 35, no. 8, pp. 1761–1774, 2010. View at Publisher · View at Google Scholar · View at Scopus
  122. F. Benedetti, A. Serretti, C. Colombo, C. Lorenzi, V. Tubazio, and E. Smeraldi, “A glycogen synthase kinase 3-β promoter gene single nucleotide polymorphism is associated with age at onset and response to total sleep deprivation in bipolar depression,” Neuroscience Letters, vol. 368, no. 2, pp. 123–126, 2004. View at Publisher · View at Google Scholar · View at Scopus
  123. F. Benedetti, S. Dallaspezia, C. Lorenzi et al., “Gene-gene interaction of glycogen synthase kinase 3-beta and serotonin transporter on human antidepressant response to sleep deprivation,” Journal of Affective Disorders, vol. 136, pp. 514–519, 2012. View at Google Scholar
  124. F. Karege, N. Perroud, S. Burkhardt et al., “Protein levels of beta-catenin and activation state of glycogen synthase kinase-3beta in major depression. A study with postmortem prefrontal cortex,” Journal of Affective Disorders, vol. 136, pp. 185–188, 2012. View at Google Scholar
  125. T. D. Gould, K. C. O'Donnell, A. M. Picchini, E. R. Dow, G. Chen, and H. K. Manji, “Generation and behavioral characterization of β-catenin forebrain-specific conditional knock-out mice,” Behavioural Brain Research, vol. 189, no. 1, pp. 117–125, 2008. View at Publisher · View at Google Scholar · View at Scopus
  126. T. D. Gould, H. Einat, K. C. O'Donnell, A. M. Picchini, R. J. Schloesser, and H. K. Manji, “Β-catenin overexpression in the mouse brain phenocopies lithium-sensitive behaviors,” Neuropsychopharmacology, vol. 32, no. 10, pp. 2173–2183, 2007. View at Publisher · View at Google Scholar · View at Scopus
  127. K. R. Howell, A. Kutiyanawalla, and A. Pillai, “Long-term continuous corticosterone treatment decreases VEGF receptor-2 expression in frontal cortex,” PLoS ONE, vol. 6, no. 5, Article ID e20198, 2011. View at Publisher · View at Google Scholar · View at Scopus
  128. L. Sui, J. Wang, and B. M. Li, “Role of the phosphoinositide 3-kinase-Akt-mammalian target of the rapamycin signaling pathway in long-term potentiation and trace fear conditioning memory in rat medial prefrontal cortex,” Learning and Memory, vol. 15, no. 10, pp. 762–776, 2008. View at Publisher · View at Google Scholar · View at Scopus
  129. A. Chandran, A. H. Iyo, C. S. Jernigan, B. Legutko, M. C. Austin, and B. Karolewicz, “Reduced phosphorylation of the mTOR signaling pathway components in the amygdala of rats exposed to chronic stress,” Progress in Neuro-Psychopharmacology & Biological Psychiatry, vol. 40, pp. 240–245, 2013. View at Google Scholar
  130. J. J. Yu, Y. Zhang, Y. Wang et al., “Inhibition of calcineurin in the prefrontal cortex induced depressive-like behavior through mTOR signaling pathway,” Psychopharmacology, vol. 225, pp. 361–372, 2013. View at Google Scholar
  131. S. J. Mathew, K. Keegan, and L. Smith, “Glutamate modulators as novel interventions for mood disorders,” Revista Brasileira de Psiquiatria, vol. 27, no. 3, pp. 243–248, 2005. View at Google Scholar · View at Scopus
  132. J. M. Brezun and A. Daszuta, “Serotonergic reinnervation reverses lesion-induced decreases in PSA-NCAM labeling and proliferation of hippocampal cells in adult rats,” Hippocampus, vol. 10, pp. 37–46, 2000. View at Google Scholar
  133. D. S. Cowen, L. F. Takase, C. A. Fornal, and B. L. Jacobs, “Age-dependent decline in hippocampal neurogenesis is not altered by chronic treatment with fluoxetine,” Brain Research C, vol. 1228, pp. 14–19, 2008. View at Publisher · View at Google Scholar · View at Scopus
  134. M. W. Marlatt, P. J. Lucassen, and H. van Praag, “Comparison of neurogenic effects of fluoxetine, duloxetine and running in mice,” Brain Research C, vol. 1341, pp. 93–99, 2010. View at Publisher · View at Google Scholar · View at Scopus
  135. N. D. Hanson, C. B. Nemeroff, and M. J. Owens, “Lithium, but not fluoxetine or the corticotropin-releasing factor receptor 1 receptor antagonist R121919, increases cell proliferation in the adult dentate gyrus,” Journal of Pharmacology and Experimental Therapeutics, vol. 337, no. 1, pp. 180–186, 2011. View at Publisher · View at Google Scholar · View at Scopus
  136. J. J. Radley and B. L. Jacobs, “5-HT1A receptor antagonist administration decreases cell proliferation in the dentate gyrus,” Brain Research, vol. 955, no. 1-2, pp. 264–267, 2002. View at Publisher · View at Google Scholar · View at Scopus
  137. G. J. Marek, L. L. Carpenter, C. J. McDougle, and L. H. Price, “Synergistic action of 5-HT2A antagonists and selective serotonin reuptake inhibitors in neuropsychiatric disorders,” Neuropsychopharmacology, vol. 28, no. 2, pp. 402–412, 2003. View at Google Scholar · View at Scopus
  138. D. K. Pandey, R. Mahesh, A. A. Kumar, V. S. Rao, M. Arjun, and R. Rajkumar, “A novel 5-HT(2A) receptor antagonist exhibits antidepressant-like effects in a battery of rodent behavioural assays: approaching early-onset antidepressants,” Pharmacology Biochemistry and Behavior, vol. 94, no. 3, pp. 363–373, 2010. View at Publisher · View at Google Scholar · View at Scopus
  139. V. A. Vaidya, R. M. Z. Terwilliger, and R. S. Duman, “Role of 5-HT(2a) receptors in the stress-induced down-regulation of brain-derived neurotrophic factor expression in rat hippocampus,” Neuroscience Letters, vol. 262, no. 1, pp. 1–4, 1999. View at Publisher · View at Google Scholar · View at Scopus
  140. A. I. Gulyas, L. Acsady, and T. F. Freund, “Structural basis of the cholinergic and serotonergic modulation of GABAergic neurons in the hippocampus,” Neurochemistry International, vol. 34, pp. 359–372, 1999. View at Google Scholar
  141. P. Rosel, B. Arranz, M. Urretavizcaya, M. Oros, L. San, and M. A. Navarro, “Altered 5-HT2A and 5-HT4 postsynaptic receptors and their intracellular signalling systems IP3 and cAmP in brains from depressed violent suicide victims,” Neuropsychobiology, vol. 49, no. 4, pp. 189–195, 2004. View at Publisher · View at Google Scholar · View at Scopus
  142. A. Wesołowska, “Potential role of the 5-HT6 receptor in depression and anxiety: an overview of preclinical data,” Pharmacological Reports, vol. 62, no. 4, pp. 564–577, 2010. View at Google Scholar · View at Scopus
  143. A. Wesołowska and A. Nikiforuk, “Effects of the brain-penetrant and selective 5-HT6 receptor antagonist SB-399885 in animal models of anxiety and depression,” Neuropharmacology, vol. 52, no. 5, pp. 1274–1283, 2007. View at Publisher · View at Google Scholar · View at Scopus
  144. A. Wesołowska and A. Nikiforuk, “The selective 5-HT6 receptor antagonist SB-399885 enhances anti-immobility action of antidepressants in rats,” European Journal of Pharmacology, vol. 582, no. 1–3, pp. 88–93, 2008. View at Publisher · View at Google Scholar · View at Scopus
  145. A. Wesołowska, A. Nikiforuk, and K. Stachowicz, “Anxiolytic-like and antidepressant-like effects produced by the selective 5-HT6 receptor antagonist SB-258585 after intrahippocampal administration to rats,” Behavioural Pharmacology, vol. 18, no. 5-6, pp. 439–446, 2007. View at Publisher · View at Google Scholar · View at Scopus
  146. C. K. Callaghan, V. Hok, A. Della-Chiesa, D. J. Virley, N. Upton, and S. M. O'Mara, “Age-related declines in delayed non-match-to-sample performance (DNMS) are reversed by the novel 5HT6 receptor antagonist SB742457,” Neuropharmacology, vol. 63, pp. 890–897, 2012. View at Google Scholar
  147. O. Mnie-Filali, L. Lambás-Señas, L. Zimmer, and N. Haddjeri, “5-HT7 receptor antagonists as a new class of antidepressants,” Drug News and Perspectives, vol. 20, no. 10, pp. 613–618, 2007. View at Publisher · View at Google Scholar · View at Scopus
  148. S. M. Stahl, “The serotonin-7 receptor as a novel therapeutic target,” Journal of Clinical Psychiatry, vol. 71, no. 11, pp. 1414–1415, 2010. View at Publisher · View at Google Scholar · View at Scopus
  149. P. B. Hedlund, S. Huitron-Resendiz, S. J. Henriksen, and J. G. Sutcliffe, “5-HT7 receptor inhibition and inactivation induce antidepressantlike behavior and sleep pattern,” Biological Psychiatry, vol. 58, no. 10, pp. 831–837, 2005. View at Publisher · View at Google Scholar · View at Scopus
  150. E. Alvarez, V. Perez, M. Dragheim, H. Loft, and F. Artigas, “A double-blind, randomized, placebo-controlled, active reference study of Lu AA21004 in patients with major depressive disorder,” International Journal of Neuropsychopharmacology, vol. 15, pp. 589–600, 2012. View at Google Scholar
  151. F. Calabrese, R. Molteni, G. Racagni, and M. A. Riva, “Neuronal plasticity: a link between stress and mood disorders,” Psychoneuroendocrinology, vol. 34, supplement 1, pp. S208–S216, 2009. View at Publisher · View at Google Scholar · View at Scopus
  152. D. Taliaz, A. Loya, R. Gersner, S. Haramati, A. Chen, and A. Zangen, “Resilience to chronic stress is mediated by hippocampal brain-derived neurotrophic factor,” Journal of Neuroscience, vol. 31, no. 12, pp. 4475–4483, 2011. View at Publisher · View at Google Scholar · View at Scopus
  153. K. Hashimoto, “Brain-derived neurotrophic factor as a biomarker for mood disorders: an historical overview and future directions,” Psychiatry and Clinical Neurosciences, vol. 64, no. 4, pp. 341–357, 2010. View at Publisher · View at Google Scholar · View at Scopus
  154. S. Sen, R. Duman, and G. Sanacora, “Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications,” Biological Psychiatry, vol. 64, no. 6, pp. 527–532, 2008. View at Publisher · View at Google Scholar · View at Scopus
  155. W. Umene-Nakano, R. Yoshimura, A. Ikenouchi-Sugita et al., “Serum levels of brain-derived neurotrophic factor in comorbidity of depression and alcohol dependence,” Human Psychopharmacology, vol. 24, no. 5, pp. 409–413, 2009. View at Publisher · View at Google Scholar · View at Scopus
  156. A. S. Gonul, F. Akdeniz, F. Taneli, O. Donat, C. Eker, and S. Vahip, “Effect of treatment on serum brain-derived neurotrophic factor levels in depressed patients,” European Archives of Psychiatry and Clinical Neuroscience, vol. 255, no. 6, pp. 381–386, 2005. View at Publisher · View at Google Scholar · View at Scopus
  157. Y. K. Kim, H. P. Lee, S. D. Won et al., “Low plasma BDNF is associated with suicidal behavior in major depression,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 31, no. 1, pp. 78–85, 2007. View at Publisher · View at Google Scholar · View at Scopus
  158. L. M. Monteggia, M. Barrot, C. M. Powell et al., “Essential role of brain-derived neurotrophic factor in adult hippocampal function,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 29, pp. 10827–10832, 2004. View at Publisher · View at Google Scholar · View at Scopus
  159. Z. Y. Chen, D. Jing, K. G. Bath et al., “Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior,” Science, vol. 314, no. 5796, pp. 140–143, 2006. View at Publisher · View at Google Scholar · View at Scopus
  160. M. Adachi, M. Barrot, A. E. Autry, D. Theobald, and L. M. Monteggia, “Selective loss of brain-derived neurotrophic factor in the dentate gyrus attenuates antidepressant efficacy,” Biological Psychiatry, vol. 63, no. 7, pp. 642–649, 2008. View at Publisher · View at Google Scholar · View at Scopus
  161. J. A. Siuciak, D. R. Lewis, S. J. Wiegand, and R. M. Lindsay, “Antidepressant-like effect of brain-derived neurotrophic factor (BDNF),” Pharmacology Biochemistry and Behavior, vol. 56, no. 1, pp. 131–137, 1997. View at Publisher · View at Google Scholar · View at Scopus
  162. B. A. Hoshaw, J. E. Malberg, and I. Lucki, “Central administration of IGF-I and BDNF leads to long-lasting antidepressant-like effects,” Brain Research, vol. 1037, no. 1-2, pp. 204–208, 2005. View at Publisher · View at Google Scholar · View at Scopus
  163. Y. Shirayama, A. C. H. Chen, S. Nakagawa, D. S. Russell, and R. S. Duman, “Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression,” Journal of Neuroscience, vol. 22, no. 8, pp. 3251–3261, 2002. View at Google Scholar · View at Scopus
  164. Y. Ye, G. Wang, H. Wang, and X. Wang, “Brain-derived neurotrophic factor (BDNF) infusion restored astrocytic plasticity in the hippocampus of a rat model of depression,” Neuroscience Letters, vol. 503, pp. 15–19, 2011. View at Google Scholar
  165. H. D. Schmidt and R. S. Duman, “Peripheral BDNF produces antidepressant-like effects in cellular and behavioral models,” Neuropsychopharmacology, vol. 35, no. 12, pp. 2378–2391, 2010. View at Publisher · View at Google Scholar · View at Scopus
  166. A. Tadić, S. Wagner, K. F. Schlicht et al., “The early non-increase of serum BDNF predicts failure of antidepressant treatment in patients with major depression: a pilot study,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 35, no. 2, pp. 415–420, 2011. View at Publisher · View at Google Scholar · View at Scopus
  167. R. S. Duman and L. M. Monteggia, “A neurotrophic model for stress-related mood disorders,” Biological Psychiatry, vol. 59, no. 12, pp. 1116–1127, 2006. View at Publisher · View at Google Scholar · View at Scopus
  168. V. A. Vaidya, G. J. Marek, G. K. Aghajanian, and R. S. Duman, “5-HT(2A) receptor-mediated regulation of brain-derived neurotrophic factor mRNA in the hippocampus and the neocortex,” Journal of Neuroscience, vol. 17, no. 8, pp. 2785–2795, 1997. View at Google Scholar · View at Scopus
  169. S. H. Choi, Y. Li, L. F. Parada, and S. S. Sisodia, “Regulation of hippocampal progenitor cell survival, proliferation and dendritic development by BDNF,” Molecular Neurodegeneration, vol. 4, no. 1, article 52, 2009. View at Publisher · View at Google Scholar · View at Scopus
  170. H. Son, M. Banasr, M. Choi et al., “Neuritin produces antidepressant actions and blocks the neuronal and behavioral deficits caused by chronic stress,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 28, pp. 11378–11383, 2012. View at Google Scholar
  171. M. N. Alme, K. Wibrand, G. Dagestad, and C. R. Bramham, “Chronic fluoxetine treatment induces brain region-specific upregulation of genes associated with BDNF-induced long-term potentiation,” Neural Plasticity, vol. 2007, Article ID 26496, 9 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  172. M. F. Egan, M. Kojima, J. H. Callicott et al., “The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function,” Cell, vol. 112, no. 2, pp. 257–269, 2003. View at Publisher · View at Google Scholar · View at Scopus
  173. S. Sen, R. M. Nesse, S. F. Stoltenberg et al., “A BDNF coding variant is associated with the NEO personality inventory domain neuroticism, a risk factor for depression,” Neuropsychopharmacology, vol. 28, no. 2, pp. 397–401, 2003. View at Google Scholar · View at Scopus
  174. M. Verhagen, A. Van Der Meij, P. M. Van Deurzen et al., “Meta-analysis of the BDNF Val66Met polymorphism in major depressive disorder: effects of gender and ethnicity,” Molecular Psychiatry, vol. 15, no. 3, pp. 260–271, 2010. View at Publisher · View at Google Scholar · View at Scopus
  175. H. Yu, D. D. Wang, Y. Wang, T. Liu, F. S. Lee, and Z. Y. Chen, “Variant brain-derived neurotrophic factor Val66Met polymorphism alters vulnerability to stress and response to antidepressants,” Journal of Neuroscience, vol. 32, no. 12, pp. 4092–4101, 2012. View at Google Scholar
  176. N. A. Kocabas, I. Antonijevic, C. Faghel et al., “Brain-derived neurotrophic factor gene polymorphisms: influence on treatment response phenotypes of major depressive disorder,” International Clinical Psychopharmacology, vol. 26, pp. 1–10, 2011. View at Google Scholar
  177. T. D. Palmer, A. R. Willhoite, and F. H. Gage, “Vascular niche for adult hippocampal neurogenesis,” Journal of Comparative Neurology, vol. 425, pp. 479–494, 2000. View at Google Scholar
  178. J. L. Warner-Schmidt, T. M. Madsen, and R. S. Duman, “Electroconvulsive seizure restores neurogenesis and hippocampus-dependent fear memory after disruption by irradiation,” European Journal of Neuroscience, vol. 27, no. 6, pp. 1485–1493, 2008. View at Publisher · View at Google Scholar · View at Scopus
  179. V. M. Heine, J. Zareno, S. Maslam, M. Joëls, and P. J. Lucassen, “Chronic stress in the adult dentate gyrus reduces cell proliferation near the vasculature and VEGF and Flk-1 protein expression,” European Journal of Neuroscience, vol. 21, no. 5, pp. 1304–1314, 2005. View at Publisher · View at Google Scholar · View at Scopus
  180. T. Kiuchi, H. Lee, and T. Mikami, “Regular exercise cures depression-like behavior via VEGF-Flk-1 signaling in chronically stressed mice,” Neuroscience, vol. 207, pp. 208–217, 2012. View at Google Scholar
  181. S. S. Newton, E. F. Collier, J. Hunsberger et al., “Gene profile of electroconvulsive seizures: induction of neurotrophic and angiogenic factors,” Journal of Neuroscience, vol. 23, no. 34, pp. 10841–10851, 2003. View at Google Scholar · View at Scopus
  182. C. A. Altar, P. Laeng, L. W. Jurata et al., “Electroconvulsive seizures regulate gene expression of distinct neurotrophic signaling pathways,” Journal of Neuroscience, vol. 24, no. 11, pp. 2667–2677, 2004. View at Publisher · View at Google Scholar · View at Scopus
  183. R. Sun, N. Li, and T. Li, “VEGF regulates antidepressant effects of lamotrigine,” European Neuropsychopharmacology, vol. 22, pp. 424–430, 2012. View at Google Scholar
  184. J. S. Lee, D. J. Jang, N. Lee et al., “Induction of neuronal vascular endothelial growth factor expression by cAMP in the dentate gyrus of the hippocampus is required for antidepressant-like behaviors,” Journal of Neuroscience, vol. 29, no. 26, pp. 8493–8505, 2009. View at Publisher · View at Google Scholar · View at Scopus
  185. M. Ventriglia, R. Zanardini, L. Pedrini et al., “VEGF serum levels in depressed patients during SSRI antidepressant treatment,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 33, no. 1, pp. 146–149, 2009. View at Publisher · View at Google Scholar · View at Scopus
  186. Z. Halmai, P. Dome, J. Dobos et al., “Peripheral vascular endothelial growth factor level is associated with antidepressant treatment response: results of a preliminary study,” Journal of Affective Disorders, vol. 144, pp. 269–273, 2013. View at Google Scholar
  187. D. S. Cowen, “Serotonin and neuronal growth factors—a convergence of signaling pathways,” Journal of Neurochemistry, vol. 101, no. 5, pp. 1161–1171, 2007. View at Publisher · View at Google Scholar · View at Scopus
  188. J. Peltier, A. O'Neill, and D. V. Schaffer, “PI3K/Akt and CREB regulate adult neural hippocampal progenitor proliferation and differentiation,” Developmental Neurobiology, vol. 67, no. 10, pp. 1348–1361, 2007. View at Publisher · View at Google Scholar · View at Scopus
  189. T. D. Gould and H. K. Manji, “Signaling networks in the pathophysiology and treatment of mood disorders,” Journal of Psychosomatic Research, vol. 53, pp. 687–697, 2002. View at Google Scholar
  190. J. A. Blendy, “The role of CREB in depression and antidepressant treatment,” Biological Psychiatry, vol. 59, no. 12, pp. 1144–1150, 2006. View at Publisher · View at Google Scholar · View at Scopus
  191. A. J. Shaywitz and M. E. Greenberg, “CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals,” Annual Review of Biochemistry, vol. 68, pp. 821–861, 1999. View at Publisher · View at Google Scholar · View at Scopus
  192. H. Viola, M. Furman, L. A. Izquierdo et al., “Phosphorylated cAMP response element-binding protein as a molecular marker of memory processing in rat hippocampus: effect of novelty,” The Journal of Neuroscience, vol. 20, no. 23, article RC112, 2000. View at Google Scholar · View at Scopus
  193. G. E. Hardingham, F. J. L. Arnold, and H. Bading, “Nuclear calcium signaling controls CREB-mediated gene expression triggered by synaptic activity,” Nature Neuroscience, vol. 4, no. 3, pp. 261–267, 2001. View at Publisher · View at Google Scholar · View at Scopus
  194. B. E. Lonze and D. D. Ginty, “Function and regulation of CREB family transcription factors in the nervous system,” Neuron, vol. 35, no. 4, pp. 605–623, 2002. View at Publisher · View at Google Scholar · View at Scopus
  195. W. A. Carlezon Jr., R. S. Duman, and E. J. Nestler, “The many faces of CREB,” Trends in Neurosciences, vol. 28, no. 8, pp. 436–445, 2005. View at Publisher · View at Google Scholar · View at Scopus
  196. O. Valverde, T. Mantamadiotis, M. Torrecilla et al., “Modulation of anxiety-like behavior and morphine dependence in CREB-deficient mice,” Neuropsychopharmacology, vol. 29, no. 6, pp. 1122–1133, 2004. View at Publisher · View at Google Scholar · View at Scopus
  197. M. Nibuya, E. J. Nestler, and R. S. Duman, “Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus,” Journal of Neuroscience, vol. 16, no. 7, pp. 2365–2372, 1996. View at Google Scholar · View at Scopus
  198. T. D. Perera, S. Park, and Y. Nemirovskaya, “Cognitive role of neurogenesis in depression and antidepressant treatment,” Neuroscientist, vol. 14, no. 4, pp. 326–338, 2008. View at Publisher · View at Google Scholar · View at Scopus
  199. M. Johannessen, M. P. Delghandi, and U. Moens, “What turns CREB on?” Cellular Signalling, vol. 16, no. 11, pp. 1211–1227, 2004. View at Publisher · View at Google Scholar · View at Scopus
  200. W. Y. Kim, X. Wang, Y. Wu et al., “GSK-3 is a master regulator of neural progenitor homeostasis,” Nature Neuroscience, vol. 12, pp. 1390–1397, 2009. View at Google Scholar
  201. F. Li, Z. Z. Chong, and K. Maiese, “Vital elements of the Wnt-frizzled signaling pathway in the nervous system,” Current Neurovascular Research, vol. 2, no. 4, pp. 331–340, 2005. View at Publisher · View at Google Scholar · View at Scopus
  202. L. Ciani and P. C. Salinas, “WNTs in the vertebrate nervous system: from patterning to neuronal connectivity,” Nature Reviews Neuroscience, vol. 6, no. 5, pp. 351–362, 2005. View at Publisher · View at Google Scholar · View at Scopus
  203. J. Galceran, E. M. Miyashita-Lin, E. Devaney, J. L. R. Rubenstein, and R. Grosschedl, “Hippocampus development and generation of dentate gyrus granule cells is regulated by LEF1,” Development, vol. 127, no. 3, pp. 469–482, 2000. View at Google Scholar · View at Scopus
  204. C. J. Zhou, C. Zhao, and S. J. Pleasure, “Wnt signaling mutants have decreased dentate granule cell production and radial glial scaffolding abnormalities,” Journal of Neuroscience, vol. 24, no. 1, pp. 121–126, 2004. View at Publisher · View at Google Scholar · View at Scopus
  205. X. Yu and R. C. Malenka, “Beta-catenin is critical for dendritic morphogenesis,” Nature Neuroscience, vol. 6, pp. 1169–1177, 2003. View at Google Scholar
  206. X. Gao, P. Arlotta, J. D. Macklis, and J. Chen, “Conditional knock-out of β-catenin in postnatal-born dentate gyrus granule neurons results in dendritic malformation,” Journal of Neuroscience, vol. 27, no. 52, pp. 14317–14325, 2007. View at Publisher · View at Google Scholar · View at Scopus
  207. A. A. Zaghetto, S. Paina, S. Mantero et al., “Activation of the Wnt-βcatenin pathway in a cell population on the surface of the forebrain is essential for the establishment of olfactory axon connections,” Journal of Neuroscience, vol. 27, no. 36, pp. 9757–9768, 2007. View at Publisher · View at Google Scholar · View at Scopus
  208. S. A. Purro, L. Ciani, M. Hoyos-Flight, E. Stamatakou, E. Siomou, and P. C. Salinas, “Wnt regulates axon behavior through changes in microtubule growth directionality: a new role for adenomatous polyposis coli,” Journal of Neuroscience, vol. 28, no. 34, pp. 8644–8654, 2008. View at Publisher · View at Google Scholar · View at Scopus
  209. S. X. Bamji, K. Shimazu, N. Kimes et al., “Role of β-catenin in synaptic vesicle localization and presynaptic assembly,” Neuron, vol. 40, no. 4, pp. 719–731, 2003. View at Publisher · View at Google Scholar · View at Scopus
  210. F. Hernández, J. Borrell, C. Guaza, J. Avila, and J. J. Lucas, “Spatial learning deficit in transgenic mice that conditionally over-express GSK-3β in the brain but do not form tau filaments,” Journal of Neurochemistry, vol. 83, no. 6, pp. 1529–1533, 2002. View at Publisher · View at Google Scholar · View at Scopus
  211. C. Yost, M. Torres, J. R. Miller, E. Huang, D. Kimelman, and R. T. Moon, “The axis-inducing activity, stability, and subcellular distribution of β-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3,” Genes and Development, vol. 10, no. 12, pp. 1443–1454, 1996. View at Google Scholar · View at Scopus
  212. H. Aberle, A. Bauer, J. Stappert, A. Kispert, and R. Kemler, “β-catenin is a target for the ubiquitin-proteasome pathway,” EMBO Journal, vol. 16, no. 13, pp. 3797–3804, 1997. View at Publisher · View at Google Scholar · View at Scopus
  213. L. Li, H. Yuan, C. D. Weaver et al., “Axin and Frat1 interact with Dvl and GSK, bridging Dvl to GSK in Wnt-mediated regulation of LEF-1,” EMBO Journal, vol. 18, no. 15, pp. 4233–4240, 1999. View at Publisher · View at Google Scholar · View at Scopus
  214. C. Y. Logan and R. Nusse, “The Wnt signaling pathway in development and disease,” Annual Review of Cell and Developmental Biology, vol. 20, pp. 781–810, 2004. View at Publisher · View at Google Scholar · View at Scopus
  215. R. S. Jope and G. N. Bijur, “Mood stabilizers, glycogen synthase kinase-3β and cell survival,” Molecular Psychiatry, vol. 7, supplement 1, pp. S35–S45, 2002. View at Publisher · View at Google Scholar · View at Scopus
  216. F. Hernández, J. D. Nido, J. Avila, and N. Villanueva, “GSK3 inhibitors and disease,” Mini-Reviews in Medicinal Chemistry, vol. 9, no. 9, pp. 1024–1029, 2009. View at Publisher · View at Google Scholar · View at Scopus
  217. P. S. Klein and D. A. Melton, “A molecular mechanism for the effect of lithium on development,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, pp. 8455–8459, 1996. View at Google Scholar
  218. A. Wada, H. Yokoo, T. Yanagita, and H. Kobayashi, “Lithium: potential therapeutics against acute brain injuries and chronic neurodegenerative diseases,” Journal of Pharmacological Sciences, vol. 99, no. 4, pp. 307–321, 2005. View at Publisher · View at Google Scholar · View at Scopus
  219. T. Y. Eom and R. S. Jope, “Blocked inhibitory serine-phosphorylation of glycogen synthase kinase-3alpha/beta impairs in vivo neural precursor cell proliferation,” Biological Psychiatry, vol. 66, no. 5, pp. 494–502, 2009. View at Publisher · View at Google Scholar · View at Scopus
  220. D. C. Lie, S. A. Colamarino, H. J. Song et al., “Wnt signalling regulates adult hippocampal neurogenesis,” Nature, vol. 437, no. 7063, pp. 1370–1375, 2005. View at Publisher · View at Google Scholar · View at Scopus
  221. E. M. Wexler, P. Andres, H. I. Kornblum, T. D. Palmer, and D. H. Geschwind, “Endogenous Wnt signaling maintains neural progenitor cell potency,” Stem Cells, vol. 27, no. 5, pp. 1130–1141, 2009. View at Publisher · View at Google Scholar · View at Scopus
  222. K. Adachi, Z. Mirzadeh, M. Sakaguchi et al., “β-catenin signaling promotes proliferation of progenitor cells in the adult mouse subventricular zone,” Stem Cells, vol. 25, no. 11, pp. 2827–2836, 2007. View at Publisher · View at Google Scholar · View at Scopus
  223. N. Uchida, Y. Honjo, K. R. Johnson, M. J. Wheelock, and M. Takeichi, “The catenin/cadherin adhesion system is localized in synaptic junctions bordering transmitter release zones,” Journal of Cell Biology, vol. 135, no. 3, pp. 767–779, 1996. View at Publisher · View at Google Scholar · View at Scopus
  224. F. Miskevich, Y. Zhu, B. Ranscht, and J. R. Sanes, “Expression of multiple cadherins and catenins in the chick optic tectum,” Molecular and Cellular Neurosciences, vol. 12, no. 4-5, pp. 240–255, 1998. View at Publisher · View at Google Scholar · View at Scopus
  225. I. Yao, J. Iida, N. Tanaka, Y. Hata, T. Medical, and D. University, “Interaction of synaptic scaffolding molecule and β-catenin,” Journal of Neuroscience, vol. 22, no. 3, pp. 757–765, 2002. View at Google Scholar · View at Scopus
  226. W. J. Nelson and R. Nusse, “Convergence of Wnt, beta-catenin, and cadherin pathways,” Science, vol. 303, no. 5663, pp. 1483–1487, 2004. View at Publisher · View at Google Scholar · View at Scopus
  227. H. Togashi, K. Abe, A. Mizoguchi, K. Takaoka, O. Chisaka, and M. Takeichi, “Cadherin regulates dendritic spine morphogenesis,” Neuron, vol. 35, no. 1, pp. 77–89, 2002. View at Publisher · View at Google Scholar · View at Scopus
  228. S. P. Shevtsov, S. Haq, and T. Force, “Activation of β-catenin signaling pathways by classical G-protein-coupled receptors: mechanisms and consequences in cycling and non-cycling cells,” Cell Cycle, vol. 5, no. 20, pp. 2295–2300, 2006. View at Google Scholar · View at Scopus
  229. T. Jin, I. George Fantus, and J. Sun, “Wnt and beyond Wnt: multiple mechanisms control the transcriptional property of β-catenin,” Cellular Signalling, vol. 20, no. 10, pp. 1697–1704, 2008. View at Publisher · View at Google Scholar · View at Scopus
  230. J. Kunz, R. Henriquez, U. Schneider, M. Deuter-Reinhard, N. R. Movva, and M. N. Hall, “Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression,” Cell, vol. 73, no. 3, pp. 585–596, 1993. View at Publisher · View at Google Scholar · View at Scopus
  231. J. Heitman, N. R. Movva, and M. N. Hall, “Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast,” Science, vol. 253, no. 5022, pp. 905–909, 1991. View at Google Scholar · View at Scopus
  232. S. B. Helliwell, P. Wagner, J. Kunz, M. Deuter-Reinhard, R. Henriquez, and M. N. Hall, “TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast,” Molecular Biology of the Cell, vol. 5, no. 1, pp. 105–118, 1994. View at Google Scholar · View at Scopus
  233. R. Loewith, E. Jacinto, S. Wullschleger et al., “Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control,” Molecular Cell, vol. 10, no. 3, pp. 457–468, 2002. View at Publisher · View at Google Scholar · View at Scopus
  234. E. Jacinto, R. Loewith, A. Schmidt et al., “Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive,” Nature Cell Biology, vol. 6, no. 11, pp. 1122–1128, 2004. View at Publisher · View at Google Scholar · View at Scopus
  235. T. Takahara, K. Hara, K. Yonezawa, H. Sorimachi, and T. Maeda, “Nutrient-dependent multimerization of the mammalian target of rapamycin through the N-terminal HEAT repeat region,” Journal of Biological Chemistry, vol. 281, no. 39, pp. 28605–28614, 2006. View at Publisher · View at Google Scholar · View at Scopus
  236. F. C. Harwood, L. Shu, and P. J. Houghton, “mTORC1 signaling can regulate growth factor activation of p44/42 mitogen-activated protein kinases through protein phosphatase 2A,” Journal of Biological Chemistry, vol. 283, no. 5, pp. 2575–2585, 2008. View at Publisher · View at Google Scholar · View at Scopus
  237. N. Hosokawa, T. Hara, T. Kaizuka et al., “Nutrient-dependent mTORCl association with the ULK1-Atg13-FIP200 complex required for autophagy,” Molecular Biology of the Cell, vol. 20, no. 7, pp. 1981–1991, 2009. View at Publisher · View at Google Scholar · View at Scopus
  238. C. A. Hoeffer and E. Klann, “mTOR signaling: at the crossroads of plasticity, memory and disease,” Trends in Neurosciences, vol. 33, no. 2, pp. 67–75, 2010. View at Publisher · View at Google Scholar · View at Scopus
  239. M. Livingstone, E. Atas, A. Meller, and N. Sonenberg, “Mechanisms governing the control of mRNA translation,” Physical Biology, vol. 7, no. 2, Article ID 021001, 2010. View at Publisher · View at Google Scholar · View at Scopus
  240. N. Hay and N. Sonenberg, “Upstream and downstream of mTOR,” Genes and Development, vol. 18, no. 16, pp. 1926–1945, 2004. View at Publisher · View at Google Scholar · View at Scopus
  241. R. Gong, S. P. Chang, N. R. Abbassi, and S. J. Tang, “Roles of glutamate receptors and the mammalian target of rapamycin (mTOR) signaling pathway in activity-dependent dendritic protein synthesis in hippocampal neurons,” Journal of Biological Chemistry, vol. 281, no. 27, pp. 18802–18815, 2006. View at Publisher · View at Google Scholar · View at Scopus
  242. S. J. Tang, G. Reis, H. Kang, A. C. Gingras, N. Sonenberg, and E. M. Schuman, “A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 1, pp. 467–472, 2002. View at Publisher · View at Google Scholar · View at Scopus
  243. R. S. Duman, N. Li, R. J. Liu, V. Duric, and G. Aghajanian, “Signaling pathways underlying the rapid antidepressant actions of ketamine,” Neuropharmacology, vol. 62, pp. 35–41, 2012. View at Google Scholar
  244. Z. Z. Chong, Y. C. Shang, L. Zhang, S. Wang, and K. Maiese, “Mammalian target of rapamycin: hitting the bull's-eye for neurological disorders,” Oxidative Medicine and Cellular Longevity, vol. 3, no. 6, pp. 374–391, 2010. View at Google Scholar · View at Scopus
  245. W. L. An, R. F. Cowburn, L. Li et al., “Up-regulation of phosphorylated/activated p70 S6 kinase and its relationship to neurofibrillary pathology in Alzheimer's disease,” American Journal of Pathology, vol. 163, pp. 591–607, 2003. View at Google Scholar
  246. W. L. Zhu, H. S. Shi, S. J. Wang, P. Wu, Z. B. Ding, and L. Lu, “Hippocampal CA3 calcineurin activity participates in depressive-like behavior in rats,” Journal of Neurochemistry, vol. 117, no. 6, pp. 1075–1086, 2011. View at Publisher · View at Google Scholar · View at Scopus
  247. C. S. Jernigan, D. B. Goswami, M. C. Austin et al., “The mTOR signaling pathway in the prefrontal cortex is compromised in major depressive disorder,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 35, no. 7, pp. 1774–1779, 2011. View at Publisher · View at Google Scholar · View at Scopus
  248. C. Cleary, J. A. S. Linde, K. M. Hiscock et al., “Antidepressive-like effects of rapamycin in animal models: implications for mTOR inhibition as a new target for treatment of affective disorders,” Brain Research Bulletin, vol. 76, no. 5, pp. 469–473, 2008. View at Publisher · View at Google Scholar · View at Scopus
  249. S. C. Yoon, M. S. Seo, S. H. Kim et al., “The effect of MK-801 on mTOR/p70S6K and translation-related proteins in rat frontal cortex,” Neuroscience Letters, vol. 434, no. 1, pp. 23–28, 2008. View at Publisher · View at Google Scholar · View at Scopus
  250. S. Maeng, C. A. Zarate Jr., J. Du et al., “Cellular mechanisms underlying the antidepressant effects of ketamine: role of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors,” Biological Psychiatry, vol. 63, no. 4, pp. 349–352, 2008. View at Publisher · View at Google Scholar · View at Scopus
  251. H. Koike, M. Iijima, and S. Chaki, “Involvement of the mammalian target of rapamycin signaling in the antidepressant-like effect of group II metabotropic glutamate receptor antagonists,” Neuropharmacology, vol. 61, pp. 1419–1423, 2011. View at Google Scholar
  252. C. Yang, Y. M. Hu, Z. Q. Zhou, G. F. Zhang, and J. J. Yang, “Acute administration of ketamine in rats increases hippocampal BDNF and mTOR levels during forced swimming test,” Upsala Journal of Medical Sciences, vol. 118, no. 1, pp. 3–8, 2013. View at Publisher · View at Google Scholar
  253. C. A. Zarate Jr., J. B. Singh, P. J. Carlson et al., “A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression,” Archives of General Psychiatry, vol. 63, no. 8, pp. 856–864, 2006. View at Publisher · View at Google Scholar · View at Scopus
  254. B. Elfving and G. Wegener, “Electroconvulsive seizures stimulate the vegf pathway via mTORC1,” Synapse, vol. 66, pp. 340–345, 2012. View at Google Scholar
  255. J. M. Dwyer, A. E. Lepack, and R. S. Duman, “mTOR activation is required for the antidepressant effects of mGluR(2)/(3) blockade,” International Journal of Neuropsychopharmacology, vol. 15, pp. 429–434, 2012. View at Google Scholar
  256. A. J. Eisch, “Adult neurogenesis: implications for psychiatry,” Progress in Brain Research, vol. 138, pp. 315–342, 2002. View at Publisher · View at Google Scholar · View at Scopus
  257. Y. Li, B. W. Luikart, S. Birnbaum et al., “TrkB regulates hippocampal neurogenesis and governs sensitivity to antidepressive treatment,” Neuron, vol. 59, no. 3, pp. 399–412, 2008. View at Publisher · View at Google Scholar · View at Scopus
  258. C. Pittenger and R. S. Duman, “Stress, depression, and neuroplasticity: a convergence of mechanisms,” Neuropsychopharmacology, vol. 33, no. 1, pp. 88–109, 2008. View at Publisher · View at Google Scholar · View at Scopus
  259. E. Fuchs, B. Czéh, M. H. P. Kole, T. Michaelis, and P. J. Lucassen, “Alterations of neuroplasticity in depression: the hippocampus and beyond,” European Neuropsychopharmacology, vol. 14, supplement 5, pp. S481–S490, 2004. View at Publisher · View at Google Scholar · View at Scopus
  260. Y. Watanabe, E. Gould, and B. S. McEwen, “Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons,” Brain Research, vol. 588, no. 2, pp. 341–345, 1992. View at Publisher · View at Google Scholar · View at Scopus
  261. S. D. Norrholm and C. C. Ouimet, “Altered dendritic spine density in animal models of depression and in response to antidepressant treatment,” Synapse, vol. 42, no. 3, pp. 151–163, 2001. View at Publisher · View at Google Scholar · View at Scopus
  262. S. Nakagawa, J. E. Kim, R. Lee et al., “Regulation of neurogenesis in adult mouse hippocampus by cAMP and the cAMP response element-binding protein,” Journal of Neuroscience, vol. 22, no. 9, pp. 3673–3682, 2002. View at Google Scholar · View at Scopus
  263. D. J. Christoffel, S. A. Golden, and S. J. Russo, “Structural and synaptic plasticity in stress-related disorders,” Annual Review of Neuroscience, vol. 22, pp. 535–549, 2011. View at Google Scholar
  264. S. R. Lamont, B. J. Stanwell, R. Hill, I. C. Reid, and C. A. Stewart, “Ketamine pre-treatment dissociates the effects of electroconvulsive stimulation on mossy fibre sprouting and cellular proliferation in the dentate gyrus,” Brain Research, vol. 1053, no. 1-2, pp. 27–32, 2005. View at Publisher · View at Google Scholar · View at Scopus