Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2013 (2013), Article ID 698528, 12 pages
Review Article

Neurogenesis, Exercise, and Cognitive Late Effects of Pediatric Radiotherapy

1Department of Psychology, University of Houston, Houston, TX 77204, USA
2Department of Pediatrics, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
3Department of Biology & Biochemistry, University of Houston, Houston, TX 77204, USA

Received 15 November 2012; Accepted 20 January 2013

Academic Editor: Chitra D. Mandyam

Copyright © 2013 Shaefali P. Rodgers et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Brain cancer is a common type of childhood malignancy, and radiotherapy (RT) is a mainstay of treatment. RT is effective for tumor eradication, and survival rates are high. However, RT damages the brain and disrupts ongoing developmental processes, resulting in debilitating cognitive “late” effects that may take years to fully manifest. These late effects likely derive from a long-term decrement in cell proliferation, combined with a neural environment that is hostile to plasticity, both of which are induced by RT. Long-term suppression of cell proliferation deprives the brain of the raw materials needed for optimum cognitive performance (such as new neurons in the hippocampus and new glia in frontal cortex), while chronic inflammation and dearth of trophic substances (such as growth hormone) limit neuroplastic potential in existing circuitry. Potential treatments for cognitive late effects should address both of these conditions. Exercise represents one such potential treatment, since it has the capacity to enhance cell proliferation, as well as to promote a neural milieu permissive for plasticity. Here, we review the evidence that cognitive late effects can be traced to RT-induced suppression of cell proliferation and hostile environmental conditions, as well as emerging evidence that exercise may be effective as an independent or adjuvant therapy.