Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2014, Article ID 194396, 10 pages
http://dx.doi.org/10.1155/2014/194396
Review Article

Modulation of Adult Hippocampal Neurogenesis by Early-Life Environmental Challenges Triggering Immune Activation

1Centre for the Cellular Basis of Behaviour, Institute of Psychiatry, King’s College London, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
2Department of Psychological Medicine, Institute of Psychiatry, King’s College London, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
3MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, 16 De Crespigny Park, London SE5 8AF, UK

Received 31 January 2014; Accepted 11 April 2014; Published 7 May 2014

Academic Editor: Aniko Korosi

Copyright © 2014 Ksenia Musaelyan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. T. Balu and I. Lucki, “Adult hippocampal neurogenesis: regulation, functional implications, and contribution to disease pathology,” Neuroscience and Biobehavioral Reviews, vol. 33, no. 3, pp. 232–252, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. G. A. Rook, “Regulation of the immune system by biodiversity from the natural environment: an ecosystem service essential to health,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 46, pp. 18360–18367, 2013. View at Google Scholar
  3. T. G. O’Connor, J. A. Moynihan, and M. T. Caserta, “Annual research review: the neuroinflammation hypothesis for stress and psychopathology in children—developmental psychoneuroimmunology,” Journal of Child Psychology and Psychiatry, 2013. View at Publisher · View at Google Scholar
  4. A. S. Brown, “Prenatal infection as a risk factor for schizophrenia,” Schizophrenia Bulletin, vol. 32, no. 2, pp. 200–202, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Ó. Atladóttir, P. Thorsen, L. Østergaard et al., “Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders,” Journal of Autism and Developmental Disorders, vol. 40, no. 12, pp. 1423–1430, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. A. H. Marques, T. G. O’Connor, C. Roth, E. Susser, and A. L. Bjørke-Monsen, “The influence of maternal prenatal and early childhood nutrition and maternal prenatal stress on offspring immune system development and neurodevelopmental disorders,” Frontiers in Neuroscience, vol. 7, article 120, 2013. View at Google Scholar
  7. A. Danese, T. E. Moffitt, C. M. Pariante, A. Ambler, R. Poulton, and A. Caspi, “Elevated inflammation levels in depressed adults with a history of childhood maltreatment,” Archives of General Psychiatry, vol. 65, no. 4, pp. 409–415, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Biesmans, T. F. Meert, J. A. Bouwknecht et al., “Systemic immune activation leads to neuroinflammation and sickness behavior in mice,” Mediators of Inflammation, vol. 2013, Article ID 271359, 14 pages, 2013. View at Publisher · View at Google Scholar
  9. C. T. Ekdahl, J.-H. Claasen, S. Bonde, Z. Kokaia, and O. Lindvall, “Inflammation is detrimental for neurogenesis in adult brain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 23, pp. 13632–13637, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. M. L. Monje, H. Toda, and T. D. Palmer, “Inflammatory blockade restores adult hippocampal neurogenesis,” Science, vol. 302, no. 5651, pp. 1760–1765, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. J. A. Seguin, J. Brennan, E. Mangano, and S. Hayley, “Proinflammatory cytokines differentially influence adult hippocampal cell proliferation depending upon the route and chronicity of administration,” Neuropsychiatric Disease and Treatment, vol. 5, no. 1, pp. 5–14, 2009. View at Google Scholar · View at Scopus
  12. L. Valliéres, I. L. Campbell, F. H. Gage, and P. E. Sawchenko, “Reduced hippocampal neurogenesis in adult transgenic mice with chronic astrocytic production of interleukin-6,” Journal of Neuroscience, vol. 22, no. 2, pp. 486–492, 2002. View at Google Scholar · View at Scopus
  13. M. D. Wu, A. M. Hein, M. J. Moravan, S. S. Shaftel, J. A. Olschowka, and M. K. O'Banion, “Adult murine hippocampal neurogenesis is inhibited by sustained IL-1β and not rescued by voluntary running,” Brain, Behavior, and Immunity, vol. 26, no. 2, pp. 292–300, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. P. A. Zunszain, C. Anacker, A. Cattaneo et al., “Interleukin-1β: a new regulator of the kynurenine pathway affecting human hippocampal neurogenesis,” Neuropsychopharmacology, vol. 37, no. 4, pp. 939–949, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Belarbi, C. Arellano, R. Ferguson, T. Jopson, and S. Rosi, “Chronic neuroinflammation impacts the recruitment of adult-born neurons into behaviorally relevant hippocampal networks,” Brain, Behavior, and Immunity, vol. 26, no. 1, pp. 18–23, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. R. A. Kohman and J. S. Rhodes, “Neurogenesis, inflammation and behavior,” Brain, Behavior, and Immunity, vol. 27, pp. 22–32, 2013. View at Google Scholar
  17. V. Verhasselt, “Oral tolerance in neonates: from basics to potential prevention of allergic disease,” Mucosal Immunology, vol. 3, no. 4, pp. 326–333, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. T. G. O’Connor, M. A. Winter, J. Hunn et al., “Prenatal maternal anxiety predicts reduced adaptive immunity in infants,” Brain, Behavior, and Immunity, vol. 32, pp. 21–28, 2013. View at Google Scholar
  19. N. M. Nielsen, A. V. Hansen, J. Simonsen, and A. Hviid, “Prenatal stress and risk of infectious diseases in offspring,” The American Journal of Epidemiology, vol. 173, no. 9, pp. 990–997, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. S. D. Bilbo, N. J. Newsum, D. B. Sprunger, L. R. Watkins, J. W. Rudy, and S. F. Maier, “Differential effects of neonatal handling on early life infection-induced alterations in cognition in adulthood,” Brain, Behavior, and Immunity, vol. 21, no. 3, pp. 332–342, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. S. D. Bilbo, L. H. Levkoff, J. H. Mahoney, L. R. Watkins, J. W. Rudy, and S. F. Maier, “Neonatal infection induces memory impairments following an immune challenge in adulthood,” Behavioral Neuroscience, vol. 119, no. 1, pp. 293–301, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. S. D. Bilbo, J. C. Biedenkapp, A. Der-Avakian, L. R. Watkins, J. W. Rudy, and S. F. Maier, “Neonatal infection-induced memory impairment after lipopolysaccharide in adulthood is prevented via caspase-1 inhibition,” Journal of Neuroscience, vol. 25, no. 35, pp. 8000–8009, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Sominsky, A. K. Walker, L. K. Ong, R. J. Tynan, F. R. Walker, and D. M. Hodgson, “Increased microglial activation in the rat brain following neonatal exposure to a bacterial mimetic,” Behavioural Brain Research, vol. 226, no. 1, pp. 351–356, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. S. D. Bilbo and J. M. Schwarz, “The immune system and developmental programming of brain and behavior,” Frontiers in Neuroendocrinology, vol. 33, no. 3, pp. 267–286, 2012. View at Google Scholar
  25. R. A. Kohman, A. J. Tarr, N. L. Sparkman, T. M. H. Bogale, and G. W. Boehm, “Neonatal endotoxin exposure impairs avoidance learning and attenuates endotoxin-induced sickness behavior and central IL-1β gene transcription in adulthood,” Behavioural Brain Research, vol. 194, no. 1, pp. 25–31, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Ellis, A. Mouihate, and Q. J. Pittman, “Early life immune challenge alters innate immune responses to lipopolysaccharide: implications for host defense as adults,” FASEB Journal, vol. 19, no. 11, pp. 1519–1521, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Wei, A. Simen, S. Mane, and A. Kaffman, “Early life stress inhibits expression of a novel innate immune pathway in the developing hippocampus,” Neuropsychopharmacology, vol. 37, no. 2, pp. 567–580, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Hava, L. Vered, M. Yael, H. Mordechai, and H. Mahoud, “Alterations in behavior in adult offspring mice following maternal inflammation during pregnancy,” Developmental Psychobiology, vol. 48, no. 2, pp. 162–168, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. A. K. Walker, T. Nakamura, R. J. Byrne et al., “Neonatal lipopolysaccharide and adult stress exposure predisposes rats to anxiety-like behaviour and blunted corticosterone responses: implications for the double-hit hypothesis,” Psychoneuroendocrinology, vol. 34, no. 10, pp. 1515–1525, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. F. R. Walker, J. March, and D. M. Hodgson, “Endotoxin exposure in early life alters the development of anxiety-like behaviour in the Fischer 344 rat,” Behavioural Brain Research, vol. 154, no. 1, pp. 63–69, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Shanks, S. Larocque, and M. J. Meaney, “Neonatal endotoxin exposure alters the development of the hypothalamic- pituitary-adrenal axis: early illness and later responsivity to stress,” Journal of Neuroscience, vol. 15, no. 1, pp. 376–384, 1995. View at Google Scholar · View at Scopus
  32. F. R. Walker, B. Knott, and D. M. Hodgson, “Neonatal endotoxin exposure modifies the acoustic startle response and circulating levels of corticosterone in the adult rat but only following acute stress,” Journal of Psychiatric Research, vol. 42, no. 13, pp. 1094–1103, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. M. H. Doosti, A. Bakhtiari, P. Zare et al., “Impacts of early intervention with fluoxetine following early neonatal immune activation on depression-like behaviors and body weight in mice,” Progress in Neuro-Psychopharmacology & Biological Psychiatry, vol. 43, pp. 55–65, 2013. View at Google Scholar
  34. A. K. Walker, T. Nakamura, and D. M. Hodgson, “Neonatal lipopolysaccharide exposure alters central cytokine responses to stress in adulthood in Wistar rats,” Stress, vol. 13, no. 6, pp. 506–515, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. X.-Q. Wu, X.-F. Li, B. Ye et al., “Neonatal programming by immunological challenge: effects on ovarian function in the adult rat,” Reproduction, vol. 141, no. 2, pp. 241–248, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. X. F. Li, J. S. Kinsey-Jones, A. M. I. Knox et al., “Neonatal lipopolysaccharide exposure exacerbates stress-induced suppression of luteinizing hormone pulse frequency in adulthood,” Endocrinology, vol. 148, no. 12, pp. 5984–5990, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. A. K. Walker, S. A. Hiles, L. Sominsky, E. A. McLaughlin, and D. M. Hodgson, “Neonatal lipopolysaccharide exposure impairs sexual development and reproductive success in the Wistar rat,” Brain, Behavior, and Immunity, vol. 25, no. 4, pp. 674–684, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Giovanoli, H. Engler, A. Engler et al., “Stress in puberty unmasks latent neuropathological consequences of prenatal immune activation in mice,” Science, vol. 339, no. 6123, pp. 1095–1099, 2013. View at Google Scholar
  39. K. L. Spalding, O. Bergmann, K. Alkass et al., “Dynamics of hippocampal neurogenesis in adult humans,” Cell, vol. 153, no. 6, pp. 1219–1227, 2013. View at Google Scholar
  40. A. Tanti and C. Belzung, “Hippocampal neurogenesis: a biomarker for depression or antidepressant effects? Methodological considerations and perspectives for future research,” Cell and Tissue Research, vol. 354, no. 1, pp. 203–219, 2013. View at Google Scholar
  41. M. Boldrini, M. D. Underwood, R. Hen et al., “Antidepressants increase neural progenitor cells in the human hippocampus,” Neuropsychopharmacology, vol. 34, no. 11, pp. 2376–2389, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. U. Meyer, M. Nyffeler, A. Engler et al., “The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology,” Journal of Neuroscience, vol. 26, no. 18, pp. 4752–4762, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. M. H. Kaufman, The Anatomical Basis of Mouse Development, Academic Press, San Diego, Calif, USA, 1999.
  44. M. Graciarena, A. M. Depino, and F. J. Pitossi, “Prenatal inflammation impairs adult neurogenesis and memory related behavior through persistent hippocampal TGFβ1 downregulation,” Brain, Behavior, and Immunity, vol. 24, no. 8, pp. 1301–1309, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. T. J. Schwarz, B. Ebert, and D. C. Lie, “Stem cell maintenance in the adult mammalian hippocampus: a matter of signal integration?” Developmental Neurobiology, vol. 72, no. 7, pp. 1006–1015, 2012. View at Google Scholar
  46. C. M. Teixeira, M. M. Kron, N. Masachs et al., “Cell-autonomous inactivation of the reelin pathway impairs adult neurogenesis in the hippocampus,” Journal of Neuroscience, vol. 32, no. 35, pp. 12051–12065, 2012. View at Google Scholar
  47. K. Cui, H. Ashdown, G. N. Luheshi, and P. Boksa, “Effects of prenatal immune activation on hippocampal neurogenesis in the rat,” Schizophrenia Research, vol. 113, no. 2-3, pp. 288–297, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. G. Rodríguez-Martínez and I. Velasco, “Activin and TGF-β effects on brain development and neural stem cells,” CNS & Neurological Disorders—Drug Targets, vol. 11, no. 7, pp. 844–855, 2012. View at Google Scholar
  49. M. Graciarena, V. Roca, P. Mathieu, A. M. Depino, and F. J. Pitossi, “Differential vulnerability of adult neurogenesis by adult and prenatal inflammation: Role of TGF-β1,” Brain, Behavior, and Immunity, vol. 34, pp. 17–28, 2013. View at Publisher · View at Google Scholar
  50. Y. L. Lin and S. Wang, “Prenatal lipopolysaccharide exposure increases depression-like behaviors and reduces hippocampal neurogenesis in adult rats,” Behavioural Brain Research, vol. 259, pp. 24–34, 2014. View at Publisher · View at Google Scholar
  51. K. Järlestedt, A. S. Naylor, J. Dean, H. Hagberg, and C. Mallard, “Decreased survival of newborn neurons in the dorsal hippocampus after neonatal LPS exposure in mice,” Neuroscience, vol. 253, pp. 21–28, 2013. View at Publisher · View at Google Scholar
  52. A. Tanti and C. Belzung, “Neurogenesis along the septo-temporal axis of the hippocampus: are depression and the action of antidepressants region-specific?” Neuroscience, vol. 252, pp. 234–252, 2013. View at Publisher · View at Google Scholar
  53. P. Jiang, Y. Sun, T. Zhu et al., “Endogenous neurogenesis in the hippocampus of developing rat after intrauterine infection,” Brain Research, vol. 1459, pp. 1–14, 2012. View at Publisher · View at Google Scholar · View at Scopus
  54. P. Jiang, T. Zhu, W. Zhao et al., “The persistent effects of maternal infection on the offspring’s cognitive performance and rates of hippocampal neurogenesis,” Progress in Neuro-Psychopharmacology & Biological Psychiatry, vol. 44, pp. 279–289, 2013. View at Google Scholar
  55. S. Farioli-Vecchioli, A. Mattera, L. Micheli et al., “Running rescues defective adult neurogenesis by shortening the length of the cell cycle of neural stem and progenitor cells,” Stem Cells. In press.
  56. G. P. Dias, N. Cavegn, A. Nix et al., “The role of dietary polyphenols on adult hippocampal neurogenesis: molecular mechanisms and behavioural effects on depression and anxiety,” Oxidative Medicine and Cellular Longevity, vol. 2012, Article ID 541971, 18 pages, 2012. View at Publisher · View at Google Scholar