Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2015, Article ID 394820, 16 pages
Research Article

Activation of the Mammalian Target of Rapamycin in the Rostral Ventromedial Medulla Contributes to the Maintenance of Nerve Injury-Induced Neuropathic Pain in Rat

1Department of Anatomy and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710000, China
2Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an 710000, China
3Basic Medical College, Zhengzhou University, Zhengzhou 450001, China
4Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China

Received 11 May 2015; Accepted 6 July 2015

Academic Editor: Yun Guan

Copyright © 2015 Jian Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The mammalian target of rapamycin (mTOR), a serine-threonine protein kinase, integrates extracellular signals, thereby modulating several physiological and pathological processes, including pain. Previous studies have suggested that rapamycin (an mTOR inhibitor) can attenuate nociceptive behaviors in many pain models, most likely at the spinal cord level. However, the mechanisms of mTOR at the supraspinal level, particularly at the level of the rostral ventromedial medulla (RVM), remain unclear. Thus, the aim of this study was to elucidate the role of mTOR in the RVM, a key relay region for the descending pain control pathway, under neuropathic pain conditions. Phosphorylated mTOR was mainly expressed in serotonergic spinally projecting neurons and was significantly increased in the RVM after spared nerve injury- (SNI-) induced neuropathic pain. Moreover, in SNI rat brain slices, rapamycin infusion both decreased the amplitude instead of the frequency of spontaneous excitatory postsynaptic currents and reduced the numbers of action potentials in serotonergic neurons. Finally, intra-RVM microinjection of rapamycin effectively alleviated established mechanical allodynia but failed to affect the development of neuropathic pain. In conclusion, our data provide strong evidence for the role of mTOR in the RVM in nerve injury-induced neuropathic pain, indicating a novel mechanism of mTOR inhibitor-induced analgesia.