Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2016 (2016), Article ID 2412958, 12 pages
http://dx.doi.org/10.1155/2016/2412958
Research Article

Value of Functionalized Superparamagnetic Iron Oxide Nanoparticles in the Diagnosis and Treatment of Acute Temporal Lobe Epilepsy on MRI

1Department of Neurology, Affiliated Hospital of Jining Medical University, Guhuai Road, No. 79, Jining, Shandong 272000, China
2Department of Magnetic Resonance Imaging, Affiliated Hospital of Jining Medical University, Guhuai Road, No. 79, Jining, Shandong 272000, China

Received 23 October 2015; Revised 27 December 2015; Accepted 3 January 2016

Academic Editor: Alfredo Pereira Jr.

Copyright © 2016 Tingting Fu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Kwan, A. Arzimanoglou, A. T. Berg et al., “Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies,” Epilepsia, vol. 51, no. 6, pp. 1069–1077, 2010. View at Publisher · View at Google Scholar
  2. C. A. Espinosa-Jovel and F. E. Sobrino-Mejía, “Drug resistant epilepsy. Clinical and neurobiological concepts,” Revista de Neurologia, vol. 61, no. 4, pp. 159–166, 2015. View at Google Scholar
  3. C. A. Espinosa-Jovel and F. E. Sobrino-Mejia, “Drug resistant epilepsy. Clinical and neurobiological concepts,” Revue Neurologique, vol. 61, no. 4, pp. 159–166, 2015. View at Google Scholar
  4. J. Gomez-Alonso and P. Bellas-Lamas, “Surgical treatment for drug-resistant epilepsy,” The Journal of the American Medical Association, vol. 313, no. 15, article 1572, 2015. View at Publisher · View at Google Scholar
  5. C. B. Nemeroff, H. S. Mayberg, S. E. Krahl et al., “VNS therapy in treatment-resistant depression: clinical evidence and putative neurobiological mechanisms,” Neuropsychopharmacology, vol. 31, no. 7, pp. 1345–1355, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Herring, “Commentary on ‘vagus nerve stimulation therapy for treatment of drug-resistant epilepsy and depression’,” Perspectives in Vascular Surgery and Endovascular Therapy, vol. 18, no. 4, p. 328, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Chambers and J. M. Bowen, “Electrical stimulation for drug-resistant epilepsy—an evidence-based analysis,” Ontario Health Technology Assessment Series, vol. 13, no. 18, pp. 1–37, 2013. View at Google Scholar
  8. A. W. C. Yuen and J. W. Sander, “Rationale for using intermittent calorie restriction as a dietary treatment for drug resistant epilepsy,” Epilepsy and Behavior, vol. 33, pp. 110–114, 2014. View at Publisher · View at Google Scholar · View at Scopus
  9. J. J. Engel, “Approaches to refractory epilepsy,” Annals of Indian Academy of Neurology, vol. 17, supplement 1, pp. S12–S17, 2014. View at Publisher · View at Google Scholar · View at Scopus
  10. R. S. Greenwood, “Adverse effects of antiepileptic drugs,” Epilepsia, vol. 41, supplement 2, pp. S42–S52, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Bates, “Epilepsy: current evidence-based paradigms for diagnosis and treatment,” Primary Care: Clinics in Office Practice, vol. 42, no. 2, pp. 217–232, 2015. View at Publisher · View at Google Scholar
  12. M. Bagary, “Epilepsy, antiepileptic drugs and suicidality,” Current Opinion in Neurology, vol. 24, no. 2, pp. 177–182, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Kubo, T. Sugita, S. Shimose, Y. Nitta, Y. Ikuta, and T. Murakami, “Targeted delivery of anticancer drugs with intravenously administered magnetic liposomes in osteosarcoma-bearing hamsters,” International Journal of Oncology, vol. 17, no. 2, pp. 309–315, 2000. View at Google Scholar · View at Scopus
  14. T. Kato, R. Nemoto, H. Mori et al., “Magnetic microcapsules for targeted delivery of anticancer drugs,” Applied Biochemistry and Biotechnology, vol. 10, no. 1–3, pp. 199–211, 1984. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Mardinoglu and P. J. Cregg, “Modelling the effect of SPION size in a stent assisted magnetic drug targeting system with interparticle interactions,” The Scientific World Journal, vol. 2015, Article ID 618658, 7 pages, 2015. View at Publisher · View at Google Scholar
  16. J. Zhang and R. D. K. Misra, “Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: core-shell nanoparticle carrier and drug release response,” Acta Biomaterialia, vol. 3, no. 6, pp. 838–850, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. R. M. Kaminski, M. A. Rogawski, and H. Klitgaard, “The potential of antiseizure drugs and agents that act on novel molecular targets as antiepileptogenic treatments,” Neurotherapeutics, vol. 11, no. 2, pp. 385–400, 2014. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Falip, X. Salas-Puig, and C. Cara, “Causes of CNS inflammation and potential targets for anticonvulsants,” CNS Drugs, vol. 27, no. 8, pp. 611–623, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. M. A. Galic, K. Riazi, and Q. J. Pittman, “Cytokines and brain excitability,” Frontiers in Neuroendocrinology, vol. 33, no. 1, pp. 116–125, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Vezzani, “Innate immunity and inflammation in temporal lobe epilepsy: new emphasis on the role of complement activation,” Epilepsy Currents, vol. 8, no. 3, pp. 75–77, 2008. View at Publisher · View at Google Scholar
  21. M. Rizzi, C. Perego, M. Aliprandi et al., “Glia activation and cytokine increase in rat hippocampus by kainic acid-induced status epilepticus during postnatal development,” Neurobiology of Disease, vol. 14, no. 3, pp. 494–503, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Dube, A. Vezzani, M. Behrens, T. Bartfai, and T. Baram, “Interleukin-1beta contributes to the generation of experimental febrile seizures,” Annals of Neurology, vol. 57, no. 1, pp. 152–155, 2005. View at Google Scholar
  23. Z. Xiao, J. Peng, L. Yang, H. Kong, and F. Yin, “Interleukin-1β plays a role in the pathogenesis of mesial temporal lobe epilepsy through the PI3K/Akt/mTOR signaling pathway in hippocampal neurons,” Journal of Neuroimmunology, vol. 282, pp. 110–117, 2015. View at Publisher · View at Google Scholar
  24. A. Chiavegato, E. Zurolo, G. Losi, E. Aronica, and G. Carmignoto, “The inflammatory molecules IL-1β and HMGB1 can rapidly enhance focal seizure generation in a brain slice model of temporal lobe epilepsy,” Frontiers in Cellular Neuroscience, vol. 8, article 155, 2014. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Ravizza, F. Noé, D. Zardoni, V. Vaghi, M. Sifringer, and A. Vezzani, “Interleukin converting enzyme inhibition impairs kindling epileptogenesis in rats by blocking astrocytic IL-1β production,” Neurobiology of Disease, vol. 31, no. 3, pp. 327–333, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Vezzani and B. Viviani, “Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability,” Neuropharmacology, vol. 96, pp. 70–82, 2015. View at Publisher · View at Google Scholar
  27. A. Vezzani, J. French, T. Bartfai, and T. Z. Baram, “The role of inflammation in epilepsy,” Nature Reviews Neurology, vol. 7, no. 1, pp. 31–40, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. S. Yim, J. Choi, G. T. Kim et al., “A facile approach for the delivery of inorganic nanoparticles into the brain by passing through the Blood–Brain Barrier (BBB),” Chemical Communications, vol. 48, no. 1, pp. 61–63, 2012. View at Publisher · View at Google Scholar
  29. M. Tajes, E. Ramos-Fernández, X. Weng-Jiang et al., “The blood-brain barrier: structure, function and therapeutic approaches to cross it,” Molecular Membrane Biology, vol. 31, no. 5, pp. 152–167, 2014. View at Google Scholar
  30. R. Vidu, M. Rahman, M. Mahmoudi, M. Enachescu, T. D. Poteca, and I. Opris, “Nanostructures: a platform for brain repair and augmentation,” Frontiers in Systems Neuroscience, vol. 8, article 91, 2014. View at Publisher · View at Google Scholar
  31. J. Estelrich, E. Escribano, J. Queralt, and M. Busquets, “Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery,” International Journal of Molecular Sciences, vol. 16, no. 4, pp. 8070–8101, 2015. View at Publisher · View at Google Scholar
  32. T. Wiedmann, X. Yuanyuan, and Z. Pengyun, “Magnetic targeted drug delivery,” Songklanakarin Journal of Science and Technology, vol. 31, no. 3, pp. 409–417, 2009. View at Google Scholar
  33. M. Mahmoudi, S. Sant, B. Wang, S. Laurent, and T. Sen, “Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy,” Advanced Drug Delivery Reviews, vol. 63, no. 1-2, pp. 24–46, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Yoffe, T. Leshuk, P. Everett, and F. Gu, “Superparamagnetic iron oxide nanoparticles (SPIONs): synthesis and surface modification techniques for use with MRI and other biomedical applications,” Current Pharmaceutical Design, vol. 19, no. 3, pp. 493–509, 2013. View at Publisher · View at Google Scholar · View at Scopus
  35. B. R. Smith, J. Heverhagen, M. Knopp et al., “Localization to atherosclerotic plaque and biodistribution of biochemically derivatized superparamagnetic iron oxide nanoparticles (SPIONs) contrast particles for magnetic resonance imaging (MRI),” Biomedical Microdevices, vol. 9, no. 5, pp. 719–727, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Mahajan, V. Koul, V. Choudhary, G. Shishodia, and A. C. Bharti, “Preparation and in vitro evaluation of folate-receptor-targeted SPION-polymer micelle hybrids for MRI contrast enhancement in cancer imaging,” Nanotechnology, vol. 24, no. 1, Article ID 015603, 2013. View at Publisher · View at Google Scholar · View at Scopus
  37. Wahajuddin and S. Arora, “Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers,” International Journal of Nanomedicine, vol. 7, pp. 3445–3471, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Akhtari, A. Bragin, M. Cohen et al., “Functionalized magnetonanoparticles for MRI diagnosis and localization in epilepsy,” Epilepsia, vol. 49, no. 8, pp. 1419–1430, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Akhtari, A. Bragin, R. Moats, A. Frew, and M. Mandelkern, “Imaging brain neuronal activity using functionalized magnetonanoparticles and MRI,” Brain Topography, vol. 25, no. 4, pp. 374–388, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. V. I. Shubayev, T. R. Pisanic II, and S. Jin, “Magnetic nanoparticles for theragnostics,” Advanced Drug Delivery Reviews, vol. 61, no. 6, pp. 467–477, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Wang, S. Ravi, U. S. Garapati et al., “Multifunctional Chitosan Magnetic-Graphene (CMG) nanoparticles: a theranostic platform for tumor-targeted co-delivery of drugs, genes and MRI contrast agents,” Journal of Materials Chemistry B, vol. 1, no. 35, pp. 4396–4405, 2013. View at Publisher · View at Google Scholar · View at Scopus
  42. R. J. Racine, “Modification of seizure activity by electrical stimulation: I. After-discharge threshold,” Electroencephalography and Clinical Neurophysiology, vol. 32, no. 3, pp. 269–279, 1972. View at Publisher · View at Google Scholar · View at Scopus
  43. N. P. Martínez Vera, R. Schmidt, K. Langer et al., “Tracking of magnetite labeled nanoparticles in the rat brain using MRI,” PLoS ONE, vol. 9, no. 3, Article ID e92068, 2014. View at Publisher · View at Google Scholar
  44. J. A. Loureiro, B. Gomes, M. A. N. Coelho, M. Do Carmo Pereira, and S. Rocha, “Targeting nanoparticles across the blood-brain barrier with monoclonal antibodies,” Nanomedicine, vol. 9, no. 5, pp. 709–722, 2014. View at Publisher · View at Google Scholar · View at Scopus
  45. S. H. Sheen, J.-E. Kim, H. J. Ryu, Y. Yang, K.-C. Choi, and T.-C. Kang, “Decrease in dystrophin expression prior to disruption of brain-blood barrier within the rat piriform cortex following status epilepticus,” Brain Research, vol. 1369, pp. 173–183, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. E. Oby and D. Janigro, “The blood-brain barrier and epilepsy,” Epilepsia, vol. 47, no. 11, pp. 1761–1774, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. K. Griswold, C. Ndong, S. Toraya-Brown et al., “Antibody-mediated targeting of iron oxide nanoparticles to the folate receptor alpha increases tumor cell association in vitro and in vivo,” International Journal of Nanomedicine, vol. 2015, no. 10, pp. 2595–2617, 2015. View at Publisher · View at Google Scholar
  48. C. X. Deng and X. Huang, “Improved outcome of targeted delivery of chemotherapy drugs to the brain using a combined strategy of ultrasound, magnetic targeting and drug-loaded nanoparticles,” Therapeutic Delivery, vol. 2, no. 2, pp. 137–141, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. C. C. Chen, P. S. Sheeran, S.-Y. Wu, O. O. Olumolade, P. A. Dayton, and E. E. Konofagou, “Targeted drug delivery with focused ultrasound-induced blood-brain barrier opening using acoustically-activated nanodroplets,” Journal of Controlled Release, vol. 172, no. 3, pp. 795–804, 2013. View at Publisher · View at Google Scholar · View at Scopus
  50. A. X. H. Goh, S. Bertin-Maghit, S. P. Yeo et al., “A novel human anti-interleukin-1β neutralizing monoclonal antibody showing in vivo efficacy,” mAbs, vol. 6, no. 3, pp. 765–773, 2014. View at Publisher · View at Google Scholar · View at Scopus
  51. C. D. Gómez, R. M. Buijs, and M. Sitges, “The anti-seizure drugs vinpocetine and carbamazepine, but not valproic acid, reduce inflammatory IL-1β and TNF-α expression in rat hippocampus,” Journal of Neurochemistry, vol. 130, no. 6, pp. 770–779, 2014. View at Publisher · View at Google Scholar · View at Scopus
  52. X. Chen, G. B. Sadowska, J. Zhang et al., “Neutralizing anti-interleukin-1β antibodies modulate fetal blood-brain barrier function after ischemia,” Neurobiology of Disease, vol. 73, pp. 118–129, 2015. View at Publisher · View at Google Scholar · View at Scopus
  53. F. Clausen, A. Hånell, M. Björk et al., “Neutralization of interleukin-1β modifies the inflammatory response and improves histological and cognitive outcome following traumatic brain injury in mice,” European Journal of Neuroscience, vol. 30, no. 3, pp. 385–396, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. F. Clausen, A. Hånell, C. Israelsson et al., “Neutralization of interleukin-1β reduces cerebral edema and tissue loss and improves late cognitive outcome following traumatic brain injury in mice,” European Journal of Neuroscience, vol. 34, no. 1, pp. 110–123, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Das, G. C. Wallace IV, C. Holmes et al., “Hippocampal tissue of patients with refractory temporal lobe epilepsy is associated with astrocyte activation, inflammation, and altered expression of channels and receptors,” Neuroscience, vol. 220, pp. 237–246, 2012. View at Publisher · View at Google Scholar · View at Scopus
  56. N. Siva, “Astrocytes have a key role in epilepsy,” The Lancet Neurology, vol. 4, no. 10, p. 601, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. P. Karki, K. Smith, J. Johnson Jr., M. Aschner, and E. Y. Lee, “Genetic dys-regulation of astrocytic glutamate transporter EAAT2 and its implications in neurological disorders and manganese toxicity,” Neurochemical Research, vol. 40, no. 2, pp. 380–388, 2015. View at Publisher · View at Google Scholar · View at Scopus
  58. M. L. Diamond, A. C. Ritter, M. D. Failla et al., “IL-1β associations with posttraumatic epilepsy development: a genetics and biomarker cohort study,” Epilepsia, vol. 55, no. 7, pp. 1109–1119, 2014. View at Publisher · View at Google Scholar · View at Scopus