Table of Contents Author Guidelines Submit a Manuscript
Neurology Research International
Volume 2012, Article ID 379657, 8 pages
http://dx.doi.org/10.1155/2012/379657
Review Article

Neuromuscular Junction Protection for the Potential Treatment of Amyotrophic Lateral Sclerosis

1Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
2The Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53705, USA

Received 25 April 2012; Revised 15 June 2012; Accepted 15 June 2012

Academic Editor: Kenneth Hensley

Copyright © 2012 Dan Krakora et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. H. Brown Jr., “Amyotrophic lateral sclerosis: recent insights from genetics and transgenic mice,” Cell, vol. 80, no. 5, pp. 687–692, 1995. View at Google Scholar · View at Scopus
  2. S. Boillée, C. Vande Velde, and D. Cleveland, “ALS: a disease of motor neurons and their nonneuronal neighbors,” Neuron, vol. 52, no. 1, pp. 39–59, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. D. W. Cleveland and J. D. Rothstein, “From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS,” Nature Reviews Neuroscience, vol. 2, no. 11, pp. 806–819, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Dupuis and J. P. Loeffler, “Neuromuscular junction destruction during amyotrophic lateral sclerosis: insights from transgenic models,” Current Opinion in Pharmacology, vol. 9, no. 3, pp. 341–346, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Dadon-Nachum, E. Melamed, and D. Offen, “The "dying-back" phenomenon of motor neurons in ALS,” Journal of Molecular Neuroscience, vol. 43, no. 3, pp. 470–477, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. D. R. Rosen, “Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis,” Nature, vol. 362, pp. 59–62, 1993. View at Google Scholar · View at Scopus
  7. C. Zheng, I. Nennesmo, B. Fadeel, and J. I. Henter, “Vascular endothelial growth factor prolongs survival in a transgenic mouse model of ALS,” Annals of Neurology, vol. 56, no. 4, pp. 564–567, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. M. E. Gurney, “Transgenic-mouse model of amyotrophic lateral sclerosis,” New England Journal of Medicine, vol. 331, no. 25, pp. 1721–1722, 1994. View at Publisher · View at Google Scholar · View at Scopus
  9. D. S. Howland, J. Liu, Y. She et al., “Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS),” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 3, pp. 1604–1609, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Vance, B. Rogelj, T. Hortobágyi et al., “Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6,” Science, vol. 323, no. 5918, pp. 1208–1211, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Neumann, D. M. Sampathu, L. K. Kwong et al., “Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis,” Science, vol. 314, no. 5796, pp. 130–133, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. L. I. Bruijn, T. M. Miller, and D. W. Cleveland, “Unraveling the mechanisms involved in motor neuron degeneration in ALS,” Annual Review of Neuroscience, vol. 27, pp. 723–749, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. E. V. Ilieva, V. Ayala, M. Jové et al., “Oxidative and endoplasmic reticulum stress interplay in sporadic amyotrophic lateral sclerosis,” Brain, vol. 130, no. 12, pp. 3111–3123, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Lev, D. Ickowicz, Y. Barhum, E. Melamed, and D. Offen, “DJ-1 changes in G93A-SOD1 transgenic mice: implications for oxidative stress in ALS,” Journal of Molecular Neuroscience, vol. 38, no. 2, pp. 94–102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. Z. Feng and C. P. Ko, “The role of glial cells in the formation and maintenance of the neuromuscular junction,” Annals of the New York Academy of Sciences, vol. 1132, pp. 19–28, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Finsterer, L. Papić, and M. Auer-Grumbach, “Motor neuron, nerve, and neuromuscular junction disease,” Current Opinion in Neurology, vol. 24, pp. 469–474, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. K. C. Kanning, A. Kaplan, and C. E. Henderson, “Motor neuron diversity in development and disease,” Annual Review of Neuroscience, vol. 33, pp. 409–440, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. L. R. Fischer, D. G. Culver, P. Tennant et al., “Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man,” Experimental Neurology, vol. 185, no. 2, pp. 232–240, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. K. J. Brooks, M. D. W. Hill, P. D. Hockings, and D. G. Reid, “MRI detects early hindlimb muscle atrophy in Gly93Ala superoxide dismutase-1 (G93A SOD1) transgenic mice, an animal model of familial amyotrophic lateral sclerosis,” NMR in Biomedicine, vol. 17, no. 1, pp. 28–32, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Conforti, R. Adalbert, and M. P. Coleman, “Neuronal death: where does the end begin?” Trends in Neurosciences, vol. 30, no. 4, pp. 159–166, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. T. M. Wishart, S. H. Parson, and T. H. Gillingwater, “Synaptic vulnerability in neurodegenerative disease,” Journal of Neuropathology and Experimental Neurology, vol. 65, no. 8, pp. 733–739, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Marcuzzo, I. Zucca, A. Mastropietro et al., “Hind limb muscle atrophy precedes cerebral neuronal degeneration in G93A-SOD1 mouse model of amyotrophic lateral sclerosis: a longitudinal MRI study,” Experimental Neurology, vol. 231, no. 1, pp. 30–37, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. C. R. Hayworth and F. Gonzalez-Lima, “Pre-symptomatic detection of chronic motor deficits and genotype prediction in congenic B6.SOD1G93A ALS mouse model,” Neuroscience, vol. 164, no. 3, pp. 975–985, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Hegedus, C. T. Putman, and T. Gordon, “Time course of preferential motor unit loss in the SOD1G93A mouse model of amyotrophic lateral sclerosis,” Neurobiology of Disease, vol. 28, no. 2, pp. 154–164, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Dobrowolny, M. Aucello, E. Rizzuto et al., “Skeletal muscle is a primary target of SOD1G93A-mediated toxicity,” Cell Metabolism, vol. 8, no. 5, pp. 425–436, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Dupuis and A. Echaniz-Laguna, “Skeletal muscle in motor neuron diseases: therapeutic target and delivery route for potential treatments,” Current Drug Targets, vol. 11, no. 10, pp. 1250–1261, 2010. View at Google Scholar · View at Scopus
  27. M. Wong and L. J. Martin, “Skeletal muscle-restricted expression of human SOD1 causes motor neuron degeneration in transgenic mice,” Human Molecular Genetics, vol. 19, no. 11, Article ID ddq106, pp. 2284–2302, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Suzuki, J. McHugh, C. Tork et al., “GDNF secreting human neural progenitor cells protect dying motor neurons, but not their projection to muscle, in a rat model of familial ALS,” PloS ONE, vol. 2, no. 1, Article ID e689, 2007. View at Google Scholar · View at Scopus
  29. B. Zhang, P. H. Tu, F. Abtahian, J. Q. Trojanowski, and V. M. Y. Lee, “Neurofilaments and orthograde transport are reduced in ventral root axons of transgenic mice that express human SOD1 with a G93A mutation,” Journal of Cell Biology, vol. 139, no. 5, pp. 1307–1315, 1997. View at Publisher · View at Google Scholar · View at Scopus
  30. T. L. Williamson and D. W. Cleveland, “Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons,” Nature Neuroscience, vol. 2, no. 1, pp. 50–56, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Jokic, J. L. Gonzalez De Aguilar, P. F. Pradat et al., “Nogo expression in muscle correlates with amyotrophic lateral sclerosis severity,” Annals of Neurology, vol. 57, no. 4, pp. 553–556, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. B. H. LaMonte, K. E. Wallace, B. A. Holloway et al., “Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration,” Neuron, vol. 34, no. 5, pp. 715–727, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. D. M. Feinberg, D. C. Preston, J. M. Shefner, and E. L. Logigian, “Amplitude-dependent slowing of conduction in amyotrophic lateral sclerosis and polyneuropathy,” Muscle & Nerve, vol. 22, pp. 937–940, 1999. View at Google Scholar
  34. C. Bendotti, N. Calvaresi, L. Chiveri et al., “Early vacuolization and mitochondrial damage in motor neurons of FALS mice are not associated with apoptosis or with changes in cytochrome oxidase histochemical reactivity,” Journal of the Neurological Sciences, vol. 191, no. 1-2, pp. 25–33, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Gordon, C. K. Thomas, J. B. Munson, and R. B. Stein, “The resilience of the size principle in the organization of motor unit properties in normal and reinnervated adult skeletal muscles,” Canadian Journal of Physiology and Pharmacology, vol. 82, no. 8-9, pp. 645–661, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. L. Dupuis, H. Oudart, F. René, J. L. Gonzalez De Aguilar, and J. P. Loeffler, “Evidence for defective energy homeostasis in amyotrophic lateral sclerosis: benefit of a high-energy diet in a transgenic mouse model,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 30, pp. 11159–11164, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. L. Dupuis, J. L. Gonzalez de Aguilar, A. Echaniz-Laguna et al., “Muscle mitochondrial uncoupling dismantles neuromuscular junction and triggers distal degeneration of motor neurons,” PLoS ONE, vol. 4, no. 4, Article ID e5390, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. E. Grundström, H. Askmark, J. Lindeberg, I. Nygren, T. Ebendal, and S. M. Aquilonius, “Increased expression of glial cell line-derived neurotrophic factor mRNA in muscle biopsies from patients with amyotrophic lateral sclerosis,” Journal of the Neurological Sciences, vol. 162, no. 2, pp. 169–173, 1999. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Yamamoto, G. Sobue, K. Yamamoto, S. Terao, and T. Mitsuma, “Expression of glial cell line-derived growth factor mRNA in the spinal cord and muscle in amyotrophic lateral sclerosis,” Neuroscience Letters, vol. 204, no. 1-2, pp. 117–120, 1996. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Lunetta, M. Serafini, A. Prelle et al. et al., “Impaired expression of insulin-like growth factor-1 system in skeletal muscle of amyotrophic lateral sclerosis patients,” Muscle & Nerve, vol. 45, pp. 200–208, 2012. View at Publisher · View at Google Scholar
  41. Z. Feng and C. P. Ko, “The role of glial cells in the formation and maintenance of the neuromuscular junction,” Annals of the New York Academy of Sciences, vol. 1132, pp. 19–28, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. J. A. Kiernan and A. J. Hudson, “Changes in sizes of cortical and lower motor neurons in amyotrophic lateral sclerosis,” Brain, vol. 114, no. 2, pp. 843–853, 1991. View at Google Scholar · View at Scopus
  43. R. Pamphlett, J. Kril, and Tien Ming Hng, “Motor neuron disease: a primary disorder of corticomotoneurons?” Muscle and Nerve, vol. 18, no. 3, pp. 314–318, 1995. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Attarian, J. P. Vedel, J. Pouget, and A. Schmied, “Cortical versus spinal dysfunction in amyotrophic lateral sclerosis,” Muscle and Nerve, vol. 33, no. 5, pp. 677–690, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Attarian, J. P. Vedel, J. Pouget, and A. Schmied, “Progression of cortical and spinal dysfunctions over time in amyotrophic lateral sclerosis,” Muscle and Nerve, vol. 37, no. 3, pp. 364–375, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Körner, K. Kollewe, M. Fahlbusch et al., “Onset and spreading patterns of upper and lower motor neuron symptoms in amyotrophic lateral sclerosis,” Muscle and Nerve, vol. 43, no. 5, pp. 636–642, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. P. G. Ince, “Neuropathology,” in Amyotrophic Lateral Sclerosis, R. H. Brown, V. Meininger, and M. Swash, Eds., pp. 83–112, Martin Dunitz, London, UK, 2000. View at Google Scholar
  48. P. H. Özdinler, S. Benn, T. H. Yamamoto, M. Güzel, R. H. Brown, and J. D. Macklis, “Corticospinal motor neurons and related subcerebral projection neurons undergo early and specific neurodegeneration in hSOD1G93A transgenic ALS mice,” Journal of Neuroscience, vol. 31, no. 11, pp. 4166–4177, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. E. Hedlund, M. P. Hefferan, M. Marsala, and O. Isacson, “Cell therapy and stem cells in animal models of motor neuron disorders,” European Journal of Neuroscience, vol. 26, no. 7, pp. 1721–1737, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. T. W. Gould and R. W. Oppenheim, “Motor neuron trophic factors: therapeutic use in ALS?” Brain Research Reviews, vol. 67, no. 1-2, pp. 1–39, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. G. Acsadi, R. A. Lewis, M. E. Shy et al., “Increased survival and function of SOD1 mice after Glial cell-derived neurotrophic factor gene therapy,” Human Gene Therapy, vol. 13, no. 9, pp. 1047–1059, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. B. K. Kaspar, J. Lladó, N. Sherkat, J. D. Rothstein, and F. H. Gage, “Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model,” Science, vol. 301, no. 5634, pp. 839–842, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Azzouz, G. S. Ralph, E. Storkebaum et al., “VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model,” Nature, vol. 429, no. 6990, pp. 413–417, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Pun, A. F. Santos, S. Saxena, L. Xu, and P. Caroni, “Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF,” Nature Neuroscience, vol. 9, no. 3, pp. 408–419, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. C. E. Henderson, H. S. Phillips, R. A. Pollock et al., “GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle,” Science, vol. 266, no. 5187, pp. 1062–1064, 1994. View at Google Scholar · View at Scopus
  56. M. H. Mohajeri, D. A. Figlewicz, and M. C. Bohn, “Intramuscular grafts of myoblasts genetically modified to secrete glial cell line-derived neurotrophic factor prevent motoneuron loss and disease progression in a mouse model of familial amyotrophic lateral sclerosis,” Human Gene Therapy, vol. 10, no. 11, pp. 1853–1866, 1999. View at Publisher · View at Google Scholar · View at Scopus
  57. L. J. Wang, Y. Y. Lu, S. I. Muramatsu et al., “Neuroprotective effects of glial cell line-derived neurotrophic factor mediated by an adeno-associated virus vector in a transgenic animal model of amyotrophic lateral sclerosis,” Journal of Neuroscience, vol. 22, no. 16, pp. 6920–6928, 2002. View at Google Scholar · View at Scopus
  58. M. Moreno-Igoa, A. C. Calvo, J. Ciriza, M. J. Munoz, P. Zaragoza, and R. Osta, “Non-viral gene delivery of the GDNF, either alone or fused to the C-fragment of tetanus toxin protein, prolongs survival in a mouse ALS model,” Restorative Neurology and Neuroscience, vol. 30, pp. 69–80, 2012. View at Google Scholar
  59. S. Guillot, M. Azzouz, N. Déglon, A. Zurn, and P. Aebischer, “Local GDNF expression mediated by lentiviral vector protects facial nerve motoneurons but not spinal motoneurons in SOD1G93A transgenic mice,” Neurobiology of Disease, vol. 16, no. 1, pp. 139–149, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. W. Li, D. Brakefield, Y. Pan, D. Hunter, T. M. Myckatyn, and A. Parsadanian, “Muscle-derived but not centrally derived transgene GDNF is neuroprotective in G93A-SOD1 mouse model of ALS,” Experimental Neurology, vol. 203, no. 2, pp. 457–471, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Suzuki, J. McHugh, C. Tork et al., “Direct muscle delivery of GDNF with human mesenchymal stem cells improves motor neuron survival and function in a rat model of familial ALS,” Molecular Therapy, vol. 16, no. 12, pp. 2002–2010, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. M. E. Lewis, N. T. Neff, P. C. Contreras et al., “Insulin-like growth factor-I: potential for treatment of motor neuronal disorders,” Experimental Neurology, vol. 124, no. 1, pp. 73–88, 1993. View at Publisher · View at Google Scholar · View at Scopus
  63. S. A. Sakowski, A. D. Schuyler, and E. L. Feldman, “Insulin-like growth factor-I for the treatment of amyotrophic lateral sclerosis,” Amyotrophic Lateral Sclerosis, vol. 10, no. 2, pp. 63–73, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. B. K. Kaspar, L. M. Frost, L. Christian, P. Umapathi, and F. H. Gage, “Synergy of insulin-like growth factor-1 and exercise in amyotrophic lateral sclerosis,” Annals of Neurology, vol. 57, no. 5, pp. 649–655, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. G. Dobrowolny, C. Giacinti, L. Pelosi et al., “Muscle expression of a local Igf-1 isoform protects motor neurons in an ALS mouse model,” Journal of Cell Biology, vol. 168, no. 2, pp. 193–199, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. E. Storkebaum, D. Lambrechts, M. Dewerchin et al., “Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS,” Nature Neuroscience, vol. 8, no. 1, pp. 85–92, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. A. Henriques, C. Pitzer, and A. Schneider, “Neurotrophic growth factors for the treatment of amyotrophic lateral sclerosis: where do we stand?” Frontiers in Neuroscience, vol. 4, article 32, 2010. View at Google Scholar
  68. N. Lechtzin, J. Rothstein, L. Clawson, G. B. Diette, and C. M. Wiener, “Amyotrophic lateral sclerosis: evaluation and treatment of respiratory impairment,” Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, vol. 3, no. 1, pp. 5–13, 2002. View at Publisher · View at Google Scholar · View at Scopus
  69. P. F. Pradat, G. Bruneteau, P. H. Gordon et al., “Impaired glucose tolerance in patients with amyotrophic lateral sclerosis,” Amyotrophic Lateral Sclerosis, vol. 11, no. 1-2, pp. 166–171, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. S. Deforges, J. Branchu, O. Biondi et al., “Motoneuron survival is promoted by specific exercise in a mouse model of amyotrophic lateral sclerosis,” Journal of Physiology, vol. 587, no. 14, pp. 3561–3572, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. I. Carreras, S. Yuruker, N. Aytan et al., “Moderate exercise delays the motor performance decline in a transgenic model of ALS,” Brain Research, vol. 1313, pp. 192–201, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. A. Chen, J. Montes, and H. Mitsumoto, “The role of exercise in amyotrophic lateral sclerosis,” Physical Medicine and Rehabilitation Clinics of North America, vol. 19, no. 3, pp. 545–557, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. V. Dalbello-Haas, J. M. Florence, and L. S. Krivickas, “Therapeutic exercise for people with amyotrophic lateral sclerosis or motor neuron disease,” Cochrane Database of Systematic Reviews, no. 2, Article ID CD005229, 2008. View at Google Scholar · View at Scopus
  74. M. Sanjak, E. Bravver, W. L. Bockenek, H. J. Norton, and B. R. Brooks, “Supported treadmill ambulation for amyotrophic lateral sclerosis: a pilot study,” Archives of Physical Medicine and Rehabilitation, vol. 91, no. 12, pp. 1920–1929, 2010. View at Publisher · View at Google Scholar · View at Scopus