Table of Contents Author Guidelines Submit a Manuscript
Neurology Research International
Volume 2012, Article ID 608501, 9 pages
http://dx.doi.org/10.1155/2012/608501
Review Article

Magnetic Resonance Imaging in Amyotrophic Lateral Sclerosis

1Department of Neurology, Hannover Medical School, 30625 Hannover, Germany
2Department of Neurology, International Neuroscience Institute (INI), 30625 Hannover, Germany

Received 27 April 2012; Accepted 5 June 2012

Academic Editor: Erik P. Pioro

Copyright © 2012 Katja Kollewe et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. R. Brooks, R. G. Miller, M. Swash, and T. L. Munsat, “El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis,” Amyotrophic Lateral Sclerosis, vol. 1, no. 5, pp. 293–299, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Filippi, F. Agosta, S. Abrahams et al., “EFNS guidelines on the use of neuroimaging in the management of motor neuron diseases,” European Journal of Neurology, vol. 17, no. 4, pp. 526–e20, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Agosta, E. Pagani, M. A. Rocca et al., “Voxel-based morphometry study of brain volumetry and diffusivity in amyotrophic lateral sclerosis patients with mild disability,” Human Brain Mapping, vol. 28, no. 12, pp. 1430–1438, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Grosskreutz, J. Kaufmann, J. Frädrich, R. Dengler, H. J. Heinze, and T. Peschel, “Widespread sensorimotor and frontal cortical atrophy in amyotrophic lateral sclerosis,” BMC Neurology, vol. 6, article 17, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. J. L. Chang, C. Lomen-Hoerth, J. Murphy et al., “A voxel-based morphometry study of patterns of brain atrophy in ALS and ALS/FTLD,” Neurology, vol. 65, no. 1, pp. 75–80, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Wang, E. R. Melhem, H. Poptani, and J. H. Woo, “Neuroimaging in amyotrophic lateral sclerosis,” Neurotherapeutics, vol. 8, no. 1, pp. 63–71, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. M. R. Turner and M. Modo, “Advances in the application of MRI to amyotrophic lateral sclerosis,” Expert Opinion on Medical Diagnostics, vol. 4, no. 6, pp. 483–496, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. X.-Q. Ding, K. Kollewe, K. Blum et al., “Value of quantitative analysis of routine clinical MRI sequences in ALS,” Amyotrophic Lateral Sclerosis, vol. 12, no. 6, pp. 406–413, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Filippini, G. Douaud, C. E. MacKay, S. Knight, K. Talbot, and M. R. Turner, “Corpus callosum involvement is a consistent feature of amyotrophic lateral sclerosis,” Neurology, vol. 75, no. 18, pp. 1645–1652, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. D. M. Mezzapesa, A. Ceccarelli, F. Dicuonzo et al., “Whole-brain and regional brain atrophy in amyotrophic lateral sclerosis,” American Journal of Neuroradiology, vol. 28, no. 2, pp. 255–259, 2007. View at Google Scholar · View at Scopus
  11. J. Senda, S. Kato, T. Kaga et al., “Progressive and widespread brain damage in ALS: MRI voxel-based morphometry and diffusion tensor imaging study,” Amyotrophic Lateral Sclerosis, vol. 12, no. 1, pp. 59–69, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Abrahams, L. H. Goldstein, J. Suckling et al., “Frontotemporal white matter changes in amyotrophic lateral sclerosis,” Journal of Neurology, vol. 252, no. 3, pp. 321–331, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Kassubek, A. Unrath, H. J. Huppertz et al., “Global brain atrophy and corticospinal tract alterations in ALS, as investigated by voxel-based morphometry of 3-D MRI,” Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, vol. 6, no. 1, pp. 213–220, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Petri, K. Kollewe, C. Grothe et al., “GABAA-receptor mRNA expression in the prefrontal and temporal cortex of ALS patients,” Journal of the Neurological Sciences, vol. 250, no. 1-2, pp. 124–132, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Brownell, D. R. Oppenheimer, and J. T. Hughes, “The central nervous system in motor neurone disease,” Journal of Neurology Neurosurgery and Psychiatry, vol. 33, no. 3, pp. 338–357, 1970. View at Google Scholar · View at Scopus
  16. M. C. Smith, “Nerve fibre degeneration in the brain in amyotrophic lateral sclerosis,” Journal of Neurology, Neurosurgery, and Psychiatry, vol. 23, no. 4, pp. 269–282, 1960. View at Google Scholar
  17. M. R. Turner, M. C. Kiernan, P. N. Leigh, and K. Talbot, “Biomarkers in amyotrophic lateral sclerosis,” The Lancet Neurology, vol. 8, no. 1, pp. 94–109, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Valsasina, F. Agosta, B. Benedetti et al., “Diffusion anisotropy of the cervical cord is strictly associated with disability in amyotrophic lateral sclerosis,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 78, no. 5, pp. 480–484, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Nair, J. D. Carew, S. Usher, D. Lu, X. P. Hu, and M. Benatar, “Diffusion tensor imaging reveals regional differences in the cervical spinal cord in amyotrophic lateral sclerosis,” NeuroImage, vol. 53, no. 2, pp. 576–583, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Wang, H. Poptani, J. H. Woo et al., “Amyotrophic lateral sclerosis: diffusion-tensor and chemical shift MR imaging at 3.0 T,” Radiology, vol. 239, no. 3, pp. 831–838, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Pohl, W. Block, J. Karitzky et al., “Proton magnetic resonance spectroscopy of the motor cortex in 70 patients with amyotrophic lateral sclerosis,” Archives of Neurology, vol. 58, no. 5, pp. 729–735, 2001. View at Google Scholar · View at Scopus
  22. J. Suhy, R. G. Miller, R. Rule et al., “Early detection and longitudinal changes in amyotrophic lateral sclerosis by 1H MRSI,” Neurology, vol. 58, no. 5, pp. 773–779, 2002. View at Google Scholar · View at Scopus
  23. J. M. Graham, N. Papadakis, J. Evans et al., “Diffusion tensor imaging for the assessment of upper motor neuron integrity in ALS,” Neurology, vol. 63, no. 11, pp. 2111–2119, 2004. View at Google Scholar · View at Scopus
  24. C. M. Ellis, A. Simmons, D. K. Jones et al., “Diffusion tensor MRI assesses corticospinal tract damage in ALS,” Neurology, vol. 53, no. 5, pp. 1051–1058, 1999. View at Google Scholar · View at Scopus
  25. H. Mitsumoto, A. M. Uluǧ, S. L. Pullman et al., “Quantitative objective markers for upper and lower motor neuron dysfunction in ALS,” Neurology, vol. 68, no. 17, pp. 1402–1410, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. A. T. Toosy, D. J. Werring, R. W. Orrell et al., “Diffusion tensor imaging detects corticospinal tract involvement at multiple levels in amyotrophic lateral sclerosis,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 74, no. 9, pp. 1250–1257, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. S. K. Schimrigk, B. Bellenberg, M. Schlüter et al., “Diffusion tensor imaging-based fractional anisotropy quantification in the corticospinal tract of patients with amyotrophic lateral sclerosis using a probabilistic mixture model,” American Journal of Neuroradiology, vol. 28, no. 4, pp. 724–730, 2007. View at Google Scholar · View at Scopus
  28. O. Abe, H. Yamada, Y. Masutani et al., “Amyotrophic lateral sclerosis: diffusion tensor tractography and voxel-based analysis,” NMR in Biomedicine, vol. 17, no. 6, pp. 411–416, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. O. Ciccarelli, T. E. Behrens, D. R. Altmann et al., “Probabilistic diffusion tractography: a potential tool to assess the rate of disease progression in amyotrophic lateral sclerosis,” Brain, vol. 129, no. 7, pp. 1859–1871, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Sach, G. Winkler, V. Glauche et al., “Diffusion tensor MRI of early upper motor neuron involvement in amyotrophic lateral sclerosis,” Brain, vol. 127, no. 2, pp. 340–350, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Thivard, P. F. Pradat, S. Lehéricy et al., “Diffusion tensor imaging and voxel based morphometry study in amyotrophic lateral sclerosis: relationships with motor disability,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 78, no. 8, pp. 889–892, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Bartels, N. Mertens, S. Hofer et al., “Callosal dysfunction in amyotrophic lateral sclerosis correlates with diffusion tensor imaging of the central motor system,” Neuromuscular Disorders, vol. 18, no. 5, pp. 398–407, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Senda, M. Ito, H. Watanabe et al., “Correlation between pyramidal tract degeneration and widespread white matter involvement in amyotrophic lateral sclerosis: a study with tractography and diffusion-tensor imaging,” Amyotrophic Lateral Sclerosis, vol. 10, no. 5-6, pp. 288–294, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. C. A. Sage, W. van Hecke, R. Peeters et al., “Quantitative diffusion tensor imaging in amyotrophic lateral sclerosis: revisited,” Human Brain Mapping, vol. 30, no. 11, pp. 3657–3675, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. C. A. Sage, R. R. Peeters, A. Görner, W. Robberecht, and S. Sunaert, “Quantitative diffusion tensor imaging in amyotrophic lateral sclerosis,” NeuroImage, vol. 34, no. 2, pp. 486–499, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. O. Ciccarelli, T. E. Behrens, H. Johansen-Berg et al., “Investigation of white matter pathology in ALS and PLS using tract-based spatial statistics,” Human Brain Mapping, vol. 30, no. 2, pp. 615–624, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. J. M. Ravits and A. R. La Spada, “ALS motor phenotype heterogeneity, focality, and spread: deconstructing motor neuron degeneration,” Neurology, vol. 73, no. 10, pp. 805–811, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Körner, K. Kollewe, M. Fahlbusch et al., “Onset and spreading patterns of upper and lower motor neuron symptoms in amyotrophic lateral sclerosis,” Muscle and Nerve, vol. 43, no. 5, pp. 636–642, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. S. M. Riad, H. Hathout, and J. C. Huang, “High T2 signal in primary lateral sclerosis supports the topographic distribution of fibers in the corpus callosum: assessing disease in the primary motor segment,” American Journal of Neuroradiology, vol. 32, no. 4, pp. E61–E64, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. M. C. Tartaglia, V. Laluz, A. Rowe et al., “Brain atrophy in primary lateral sclerosis,” Neurology, vol. 72, no. 14, pp. 1236–1241, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Unrath, H. P. Müller, A. Riecker, A. C. Ludolph, A. D. Sperfeld, and J. Kassubek, “Whole brain-based analysis of regional white matter tract alterations in rare motor neuron diseases by diffusion tensor imaging,” Human Brain Mapping, vol. 31, no. 11, pp. 1727–1740, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. M. R. Turner, J. Grosskreutz, J. Kassubek et al., “Towards a neuroimaging biomarker for amyotrophic lateral sclerosis,” The Lancet Neurology, vol. 10, no. 5, pp. 400–403, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. F. Agosta, M. A. Rocca, P. Valsasina et al., “A longitudinal diffusion tensor MRI study of the cervical cord and brain in amyotrophic lateral sclerosis patients,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 80, no. 1, pp. 53–55, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. D. G. Nair, S. Hutchinson, F. Fregni, M. Alexander, A. Pascual-Leone, and G. Schlaug, “Imaging correlates of motor recovery from cerebral infarction and their physiological significance in well-recovered patients,” NeuroImage, vol. 34, no. 1, pp. 253–263, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. D. K. Jones, “The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study,” Magnetic Resonance in Medicine, vol. 51, no. 4, pp. 807–815, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. E. Verstraete, J. H. Veldink, R. C. W. Mandl, L. H. van den Berg, and M. P. van den Heuvel, “Impaired structural motor connectome in amyotrophic lateral sclerosis,” PLoS ONE, vol. 6, no. 9, Article ID e24239, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. T. Stöcker and N. J. Shah, “Grundlagen der MR-Bildgebung,” in Funktionelle MRT in Psychiatrie und Neurologie, F. Schneider and G. R. Fink, Eds., pp. 61–78, Springer, Heidelberg, Germany, 2011. View at Google Scholar
  48. B. R. Brooks, K. Bushara, A. Khan et al., “Functional magnetic resonance imaging (fMRI) clinical studies in ALS—paradigms, problems and promises,” Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, vol. 1, supplement 2, pp. S23–S32, 2000. View at Google Scholar · View at Scopus
  49. S. Ogawa, R. S. Menon, D. W. Tank et al., “Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model,” Biophysical Journal, vol. 64, no. 3, pp. 803–812, 1993. View at Google Scholar · View at Scopus
  50. C. Konrad, H. Henningsen, J. Bremer et al., “Pattern of cortical reorganization in amyotrophic lateral sclerosis: a functional magnetic resonance imaging study,” Experimental Brain Research, vol. 143, no. 1, pp. 51–56, 2002. View at Publisher · View at Google Scholar · View at Scopus
  51. C. Konrad, A. Jansen, H. Henningsen et al., “Subcortical reorganization in amyotrophic lateral sclerosis,” Experimental Brain Research, vol. 172, no. 3, pp. 361–369, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. M. A. Schoenfeld, C. Tempelmann, C. Gaul et al., “Functional motor compensation in amyotrophic lateral sclerosis,” Journal of Neurology, vol. 252, no. 8, pp. 944–952, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. B. R. Stanton, V. C. Williams, P. N. Leigh et al., “Altered cortical activation during a motor task in ALS: evidence for involvement of central pathways,” Journal of Neurology, vol. 254, no. 9, pp. 1260–1267, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. B. Mohammadi, K. Kollewe, A. Samii, R. Dengler, and T. F. Münte, “Functional neuroimaging at different disease stages reveals distinct phases of neuroplastic changes in amyotrophic lateral sclerosis,” Human Brain Mapping, vol. 32, no. 5, pp. 750–758, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. B. Mohammadi, K. Kollewe, A. Samii, K. Krampfl, R. Dengler, and T. F. Münte, “Decreased brain activation to tongue movements in amyotrophic lateral sclerosis with bulbar involvement but not Kennedy syndrome,” Journal of Neurology, vol. 256, no. 8, pp. 1263–1269, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. K. Kollewe, T. F. Münte, A. Samii, R. Dengler, S. Petri, and B. Mohammadi, “Patterns of cortical activity differ in ALS patients with limb and/or bulbar involvement depending on motor tasks,” Journal of Neurology, vol. 258, no. 5, pp. 804–810, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. B. Mohammadi, K. Kollewe, A. Samii, K. Krampfl, R. Dengler, and T. F. Münte, “Changes of resting state brain networks in amyotrophic lateral sclerosis,” Experimental Neurology, vol. 217, no. 1, pp. 147–153, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. C. F. Beckmann, M. DeLuca, J. T. Devlin, and S. M. Smith, “Investigations into resting-state connectivity using independent component analysis,” Philosophical Transactions of the Royal Society B, vol. 360, no. 1457, pp. 1001–1013, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. M. D. Greicius, G. Srivastava, A. L. Reiss, and V. Menon, “Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 13, pp. 4637–4642, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. C. Sorg, V. Riedl, M. Mühlau et al., “Selective changes of resting-state networks in individuals at risk for Alzheimer's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 47, pp. 18760–18765, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. J. S. Damoiseaux, S. A. R. B. Rombouts, F. Barkhof et al., “Consistent resting-state networks across healthy subjects,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 37, pp. 13848–13853, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. M. De Luca, C. F. Beckmann, N. De Stefano, P. M. Matthews, and S. M. Smith, “fMRI resting state networks define distinct modes of long-distance interactions in the human brain,” NeuroImage, vol. 29, no. 4, pp. 1359–1367, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. M. van den Heuvel, R. Mandl, and H. H. Pol, “Normalized cut group clustering of resting-state fMRI data,” PLoS ONE, vol. 3, no. 4, Article ID e2001, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. M. E. Raichle, A. M. MacLeod, A. Z. Snyder, W. J. Powers, D. A. Gusnard, and G. L. Shulman, “A default mode of brain function,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 2, pp. 676–682, 2001. View at Publisher · View at Google Scholar · View at Scopus
  65. M. E. Raichle and A. Z. Snyder, “A default mode of brain function: a brief history of an evolving idea,” NeuroImage, vol. 37, no. 4, pp. 1083–1090, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. B. B. Biswal, J. van Kylen, and J. S. Hyde, “Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps,” NMR in Biomedicine, vol. 10, no. 4-5, pp. 165–170, 1997. View at Google Scholar · View at Scopus
  67. M. De Luca, S. Smith, N. De Stefano, A. Federico, and P. M. Matthews, “Blood oxygenation level dependent contrast resting state networks are relevant to functional activity in the neocortical sensorimotor system,” Experimental Brain Research, vol. 167, no. 4, pp. 587–594, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. M. J. Jafri, G. D. Pearlson, M. Stevens, and V. D. Calhoun, “A method for functional network connectivity among spatially independent resting-state components in schizophrenia,” NeuroImage, vol. 39, no. 4, pp. 1666–1681, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. K. Kollewe, T. F. Münte, A. Samii, R. Dengler, S. Petri, and B. Mohammadi, “Functional neuroimaging in amyotrophic lateral sclerosis: analysis of resting activity,” Klinische Neurophysiologie, vol. 40, no. 4, pp. 263–269, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. L. H. Ziegler, “Psychotic and emotional phenomena associated with amyotrophic lateral sclerosis,” Archives of Neurology and Psychiatry, vol. 24, pp. 930–936, 1930. View at Google Scholar
  71. B. Frank, J. Haas, H. J. Heinze, E. Stark, and T. F. Münte, “Relation of neuropsychological and magnetic resonance findings in amyotrophic lateral sclerosis: evidence for subgroups,” Clinical Neurology and Neurosurgery, vol. 99, no. 2, pp. 79–86, 1997. View at Publisher · View at Google Scholar · View at Scopus
  72. D. Irwin, C. F. Lippa, and J. M. Swearer, “Cognition and amyotrophic lateral sclerosis (ALS),” American Journal of Alzheimer's Disease and Other Dementias, vol. 22, no. 4, pp. 300–312, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. J. Lakerveld, B. Kotchoubey, and A. Kübler, “Cognitive function in patients with late stage amyotrophic lateral sclerosis,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 79, no. 1, pp. 25–29, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. S. C. Woolley and J. S. Katz, “Cognitive and behavioral impairment in amyotrophic lateral sclerosis,” Physical Medicine and Rehabilitation Clinics of North America, vol. 19, no. 3, pp. 607–617, 2008. View at Publisher · View at Google Scholar
  75. T. F. Münte, M. C. Tröger, I. Nusser et al., “Abnormalities of visual search behaviour in ALS patients detected with event-related brain potentials,” Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, vol. 1, no. 1, pp. 21–27, 1999. View at Google Scholar · View at Scopus
  76. K. S. Paulus, I. Magnano, M. R. Piras et al., “Visual and auditory event-related potentials in sporadic amyotrophic lateral sclerosis,” Clinical Neurophysiology, vol. 113, no. 6, pp. 853–861, 2002. View at Publisher · View at Google Scholar · View at Scopus
  77. P. Vieregge, B. Wauschkuhn, I. Heberlein, J. Hagenah, and R. Verleger, “Selective attention is impaired in amyotrophic lateral sclerosis—a study of event-related EEG potentials,” Cognitive Brain Research, vol. 8, no. 1, pp. 27–35, 1999. View at Publisher · View at Google Scholar · View at Scopus
  78. S. Abrahams, L. H. Goldstein, J. J. M. Kew et al., “Frontal lobe dysfunction in amyotrophic lateral sclerosis: a PET study,” Brain, vol. 119, no. 6, pp. 2105–2120, 1996. View at Google Scholar · View at Scopus
  79. S. Abrahams, L. H. Goldstein, A. Simmons et al., “Word retrieval in amyotrophic lateral sclerosis: a functional magnetic resonance imaging study,” Brain, vol. 127, no. 7, pp. 1507–1517, 2004. View at Publisher · View at Google Scholar · View at Scopus
  80. J. J. M. Kew, L. H. Goldstein, P. N. Leigh et al., “The relationship between abnormalities of cognitive function and cerebral activation in amyotrophic lateral sclerosis: a neuropsychological and positron emission tomography study,” Brain, vol. 116, no. 6, pp. 1399–1423, 1993. View at Google Scholar · View at Scopus
  81. F. Esposito, E. Formisano, E. Seifritz et al., “Spatial independent component analysis of functional MRI time-series: to what extent do results depend on the algorithm used?” Human Brain Mapping, vol. 16, no. 3, pp. 146–157, 2002. View at Publisher · View at Google Scholar · View at Scopus
  82. F. Esposito, T. Scarabino, A. Hyvarinen et al., “Independent component analysis of fMRI group studies by self-organizing clustering,” NeuroImage, vol. 25, no. 1, pp. 193–205, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. F. Esposito, A. Aragri, I. Pesaresi et al., “Independent component model of the default-mode brain function: combining individual-level and population-level analyses in resting-state fMRI,” Magnetic Resonance Imaging, vol. 26, no. 7, pp. 905–913, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. E. Formisano, F. Esposito, F. Di Salle, and R. Goebel, “Cortex-based independent component analysis of fMRI time series,” Magnetic Resonance Imaging, vol. 22, no. 10, pp. 1493–1504, 2004. View at Publisher · View at Google Scholar · View at Scopus
  85. R. Goebel, F. Esposito, and E. Formisano, “Analysis of functional image analysis contest (FIAC) data with brainvoyager QX: from single-subject to cortically aligned group general linear model analysis and self-organizing group independent component analysis,” Human Brain Mapping, vol. 27, no. 5, pp. 392–401, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. R. L. Buckner, J. R. Andrews-Hanna, and D. L. Schacter, “The brain's default network: anatomy, function, and relevance to disease,” Annals of the New York Academy of Sciences, vol. 1124, pp. 1–38, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. R. Cabeza, F. Dolcos, R. Graham, and L. Nyberg, “Similarities and differences in the neural correlates of episodic memory retrieval and working memory,” NeuroImage, vol. 16, no. 2, pp. 317–330, 2002. View at Publisher · View at Google Scholar · View at Scopus
  88. T. E. Goldberg, K. F. Berman, K. Fleming et al., “Uncoupling cognitive workload and prefrontal cortical physiology: a PET rCBF study,” NeuroImage, vol. 7, no. 4 I, pp. 296–303, 1998. View at Publisher · View at Google Scholar · View at Scopus
  89. C. Lomen-Hoerth, J. Murphy, S. Langmore, J. H. Kramer, R. K. Olney, and B. Miller, “Are amyotrophic lateral sclerosis patients cognitively normal?” Neurology, vol. 60, no. 7, pp. 1094–1097, 2003. View at Google Scholar · View at Scopus
  90. J. M. Murphy, R. G. Henry, S. Langmore, J. H. Kramer, B. L. Miller, and C. Lomen-Hoerth, “Continuum of frontal lobe impairment in amyotrophic lateral sclerosis,” Archives of Neurology, vol. 64, no. 4, pp. 530–534, 2007. View at Google Scholar · View at Scopus
  91. A. C. Ludolph, K. J. Langen, M. Regard et al., “Frontal lobe function in amyotrophic lateral sclerosis: a neuropsychologic and positron emission tomography study,” Acta Neurologica Scandinavica, vol. 85, no. 2, pp. 81–89, 1992. View at Google Scholar · View at Scopus
  92. J. J. M. Kew, P. N. Leigh, E. D. Playford et al., “Cortical function in amyotrophic lateral sclerosis. A positron emission tomography study,” Brain, vol. 116, no. 3, pp. 655–680, 1993. View at Google Scholar · View at Scopus
  93. J. J. M. Kew, D. J. Brooks, R. E. Passingham, J. C. Rothwell, R. S. J. Frackowiak, and P. N. Leigh, “Cortical function in progressive lower motor neuron disorders and amyotrophic lateral sclerosis: a comparative PET study,” Neurology, vol. 44, no. 6, pp. 1101–1110, 1994. View at Google Scholar · View at Scopus
  94. G. Tedeschi, F. Trojsi, A. Tessitore et al., “Interaction between aging and neurodegeneration in amyotrophic lateral sclerosis,” Neurobiology of Aging, vol. 33, no. 5, pp. 886–898, 2012. View at Publisher · View at Google Scholar · View at Scopus
  95. G. Douaud, N. Filippini, S. Knight, K. Talbot, and M. R. Turner, “Integration of structural and functional magnetic resonance imaging in amyotrophic lateral sclerosis,” Brain, vol. 134, no. 12, pp. 3470–3479, 2011. View at Publisher · View at Google Scholar
  96. E. Verstraete, M. P. van den Heuvel, J. H. Veldink et al., “Motor network degeneration in amyotrophic lateral sclerosis: a structural and functional connectivity study,” PLoS ONE, vol. 5, no. 10, Article ID e13664, 2010. View at Publisher · View at Google Scholar · View at Scopus