Table of Contents Author Guidelines Submit a Manuscript
Neurology Research International
Volume 2012, Article ID 878030, 7 pages
http://dx.doi.org/10.1155/2012/878030
Review Article

Nrf2/ARE Signaling Pathway: Key Mediator in Oxidative Stress and Potential Therapeutic Target in ALS

1Department of Neurology, Hannover Medical School, Hannover, Germany
2Department of Neurobiology and Developmental Sciences, Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, USA

Received 21 May 2012; Accepted 30 July 2012

Academic Editor: Kenneth Hensley

Copyright © 2012 Susanne Petri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. R. Rosen, T. Siddique, D. Patterson et al., “Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis,” Nature, vol. 362, pp. 59–62, 1993. View at Publisher · View at Google Scholar
  2. T. Siddique and S. Ajroud-Driss, “Familial amyotrophic lateral sclerosis, a historical perspective,” Acta Myologica, vol. 30, pp. 117–120, 2011. View at Google Scholar · View at Scopus
  3. C.-H. Wu, C. Fallini, N. Ticozzi et al., “Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis,” Nature, vol. 488, no. 7412, pp. 499–503, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Contestabile, “Amyotrophic lateral sclerosis: from research to therapeutic attempts and therapeutic perspectives,” Current Medicinal Chemistry, vol. 18, no. 36, pp. 5655–5665, 2011. View at Google Scholar · View at Scopus
  5. M. E. Gurney, H. Pu, A. Y. Chiu et al., “Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation,” Science, vol. 264, pp. 1772–1775, 1994. View at Publisher · View at Google Scholar
  6. N. Aguirre, M. F. Beal, W. R. Matson, and M. B. Bogdanov, “Increased oxidative damage to DNA in an animal model of amyotrophic lateral sclerosis,” Free Radical Research, vol. 39, no. 4, pp. 383–388, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. M. F. Beal, R. J. Ferrante, S. E. Browne, R. T. Matthews, N. W. Kowall, and R. H. Brown, “Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis,” Annals of Neurology, vol. 42, no. 4, pp. 644–654, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. R. J. Ferrante, L. A. Shinobu, J. B. Schulz et al., “Increased 3-Nitrotyrosine and oxidative damage in mice with a human copper/zinc superoxide dismutase mutation,” Annals of Neurology, vol. 42, no. 3, pp. 326–334, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Perluigi, H. F. Poon, K. Hensley et al., “Proteomic analysis of 4-hydroxy-2-nonenal-modified proteins in G93A-SOD1 transgenic mice—a model of familial amyotrophic lateral sclerosis,” Free Radical Biology and Medicine, vol. 38, no. 7, pp. 960–968, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. R. W. Orrell, R. J. Lane, and M. Ross, “Antioxidant treatment for amyotrophic lateral sclerosis/motor neuron disease,” Cochrane Database of Systematic Reviews (Online), no. 1, article CD002829, 2007. View at Google Scholar · View at Scopus
  11. G. Y. Sun, L. A. Horrocks, and A. A. Farooqui, “The roles of NADPH oxidase and phospholipases A2 in oxidative and inflammatory responses in neurodegenerative diseases,” Journal of Neurochemistry, vol. 103, no. 1, pp. 1–16, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Zhang, H. Liu, K. J. A. Davies et al., “Nrf2-regulated phase II enzymes are induced by chronic ambient nanoparticle exposure in young mice with age-related impairments,” Free Radical Biology and Medicine, vol. 52, no. 9, pp. 2038–2046, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. F. L. van Muiswinkel and H. B. Kuiperij, “The Nrf2-ARE signalling pathway: promising drug target to combat oxidative stress in neurodegenerative disorders,” Current Drug Targets, vol. 4, no. 3, pp. 267–281, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Y. Shih, S. Imbeault, V. Barakauskas et al., “Induction of the Nrf2-driven antioxidant response confers neuroprotection during mitochondrial stress in vivo,” The Journal of Biological Chemistry, vol. 280, no. 24, pp. 22925–22936, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. K. U. Kotlo, F. Yehiely, E. Efimova et al., “Nrf2 is an inhibitor of the Fas pathway as identified by Achilles' Heel Method, a new function-based approach to gene identification in human cells,” Oncogene, vol. 22, no. 6, pp. 797–806, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Yenki, F. Khodagholi, and F. Shaerzadeh, “Inhibition of phosphorylation of JNK suppresses Abeta-induced ER stress and upregulates prosurvival mitochondrial proteins in rat hippocampus,” Journal of Molecular Neuroscience. In press.
  17. H. Liu, A. T. Dinkova-Kostova, and P. Talalay, “Coordinate regulation of enzyme markers for inflammation and for protection against oxidants and electrophiles,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 41, pp. 15926–15931, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Baird and A. T. Dinkova-Kostova, “The cytoprotective role of the Keap1-Nrf2 pathway,” Archives of Toxicology, vol. 85, no. 4, pp. 241–272, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. J. D. Hayes, M. McMahon, S. Chowdhry, and A. T. Dinkova-Kostova, “Cancer chemoprevention mechanisms mediated through the keap1-Nrf2 pathway,” Antioxidants and Redox Signaling, vol. 13, no. 11, pp. 1713–1748, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. S. B. Cullinan, J. D. Gordan, J. Jin, J. W. Harper, and J. A. Diehl, “The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase,” Molecular and Cellular Biology, vol. 24, no. 19, pp. 8477–8486, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Itoh, N. Wakabayashi, Y. Katoh et al., “Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain,” Genes and Development, vol. 13, no. 1, pp. 76–86, 1999. View at Google Scholar · View at Scopus
  22. A. T. Dinkova-Kostova, W. D. Holtzclaw, and N. Wakabayashi, “Keap1, the sensor for electrophiles and oxidants that regulates the phase 2 response, is a zinc metalloprotein,” Biochemistry, vol. 44, no. 18, pp. 6889–6899, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. D. A. Bloom and A. K. Jaiswal, “Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element-mediated NAD(P)H:quinone oxidoreductase-1 gene expression,” The Journal of Biological Chemistry, vol. 278, no. 45, pp. 44675–44682, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Numazawa, M. Ishikawa, A. Yoshida, S. Tanaka, and T. Yoshida, “Atypical protein kinase C mediates activation of NF-E2-related factor 2 in response to oxidative stress,” American Journal of Physiology, vol. 285, no. 2, pp. C334–C342, 2003. View at Google Scholar · View at Scopus
  25. C. P. Ramsey, C. A. Glass, M. B. Montgomery et al., “Expression of Nrf2 in neurodegenerative diseases,” Journal of Neuropathology and Experimental Neurology, vol. 66, no. 1, pp. 75–85, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. Z. Sun, T. Wu, F. Zhao, A. Lau, C. M. Birch, and D. D. Zhang, “KPNA6 (Importin α7)-mediated nuclear import of Keap1 represses the Nrf2-dependent antioxidant response,” Molecular and Cellular Biology, vol. 31, no. 9, pp. 1800–1811, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. P. Rada, A. I. Rojo, S. Chowdhry, M. McMahon, J. D. Hayes, and A. Cuadrado, “SCF/β-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner,” Molecular and Cellular Biology, vol. 31, no. 6, pp. 1121–1133, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Ramos-Gomez, M. K. Kwak, P. M. Dolan et al., “Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 6, pp. 3410–3415, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Neymotin, N. Y. Calingasan, E. Wille et al., “Neuroprotective effect of Nrf2/ARE activators, CDDO ethylamide and CDDO trifluoroethylamide, in a mouse model of amyotrophic lateral sclerosis,” Free Radical Biology and Medicine, vol. 51, no. 1, pp. 88–96, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. S. A. Frautschy, W. Hu, P. Kim et al., “Phenolic anti-inflammatory antioxidant reversal of Aβ-induced cognitive deficits and neuropathology,” Neurobiology of Aging, vol. 22, no. 6, pp. 993–1005, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Kanninen, T. M. Malm, H. K. Jyrkkänen et al., “Nuclear factor erythroid 2-related factor 2 protects against beta amyloid,” Molecular and Cellular Neuroscience, vol. 39, no. 3, pp. 302–313, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Dumont, E. Wille, N. Y. Calingasan et al., “Triterpenoid CDDO-methylamide improves memory and decreases amyloid plaques in a transgenic mouse model of Alzheimer's disease,” Journal of Neurochemistry, vol. 109, no. 2, pp. 502–512, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Kanninen, R. Heikkinen, T. Malm et al., “Intrahippocampal injection of a lentiviral vector expressing Nrf2 improves spatial learning in a mouse model of Alzheimer's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 38, pp. 16505–16510, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. M. H. Abdel-Wahab, “Potential neuroprotective effect of t-butylhydroquinone against neurotoxicity—induced by 1-methyl-4-(2′-methylphenyl)-1,2,3,6- tetrahydropyridine (2′-methyl-MPTP) in mice,” Journal of Biochemical and Molecular Toxicology, vol. 19, no. 1, pp. 32–41, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. L. Yang, N. Y. Calingasan, B. Thomas et al., “Neuroprotective effects of the triterpenoid, CDDO methyl amide, a potent inducer of Nrf2-mediated transcription,” PLoS ONE, vol. 4, no. 6, article e5757, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. P. C. Chen, M. R. Vargas, A. K. Pani et al., “Nrf2-mediated neuroprotection in the MPTP mouse model of Parkinson's disease: critical role for the astrocyte,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 8, pp. 2933–2938, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. M. C. Barone, G. P. Sykiotis, and D. Bohmann, “Genetic activation of Nrf2 signaling is sufficient to ameliorate neurodegenerative phenotypes in a Drosophila model of Parkinson's disease,” DMM Disease Models and Mechanisms, vol. 4, no. 5, pp. 701–707, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Stack, D. Ho, E. Wille et al., “Triterpenoids CDDO-ethyl amide and CDDO-trifluoroethyl amide improve the behavioral phenotype and brain pathology in a transgenic mouse model of Huntington's disease,” Free Radical Biology and Medicine, vol. 49, no. 2, pp. 147–158, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. M. A. Hickey, C. Zhu, V. Medvedeva et al., “Improvement of neuropathology and transcriptional deficits in CAG 140 knock-in mice supports a beneficial effect of dietary curcumin in Huntington's disease,” Molecular Neurodegeneration, vol. 7, no. 1, article 12, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. S. L. Slocum and T. W. Kensler, “Nrf2: control of sensitivity to carcinogens,” Archives of Toxicology, vol. 85, no. 4, pp. 273–284, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. D. J. Blake, A. Singh, P. Kombairaju et al., “Deletion of Keap1 in the lung attenuates acute cigarette smoke-induced oxidative stress and inflammation,” American Journal of Respiratory Cell and Molecular Biology, vol. 42, no. 5, pp. 524–536, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. A. D. Kraft, D. A. Johnson, and J. A. Johnson, “Nuclear factor E2-related factor 2-dependent antioxidant response element activation by tert-butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult,” Journal of Neuroscience, vol. 24, no. 5, pp. 1101–1112, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. M. J. Calkins, R. J. Jakel, D. A. Johnson, K. Chan, W. K. Yuen, and J. A. Johnson, “Protection from mitochondrial complex II inhibition in vitro and in vivo by Nrf2-mediated transcription,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 1, pp. 244–249, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Pehar, M. R. Vargas, K. M. Robinson et al., “Mitochondrial superoxide production and nuclear factor erythroid 2-related factor 2 activation in p75 neurotrophin receptor-induced motor neuron apoptosis,” Journal of Neuroscience, vol. 27, no. 29, pp. 7777–7785, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Kirby, E. Halligan, M. J. Baptista et al., “Mutant SOD1 alters the motor neuronal transcriptome: implications for familial ALS,” Brain, vol. 128, no. 7, pp. 1686–1706, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. M. R. Vargas, M. Pehar, P. Cassina et al., “Fibroblast growth factor-1 induces heme oxygenase-1 via nuclear factor erythroid 2-related factor 2 (Nrf2) in spinal cord astrocytes: consequences for motor neuron survival,” The Journal of Biological Chemistry, vol. 280, no. 27, pp. 25571–25579, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. A. D. Kraft, J. M. Resch, D. A. Johnson, and J. A. Johnson, “Activation of the Nrf2-ARE pathway in muscle and spinal cord during ALS-like pathology in mice expressing mutant SOD1,” Experimental Neurology, vol. 207, no. 1, pp. 107–117, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Sarlette, K. Krampfl, C. Grothe, N. V. Neuhoff, R. Dengler, and S. Petri, “Nuclear erythroid 2-related factor 2-antioxidative response element signaling pathway in motor cortex and spinal cord in amyotrophic lateral sclerosis,” Journal of Neuropathology and Experimental Neurology, vol. 67, no. 11, pp. 1055–1062, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. J. H. Suh, S. V. Shenvi, B. M. Dixon et al., “Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 10, pp. 3381–3386, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. H. J. Prochaska and A. B. Santamaria, “Direct measurement of NAD(P)H: quinone reductase from cells cultured in microtiter wells: a screening assay for anticarcinogenic enzyme inducers,” Analytical Biochemistry, vol. 169, no. 2, pp. 328–336, 1988. View at Google Scholar · View at Scopus
  51. M. K. Kwak and T. W. Kensler, “Targeting NRF2 signaling for cancer chemoprevention,” Toxicology and Applied Pharmacology, vol. 244, no. 1, pp. 66–76, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. K. Liby, C. C. Black, D. B. Royce et al., “The rexinoid LG100268 and the synthetic triterpenoid CDDO-methyl amide are more potent than erlotinib for prevention of mouse lung carcinogenesis,” Molecular Cancer Therapeutics, vol. 7, no. 5, pp. 1251–1257, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. N. Ammal-Kaidery, R. Banerjee, L. Yang et al., “Targeting Nrf2-mediated gene transcription by extremely potent synthetic triterpenoids attenuate dopaminergic neurotoxicity in the MPTP mouse model of Parkinson's disease,” Antioxidants & Redox Signaling. In press.