Table of Contents Author Guidelines Submit a Manuscript
Obstetrics and Gynecology International
Volume 2010 (2010), Article ID 984013, 8 pages
http://dx.doi.org/10.1155/2010/984013
Review Article

Genetics of Endometrial Cancers

1Department of Obstetrics and Gynecology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan
2Department of Obstetrics and Gynecology, University of Indonesia, Cipto Mangunkusumo National Hospital, Jakarta, Indonesia

Received 22 October 2009; Revised 7 February 2010; Accepted 28 February 2010

Academic Editor: Enrique A. Hernández

Copyright © 2010 Tsuyoshi Okuda et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. V. Bokhman, “Two pathogenetic types of endometrial carcinoma,” Gynecologic Oncology, vol. 15, no. 1, pp. 10–17, 1983. View at Google Scholar · View at Scopus
  2. N. Potischman, R. N. Hoover, L. A. Brinton et al., “Case-control study of endogenous steroid hormones and endometrial cancer,” Journal of the National Cancer Institute, vol. 88, no. 16, pp. 1127–1135, 1996. View at Google Scholar · View at Scopus
  3. M. E. Sherman, M. E. Bur, and R. J. Kurman, “p53 In endometrial cancer and its putative precursors: evidence for diverse pathways of tumorigenesis,” Human Pathology, vol. 26, no. 11, pp. 1268–1274, 1995. View at Google Scholar · View at Scopus
  4. S. G. Silverberg and O. B. Ioffe, “Pathology of cervical cancer,” Cancer Journal, vol. 9, no. 5, pp. 335–347, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Uharček, “Prognostic factors in endometrial carcinoma,” Journal of Obstetrics and Gynaecology Research, vol. 34, no. 5, pp. 776–783, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Berchuck and J. Boyd, “Molecular basis of endometrial cancer,” Cancer, vol. 76, supplement 10, pp. 2034–2040, 1995. View at Google Scholar · View at Scopus
  7. I. B. Engelsen, L. A. Akslen, and H. B. Salvesen, “Biologic markers in endometrial cancer treatment,” APMIS, vol. 117, no. 10, pp. 693–707, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Sasaki, H. Nishii, H. Takahashi et al., “Mutation of the Ki-ras protooncogene in human endometrial hyperplasia and carcinoma,” Cancer Research, vol. 53, no. 8, pp. 1906–1910, 1993. View at Google Scholar · View at Scopus
  9. B. D. Duggan, J. C. Felix, L. I. Muderspach, J.-L. Tsao, and D. K. Shibata, “Early mutational activation of the c-Ki-ras oncogene in endometrial carcinoma,” Cancer Research, vol. 54, no. 6, pp. 1604–1607, 1994. View at Google Scholar · View at Scopus
  10. A. Doll, M. Abal, M. Rigau et al., “Novel molecular profiles of endometrial cancer-new light through old windows,” Journal of Steroid Biochemistry and Molecular Biology, vol. 108, no. 3–5, pp. 221–229, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Koul, R. Willén, P.-O. Bendahl, M. Nilbert, and A. Borg, “Distinct sets of gene alterations in endometrial carcinoma implicate alternate modes of tumorigenesis,” Cancer, vol. 94, no. 9, pp. 2369–2379, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Esteller, A. García, J. M. Martínez-Palones, J. Xercavins, and J. Reventós, “The clinicopathological significance of K-RAS point mutation and gene amplification in endometrial cancer,” European Journal of Cancer, vol. 33, no. 10, pp. 1572–1577, 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Semczuk, H. Berbeć, M. Kostuch, M. Cybulski, J. Wojcierowski, and W. Baranowski, “K-ras gene point mutations in human endometrial carcinomas: correlation with clinicopathological features and patients' outcome,” Journal of Cancer Research and Clinical Oncology, vol. 124, no. 12, pp. 695–700, 1998. View at Publisher · View at Google Scholar · View at Scopus
  14. Y.-Z. Feng, T. Shiozawa, T. Miyamoto et al., “BRAF mutation in endometrial carcinoma and hyperplasia: correlation with KRAS and p53 mutations and mismatch repair protein expression,” Clinical Cancer Research, vol. 11, no. 17, pp. 6133–6138, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. H. B. Salvesen, R. Kumar, I. Stefansson et al., “Low frequency of BRAF and CDKN2A mutations in endometrial cancer,” International Journal of Cancer, vol. 115, no. 6, pp. 930–934, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Kawaguchi, M. Yanokura, K. Banno et al., “Analysis of a correlation between the BRAF V600E mutation and abnormal DNA mismatch repair in patients with sporadic endometrial cancer,” International Journal of Oncology, vol. 34, no. 6, pp. 1541–1547, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Mizumoto, S. Kyo, N. Mori et al., “Activation of ERK1/2 occurs independently of KRAS or BRAF status in endometrial cancer and is associated with favorable prognosis,” Cancer Science, vol. 98, no. 5, pp. 652–658, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. O. B. Ioffe, J. C. Papadimitriou, and C. B. Drachenberg, “Correlation of proliferation indices, apoptosis, and related oncogene expression (bcl-2 and c-erbB-2) and p53 in proliferative, hyperplastic, and malignant endometrium,” Human Pathology, vol. 29, no. 10, pp. 1150–1159, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. J. A. Williams Jr., Z.-R. Wang, R. S. Parrish, L. J. Hazlett, S. T. Smith, and S. R. Young, “Fluorescence in situ hybridization analysis of HER-2/neu, c-myc, and p53 in endometrial cancer,” Experimental and Molecular Pathology, vol. 67, no. 3, pp. 135–143, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. B. M. Slomovitz, R. R. Broaddus, T. W. Burke et al., “Her-2/neu overexpression and amplification in uterine papillary serous carcinoma,” Journal of Clinical Oncology, vol. 22, no. 15, pp. 3126–3132, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Moreno-Bueno, D. Hardisson, C. Sánchez et al., “Abnormalities of the APC/ß-catenin pathway in endometrial cancer,” Oncogene, vol. 21, no. 52, pp. 7981–7990, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Nei, T. Saito, H. Yamasaki, H. Mizumoto, E. Ito, and R. Kudo, “Nuclear localization of β-catenin in normal and carcinogenic endometrium,” Molecular Carcinogenesis, vol. 25, no. 3, pp. 207–218, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. T. L. Yuan and L. C. Cantley, “PI3K pathway alterations in cancer: variations on a theme,” Oncogene, vol. 27, no. 41, pp. 5497–5510, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Shoji, K. Oda, S. Nakagawa et al., “The oncogenic mutation in the pleckstrin homology domain of AKT1 in endometrial carcinomas,” British Journal of Cancer, vol. 101, no. 1, pp. 145–148, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Dutt, H. B. Salvesen, H. Greulich, W. R. Sellers, R. Beroukhim, and M. Meyerson, “Somatic mutations are present in all members of the AKT family in endometrial carcinoma,” British Journal of Cancer, vol. 101, no. 7, pp. 1218–1219, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. S. A. Byron, M. G. Gartside, C. L. Wellens et al., “Inhibition of activated fibroblast growth factor receptor 2 in endometrial cancer cells induces cell death despite PTEN abrogation,” Cancer Research, vol. 68, no. 17, pp. 6902–6907, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. S. A. Byron and P. M. Pollock, “FGFR2 as a molecular target in endometrial cancer,” Future Oncology, vol. 5, no. 1, pp. 27–32, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Soufla, S. Sifakis, and D. A. Spandidos, “FGF2 transcript levels are positively correlated with EGF and IGF-1 in the malignant endometrium,” Cancer Letters, vol. 259, no. 2, pp. 146–155, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. G. L. Mutter, “PTEN, a protean tumor suppressor,” American Journal of Pathology, vol. 158, no. 6, pp. 1895–1898, 2001. View at Google Scholar · View at Scopus
  30. G. L. Mutter, M.-C. Lin, J. T. Fitzgerald et al., “Altered PTEN expression as a diagnostic marker for the earliest endometrial precancers,” Journal of the National Cancer Institute, vol. 92, no. 11, pp. 924–930, 2000. View at Google Scholar · View at Scopus
  31. K. Kurose, X.-P. Zhou, T. Araki, S. A. Cannistra, E. R. Maher, and C. Eng, “Frequent loss of PTEN expression is linked to elevated phosphorylated Akt levels, but not associated with p27 and cyclin D1 expression, in primary epithelial ovarian carcinomas,” American Journal of Pathology, vol. 158, no. 6, pp. 2097–2106, 2001. View at Google Scholar · View at Scopus
  32. M. C. Boruban, K. Altundag, G. S. Kilic, and J. Blankstein, “From endometrial hyperplasia to endometrial cancer: insight into the biology and possible medical preventive measures,” European Journal of Cancer Prevention, vol. 17, no. 2, pp. 133–138, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. G. L. Maxwell, J. I. Risinger, C. Gumbs et al., “Mutation of the PTEN tumor suppressor gene in endometrial hyperplasias,” Cancer Research, vol. 58, no. 12, pp. 2500–2503, 1998. View at Google Scholar · View at Scopus
  34. N. Bansal, V. Yendluri, and R. M. Wenham, “The molecular biology of endometrial cancers and the implications for pathogenesis, classification, and targeted therapies,” Cancer Control, vol. 16, no. 1, pp. 8–13, 2009. View at Google Scholar · View at Scopus
  35. H. B. Salvesen, N. MacDonald, A. Ryan et al., “PTEN methylation is associated with advanced stage and microsatellite instability in endometrial carcinoma,” International Journal of Cancer, vol. 91, no. 1, pp. 22–26, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. T. H. Kim, J. Wang, K. Y. Lee et al., “The synergistic effect of conditional Pten loss and oncogenic K-ras mutation on endometrial cancer development occurs via decreased progesterone receptor action,” Journal of Oncology, vol. 2010, Article ID 139087, 9 pages, 2010. View at Publisher · View at Google Scholar
  37. T. Kaku, T. Kamura, T. Hirakawa et al., “Endometrial carcinoma associated with hyperplasia—immunohistochemical study of angiogenesis and p53 expression,” Gynecologic Oncology, vol. 72, no. 1, pp. 51–55, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. H. Tashiro, C. Isacson, R. Levine, R. J. Kurman, K. R. Cho, and L. Hedrick, “p53 gene mutations are common in uterine serous carcinoma and occur early in their pathogenesis,” American Journal of Pathology, vol. 150, no. 1, pp. 177–185, 1997. View at Google Scholar · View at Scopus
  39. E.-J. Lee, T.-J. Kim, D. S. Kim et al., “p53 alteration independently predicts poor outcomes in patients with endometrial cancer: a clinicopathologic study of 131 cases and literature review,” Gynecologic Oncology, vol. 116, no. 3, pp. 533–538, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. S. F. Lax, B. Kendall, H. Tashiro, R. J. C. Slebos, and L. H. Ellenson, “The frequency of p53, K-ras mutations, and microsatellite instability differs in uterine endometrioid and serous carcinoma: evidence of distinct molecular genetic pathways,” Cancer, vol. 88, no. 4, pp. 814–824, 2000. View at Publisher · View at Google Scholar · View at Scopus
  41. S. F. Lax, E. S. Pizer, B. M. Ronnett, and R. J. Kurman, “Clear cell carcinoma of the endometrium is characterized by a distinctive profile of p53, Ki-67, estrogen, and progesterone receptor expression,” Human Pathology, vol. 29, no. 6, pp. 551–558, 1998. View at Publisher · View at Google Scholar · View at Scopus
  42. T. Okuda, J. Otsuka, A. Sekizawa et al., “p53 mutations and overexpression affect prognosis of ovarian endometrioid cancer but not clear cell cancer,” Gynecologic Oncology, vol. 88, no. 3, pp. 318–325, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. K. K. Zorn, T. Bonome, L. Gangi et al., “Gene expression profiles of serous, endometrioid, and clear cell subtypes of ovarian and endometrial cancer,” Clinical Cancer Research, vol. 11, no. 18, pp. 6422–6430, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. H.-J. An, S. Logani, C. Isacson, and L. H. Ellenson, “Molecular characterization of uterine clear cell carcinoma,” Modern Pathology, vol. 17, no. 5, pp. 530–537, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. P. Rosenberg, S. Wingren, E. Simonsen, O. Stàl, B. Risberg, and B. Nordenskjöld, “Flow cytometric measurements of DNA index and S-phase on paraffin-embedded early stage endometrial cancer: an important prognostic indicator,” Gynecologic Oncology, vol. 35, no. 1, pp. 50–54, 1989. View at Google Scholar · View at Scopus
  46. B. Sorbe, B. Risberg, and B. Frankendal, “DNA ploidy, morphometry, and nuclear grade as prognostic factors in endometrial carcinoma,” Gynecologic Oncology, vol. 38, no. 1, pp. 22–27, 1990. View at Publisher · View at Google Scholar · View at Scopus
  47. E. M. Swisher, S. Peiffer-Schneider, D. G. Mutch et al., “Differences in patterns of TP53 and KRAS2 mutations in a large series of endometrial carcinomas with or without microsatellite instability,” Cancer, vol. 85, no. 1, pp. 119–126, 1999. View at Publisher · View at Google Scholar · View at Scopus
  48. E. A. Akbay, C. M. Contreras, S. A. Perera et al., “Differential roles of telomere attrition in type I and II endometrial carcinogenesis,” American Journal of Pathology, vol. 173, no. 2, pp. 536–544, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. J. D. Yager and N. E. Davidson, “Estrogen carcinogenesis in breast cancer,” The New England Journal of Medicine, vol. 354, no. 3, pp. 270–282, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. W. Yue, R. J. Santen, J.-P. Wang et al., “Genotoxic metabolites of estradiol in breast: potential mechanism of estradiol induced carcinogenesis,” Journal of Steroid Biochemistry and Molecular Biology, vol. 86, no. 3–5, pp. 477–486, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. K. A. Ashton, A. Proietto, G. Otton et al., “Estrogen receptor polymorphisms and the risk of endometrial cancer,” BJOG: An International Journal of Obstetrics and Gynaecology, vol. 116, no. 8, pp. 1053–1061, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. F. J. Gonzalez and H. V. Gelboin, “Role of human cytochromes P450 in the metabolic activation of chemical carcinogens and toxins,” Drug Metabolism Reviews, vol. 26, no. 1-2, pp. 165–183, 1994. View at Google Scholar · View at Scopus
  53. F. P. Guengerich and T. Shimada, “Oxidation of toxic and carcinogenic chemicals by human cytochrome P-450 enzymes,” Chemical Research in Toxicology, vol. 4, no. 4, pp. 391–407, 1991. View at Google Scholar · View at Scopus
  54. S. Saini, H. Hirata, S. Majid, and R. Dahiya, “Functional significance of cytochrome P450 1B1 in endometrial carcinogenesis,” Cancer Research, vol. 69, no. 17, pp. 7038–7045, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. Y. Wang, P. Hanifi-Moghaddam, E. E. Hanekamp et al., “Progesterone inhibition of Wnt/ß-catenin signaling in normal endometrium and endometrial cancer,” Clinical Cancer Research, vol. 15, no. 18, pp. 5784–5793, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. J. J. Koornstra, M. J. Mourits, R. H. Sijmons, A. M. Leliveld, H. Hollema, and J. H. Kleibeuker, “Management of extracolonic tumours in patients with Lynch syndrome,” The Lancet Oncology, vol. 10, no. 4, pp. 400–408, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. P. Peltomäki, H. F. A. Vasen, M.-L. Bisgaard et al., “Mutations predisposing to hereditary nonpolyposis colorectal cancer: database and results of a collaborative study. The International Collaborative Group on Hereditary Nonpolyposis Colorectal Cancer,” Gastroenterology, vol. 113, no. 4, pp. 1146–1158, 1997. View at Publisher · View at Google Scholar · View at Scopus
  58. G. Marra and C. R. Boland, “Hereditary nonpolyposis colorectal cancer: the syndrome, the genes, and historical perspectives,” Journal of the National Cancer Institute, vol. 87, no. 15, pp. 1114–1125, 1995. View at Google Scholar · View at Scopus
  59. Y. R. Parc, K. C. Halling, L. J. Burgart et al., “Microsatellite instability and hMLH1/hMSH2 expression in young endometrial carcinoma patients: associations with family history and histopathology,” International Journal of Cancer, vol. 86, no. 1, pp. 60–66, 2000. View at Publisher · View at Google Scholar · View at Scopus
  60. P. Schweizer, A.-L. Moisio, S. A. Kuismanen et al., “Lack of MSH2 and MSH6 characterizes endometrial but not colon carcinomas in hereditary nonpolyposis colorectal cancer,” Cancer Research, vol. 61, no. 7, pp. 2813–2815, 2001. View at Google Scholar · View at Scopus
  61. M. Ollikainen, W. M. Abdel-Rahman, A.-L. Moisio et al., “Molecular analysis of familial endometrial carcinoma: a manifestation of hereditary nonpolyposis colorectal cancer or a separate syndrome?” Journal of Clinical Oncology, vol. 23, no. 21, pp. 4609–4616, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. Y. Hirai, K. Banno, M. Suzuki et al., “Molecular epidemiological and mutational analysis of DNA mismatch repair (MMR) genes in endometrial cancer patients with HNPCC-associated familial predisposition to cancer,” Cancer Science, vol. 99, no. 9, pp. 1715–1719, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. E. D'Angelo and J. Prat, “Uterine sarcomas: a review,” Gynecologic Oncology, vol. 116, no. 1, pp. 131–139, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. S. F. Lax, “Molecular genetic changes in epithelial, stromal and mixed neoplasms of the endometrium,” Pathology, vol. 39, no. 1, pp. 46–54, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Saegusa, M. Hashimura, T. Kuwata, and I. Okayasu, “Requirement of the Akt/β-catenin pathway for uterine carcinosarcoma genesis, modulating E-cadherin expression through the transactivation of slug,” American Journal of Pathology, vol. 174, no. 6, pp. 2107–2115, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. A. P. Vaidya, N. S. Horowitz, E. Oliva, E. F. Halpern, and L. R. Duska, “Uterine malignant mixed mullerian tumors should not be included in studies of endometrial carcinoma,” Gynecologic Oncology, vol. 103, no. 2, pp. 684–687, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. C. S. Herrington, “Recent advances in molecular gynaecological pathology,” Histopathology, vol. 55, no. 3, pp. 243–249, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. K. Banno, M. Yanokura, N. Susumu et al., “Relationship of the aberrant DNA hypermethylation of cancer-related genes with carcinogenesis of endometrial cancer,” Oncology Reports, vol. 16, no. 6, pp. 1189–1196, 2006. View at Google Scholar · View at Scopus
  69. L. Ghabreau, J. P. Roux, A. Niveleau et al., “Correlation between the DNA global methylation status and progesterone receptor expression in normal endometrium, endometrioid adenocarcinoma and precursors,” Virchows Archiv, vol. 445, no. 2, pp. 129–134, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. P. Mhawech, A. Benz, C. Cerato et al., “Downregulation of 14-3-3s in ovary, prostate and endometrial carcinomas is associated with CpG island methylation,” Modern Pathology, vol. 18, no. 3, pp. 340–348, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. B. P. Whitcomb, D. G. Mutch, T.J. Herzog, J. S. Rader, R. K. Gibb, and P. J. Goodfellow, “Frequent HOXA11 and THBS2 promoter methylation, and a methylator phenotype in endometrial adenocarcinoma,” Clinical Cancer Research, vol. 9, no. 6, pp. 2277–2287, 2003. View at Google Scholar · View at Scopus
  72. S. C. Dowdy, B. S. Gostout, V. Shridhar et al., “Biallelic methylation and silencing of paternally expressed gene 3 (PEG3) in gynecologic cancer cell lines,” Gynecologic Oncology, vol. 99, no. 1, pp. 126–134, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. Q. K. Y. Chan, U.-S. Khoo, K. Y. K. Chan et al., “Promoter methylation and differential expression of p-class glutathione S-transferase in endometrial carcinoma,” Journal of Molecular Diagnostics, vol. 7, no. 1, pp. 8–16, 2005. View at Google Scholar · View at Scopus
  74. X. C. Zhou, S. C. Dowdy, K. C. Podratz, and S.-W. Jiang, “Epigenetic considerations for endometrial cancer prevention, diagnosis and treatment,” Gynecologic Oncology, vol. 107, no. 1, pp. 143–153, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. J. I. Risinger, G. L. Maxwell, A. Berchuck, and J. C. Barrett, “Promoter hypermethylation as an epigenetic component in type I and type II endometrial cancers,” Annals of the New York Academy of Sciences, vol. 983, pp. 208–212, 2003. View at Google Scholar · View at Scopus