Table of Contents Author Guidelines Submit a Manuscript
Obstetrics and Gynecology International
Volume 2013, Article ID 528376, 20 pages
http://dx.doi.org/10.1155/2013/528376
Research Article

The Natural History of Uterine Leiomyomas: Light and Electron Microscopic Studies of Fibroid Phases, Interstitial Ischemia, Inanosis, and Reclamation

1Cellular and Molecular Pathology Branch, National Toxicology Program (NTP), National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services, Research Triangle Park, NC 27709, USA
2Molecular Pathogenesis Group, National Toxicology Program Laboratory (NTPL), National Toxicology Program (NTP), National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services, Research Triangle Park, NC 27709, USA
3Biostatistics Branch, National Toxicology Program (NTP), Division of Intramural Research, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services, Research Triangle Park, NC 27709, USA
4Duke University Medical Center, Durham, NC 27710, USA

Received 5 March 2013; Revised 26 June 2013; Accepted 30 July 2013

Academic Editor: Pasquapina Ciarmela

Copyright © 2013 Gordon P. Flake et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. D. Baird, D. B. Dunson, M. C. Hill, D. Cousins, and J. M. Schectman, “High cumulative incidence of uterine leiomyoma in black and white women: ultrasound evidence,” American Journal of Obstetrics and Gynecology, vol. 188, no. 1, pp. 100–107, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. G. P. Flake, J. Andersen, and D. Dixon, “Etiology and pathogenesis of uterine leiomyomas: a review,” Environmental Health Perspectives, vol. 111, no. 8, pp. 1037–1054, 2003. View at Google Scholar · View at Scopus
  3. E. A. Stewart and R. A. Nowak, “New concepts in the treatment of uterine leiomyomas,” Obstetrics and Gynecology, vol. 92, no. 4, part 1, pp. 624–627, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Coupey, Ed., Primary Care of Adolescent Girls, Hanley and Belfus, Philadelphia, Pa, USA, 2000.
  5. M. Akerlund, “The pathophysiology of dysmenorrhea,” in Clinical Disorders of the Endometrium and Menstrual Cycle, I. T. Cameron, I. S. Fraser, and S. K. Smith, Eds., Oxford University Press, Oxford, UK, 1998. View at Google Scholar
  6. K. Shimizu and R. N. Mitchell, “Stem cell origins of intimal cells in graft arterial disease,” Current Atherosclerosis Reports, vol. 5, no. 3, pp. 230–237, 2003. View at Google Scholar · View at Scopus
  7. J. Chamley-Campbell, G. R. Campbell, and R. Ross, “The smooth muscle cell in culture,” Physiological Reviews, vol. 59, no. 1, pp. 1–61, 1979. View at Google Scholar · View at Scopus
  8. D. Dixon, G. P. Flake, A. B. Moore et al., “Cell proliferation and apoptosis in human uterine leiomyomas and myometria,” Virchows Archiv, vol. 441, no. 1, pp. 53–62, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. A. B. Moore, G. P. Flake, C. D. Swartz et al., “Association of race, age and body mass index with gross pathology of uterine fibroids,” Journal of Reproductive Medicine for the Obstetrician and Gynecologist, vol. 53, no. 2, pp. 90–96, 2008. View at Google Scholar · View at Scopus
  10. M. A. Hayat, Principles and Techniques of Electron Microscopy: Biological Applications, Cambridge University Press, New York, NY, USA, 4th edition, 2000.
  11. M. H. Ross, L. J. Romrell, and G. I. Kaye, Histology, Text and Atlas, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 3rd edition, 1995.
  12. D. O. Slauson and B. J. Cooper, Mechanisms of Disease: A Textbook of Comparative General Pathology, chapter 4, Williams & Wilkins, Baltimore, Md, USA, 2nd edition, 1990.
  13. B. E. Glader and J. N. Lukens, “Chapter 41: hereditary spherocytosis and other anemias due to abnormalities of the red cell membrane,” in Wintrobe’s Clinical Hematology, G. R. Lee, J. Foerster, J. Lukens, F. Paraskevas, J. P. Greer, and G. M. Rodgers, Eds., vol. 2, Williams & Wilkins, Baltimore, Md, USA, 10th edition, 1999. View at Google Scholar
  14. V. Lindner and M. A. Reidy, “Proliferation of smooth muscle cells after vascular injury is inhibited by an antibody against basic fibroblast growth factor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 9, pp. 3739–3743, 1991. View at Google Scholar · View at Scopus
  15. B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson, “The cell nucleus,” in Molecular Biology of the Cell, Garland Science, New York, NY, USA, 1994. View at Google Scholar
  16. F. Scarlatti, R. Granata, A. J. Meijer, and P. Codogno, “Does autophagy have a license to kill mammalian cells?” Cell Death and Differentiation, vol. 16, no. 1, pp. 12–20, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Kroemer and B. Levine, “Autophagic cell death: the story of a misnomer,” Nature Reviews Molecular Cell Biology, vol. 9, no. 12, pp. 1004–1010, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Shen, O. Kepp, and G. Kroemer, “The end of autophagic cell death?” Autophagy, vol. 8, no. 1, pp. 1–3, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Someya, T. Yamasoba, R. Weindruch, T. A. Prolla, and M. Tanokura, “Caloric restriction suppresses apoptotic cell death in the mammalian cochlea and leads to prevention of presbycusis,” Neurobiology of Aging, vol. 28, no. 10, pp. 1613–1622, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Degenhardt, R. Mathew, B. Beaudoin et al., “Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis,” Cancer Cell, vol. 10, no. 1, pp. 51–64, 2006. View at Publisher · View at Google Scholar · View at Scopus