Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2012, Article ID 163913, 13 pages
http://dx.doi.org/10.1155/2012/163913
Review Article

The Bad, the Good, and the Ugly about Oxidative Stress

School of Medicine, Medical Research Institute, Neuroscience Research Group, University of Antioquia (UdeA), SIU, Calle 62 # 52-59, Building 1, Room 412, Medellin 1226, Colombia

Received 10 December 2011; Revised 16 January 2012; Accepted 7 February 2012

Academic Editor: Marcos Dias Pereira

Copyright © 2012 Marlene Jimenez-Del-Rio and Carlos Velez-Pardo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. McCord and I. Fridovich, “Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein),” Journal of Biological Chemistry, vol. 244, no. 22, pp. 6049–6055, 1969. View at Google Scholar · View at Scopus
  2. J. M. McCord and I. Fridovich, “Superoxide dismutase: the first twenty years (1968–1988),” Free Radical Biology and Medicine, vol. 5, no. 5-6, pp. 363–369, 1988. View at Google Scholar · View at Scopus
  3. I. Fridovich, “With the help of giants,” Annual Review of Biochemistry, vol. 72, pp. 1–18, 2003. View at Publisher · View at Google Scholar
  4. N. Kresge, R. D. Simoni, and R. L. Hill, “Forty years of superoxide dismutase research: the work of Irwin Fridovich,” The Journal of Biological Chemistry, vol. 281, pp. e17–e19, 2006. View at Google Scholar
  5. M. M. Goyal and A. Basak, “Human catalase: looking for complete identity,” Protein and Cell, vol. 1, no. 10, pp. 888–897, 2010. View at Publisher · View at Google Scholar
  6. L. Flohé, S. Toppo, G. Cozza, and F. Ursini, “A comparison of thiol peroxidase mechanisms,” Antioxidants and Redox Signaling, vol. 15, no. 3, pp. 763–780, 2011. View at Publisher · View at Google Scholar
  7. A. Holmgren and J. Lu, “Thioredoxin and thioredoxin reductase: current research with special reference to human disease,” Biochemical and Biophysical Research Communications, vol. 396, no. 1, pp. 120–124, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. T. L. Leto and M. Geiszt, “Role of Nox family NADPH oxidases in host defense,” Antioxidants and Redox Signaling, vol. 8, no. 9-10, pp. 1549–1561, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. A. D'alessandro and L. Zolla, “The SODyssey: superoxide dismutases from biochemistry, through proteomics, to oxidative stress, aging and nutraceuticals,” Expert Review of Proteomics, vol. 8, no. 3, pp. 405–421, 2011. View at Publisher · View at Google Scholar
  10. I. Batinić-Haberle, J. S. Rebouças, and I. Spasojević, “Superoxide dismutase mimics: chemistry, pharmacology, and therapeutic potential,” Antioxidants and Redox Signaling, vol. 13, no. 6, pp. 877–918, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. S. C. Grace, “Phylogenetic distribution of superoxide dismutase supports an endosymbiotic origin for chloroplasts and mitochondria,” Life Sciences, vol. 47, no. 21, pp. 1875–1886, 1990. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Aksoy, G. Dean, M. Elian et al., “A4T mutation in the SOD1 gene causing familial amyotrophic lateral sclerosis,” Neuroepidemiology, vol. 22, no. 4, pp. 235–238, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. V. Calabrese, R. Sultana, G. Scapagnini et al., “Nitrosative stress, cellular stress response, and thiol homeostasis in patients with Alzheimer's disease,” Antioxidants and Redox Signaling, vol. 8, no. 11-12, pp. 1975–1986, 2006. View at Google Scholar · View at Scopus
  14. H. L. Martin and P. Teismann, “Glutathione - A review on its role and significance in Parkinson's disease,” FASEB Journal, vol. 23, no. 10, pp. 3263–3272, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Popov, V. Gadjeva, P. Valkanov, S. Popova, and A. Tolekova, “Lipid peroxidation, superoxide dismutase and catalase activities in brain tumor tissues,” Archives of Physiology and Biochemistry, vol. 111, no. 5, pp. 455–459, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. R. A. Kerr, “Earth science. The story of O2,” Science, vol. 308, no. 5729, pp. 1730–1732, 2005. View at Google Scholar
  17. R. A. Kerr, “Geochemistry. A shot of oxygen to unleash the evolution of animals,” Science, vol. 314, no. 5805, p. 1529, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. P. G. Falkowski and Y. Isozaki, “Geology: the story of O2,” Science, vol. 322, no. 5901, pp. 540–542, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. I. Fridovich, “Oxygen toxicity: a radical explanation,” Journal of Experimental Biology, vol. 201, no. 8, pp. 1203–1209, 1998. View at Google Scholar · View at Scopus
  20. B. Halliwel and J. M. C. Gutteridge, Free Radicals in Biology and Medicine, Oxford University Press, New York, NY, USA, 1985.
  21. B. Halliwell, “Tell me about free radicals, doctor: a review,” Journal of the Royal Society of Medicine, vol. 82, no. 12, pp. 747–752, 1989. View at Google Scholar · View at Scopus
  22. B. Halliwell, “Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life,” Plant Physiology, vol. 141, no. 2, pp. 312–322, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Halliwell, “Biochemistry of oxidative stress,” Biochemical Society Transactions, vol. 35, no. 5, pp. 1147–1150, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Halliwell and M. Whiteman, “Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean?” British Journal of Pharmacology, vol. 142, no. 2, pp. 231–255, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. H. J. Forman, M. Maiorino, and F. Ursini, “Signaling functions of reactive oxygen species,” Biochemistry, vol. 49, no. 5, pp. 835–842, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Brigelius-Flohé and L. Flohé, “Basic principles and emerging concepts in the redox control of transcription factors,” Antioxidants and Redox Signaling, vol. 15, no. 8, pp. 2335–2381, 2011. View at Publisher · View at Google Scholar
  27. B. Halliwell, “Oxidative stress and cancer: have we moved forward?” Biochemical Journal, vol. 401, no. 1, pp. 1–11, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Visconti and D. Grieco, “New insights on oxidative stress in cancer,” Current Opinion in Drug Discovery and Development, vol. 12, no. 2, pp. 240–245, 2009. View at Google Scholar · View at Scopus
  29. B. Halliwell, “Oxidative stress and neurodegeneration: where are we now?” Journal of Neurochemistry, vol. 97, no. 6, pp. 1634–1658, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Reynolds, C. Laurie, R. Lee Mosley, and H. E. Gendelman, “Oxidative stress and the pathogenesis of neurodegenerative disorders,” International Review of Neurobiology, vol. 82, pp. 297–325, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Ikawa, H. Okazawa, T. Kudo, M. Kuriyama, Y. Fujibayashi, and M. Yoneda, “Evaluation of striatal oxidative stress in patients with Parkinson's disease using [ 62Cu]ATSM PET,” Nuclear Medicine and Biology, vol. 38, no. 7, pp. 945–951, 2011. View at Publisher · View at Google Scholar
  32. T. E. Golde, “The therapeutic importance of understanding mechanisms of neuronal cell death in neurodegenerative disease,” Molecular Neurodegeneration, vol. 4, no. 1, article no. 8, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. T. E. Golde and L. Petrucelli, “"What kills neurons in neurodegenerative diseases?", A review series in an open access journal,” Molecular Neurodegeneration, vol. 4, no. 1, article no. 7, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. D. J. Surmeier, J. N. Guzman, J. Sanchez-Padilla, and J. A. Goldberg, “What causes the death of dopaminergic neurons in Parkinson's disease?” Progress in Brain Research, vol. 183, no. C, pp. 59–77, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. C. W. Olanow, K. Kieburtz, and A. H. V. Schapira, “Why have we failed to achieve neuroprotection in Parkinson's disease?” Annals of Neurology, vol. 64, supplement 2, pp. S101–S110, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. M. S. Rafii and P. S. Aisen, “Recent developments in Alzheimer's disease therapeutics,” BMC Medicine, vol. 7, article no. 7, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Löhle and H. Reichmann, “Clinical neuroprotection in Parkinson's disease—still waiting for the breakthrough,” Journal of the Neurological Sciences, vol. 289, no. 1-2, pp. 104–114, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. E. C. Lauterbach, J. Victoroff, K. L. Coburn, S. D. Shillcutt, S. M. Doonan, and M. F. Mendez, “Psychopharmacological neuroprotection in neurodegenerative disease: assessing the preclinical data,” Journal of Neuropsychiatry and Clinical Neurosciences, vol. 22, no. 1, pp. 8–18, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. E. N. Frankel and J. W. Finley, “How to standardize the multiplicity of methods to evaluate natural antioxidants,” Journal of Agricultural and Food Chemistry, vol. 56, no. 13, pp. 4901–4908, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. J. A. Knebl and D. Patki, “Recruitment of subjects into clinical trials for Alzheimer disease,” Journal of the American Osteopathic Association, vol. 110, no. 9, supplement 8, pp. S43–S49, 2010. View at Google Scholar
  41. M. Singh, M. Arseneault, T. Sanderson, V. Murthy, and C. Ramassamy, “Challenges for research on polyphenols from foods in Alzheimer's disease: bioavailability, metabolism, and cellular and molecular mechanisms,” Journal of Agricultural and Food Chemistry, vol. 56, no. 13, pp. 4855–4873, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. M. D'Archivio, C. Filesi, R. Varì, B. Scazzocchio, and R. Masella, “Bioavailability of the polyphenols: status and controversies,” International Journal of Molecular Sciences, vol. 11, no. 4, pp. 1321–1342, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. D. E. Stevenson and R. D. Hurst, “Polyphenolic phytochemicals - Just antioxidants or much more?” Cellular and Molecular Life Sciences, vol. 64, no. 22, pp. 2900–2916, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. D. G. Standaert and T. A. Yacoubian, “Target validation: the Parkinson disease perspective,” DMM Disease Models and Mechanisms, vol. 3, no. 5-6, pp. 259–262, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Liu and D. R. Schubert, “The specificity of neuroprotection by antioxidants,” Journal of Biomedical Science, vol. 16, no. 1, article no. 98, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. Alzheimer's Association, W. Thies, and L. Bleiler, “2011 Alzheimer's disease facts and figures,” Alzheimer's and Dementia, vol. 7, no. 2, pp. 208–244, 2011. View at Publisher · View at Google Scholar
  47. K. Wirdefeldt, H. -O. Adami, P. Cole, D. Trichopoulos, and J. Mandel, “Epidemiology and etiology of Parkinson's disease: a review of the evidence,” European Journal of Epidemiology, vol. 26, supplement 1, pp. S1–S58, 2011. View at Publisher · View at Google Scholar
  48. F. Lopera, A. Ardilla, A. Martínez et al., “Clinical features of early-onset Alzheimer disease in a large kindred with an E280A presenilin-1 mutation,” Journal of the American Medical Association, vol. 277, no. 10, pp. 793–799, 1997. View at Google Scholar · View at Scopus
  49. N. Pineda-Trujillo, L. G. Carvajal-Carmona, O. Buriticá et al., “A novel Cys212Tyr founder mutation in parkin and allelic heterogeneity of juvenile Parkinsonism in a population from North West Colombia,” Neuroscience Letters, vol. 298, no. 2, pp. 87–90, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. N. Pineda-Trujillo, M. Apergi, S. Moreno et al., “A genetic cluster of early onset Parkinson's disease in a Colombian population,” American Journal of Medical Genetics, Part B, vol. 141, no. 8, pp. 885–889, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. N. Pineda-Trujillo, A. D. Cepeda, W. A. Pérez et al., “Una mutación en el gen PARK2 causa enfermedad de Parkinson juvenil en una extensa familia colombiana,” Iatreia, vol. 22, no. 2, pp. 122–131, 2009. View at Google Scholar · View at Scopus
  52. F. Barral, “Doctors explain battle to beat Alzheimer's,” CNN, January, 2011, http://articles.cnn.com/2011-01-27/world/alzheimer.qa_1_alzheimer-colombian-link-disease?_s=PM:WORLD.
  53. M. M. Esiri, “The neuropathology of Alzheimer’s disease,” in Neurobiology of Alzheimer’s disease, D. Dawbarn and S. J. Allen, Eds., pp. 37–58, Oxford University Press, Oxford, UK, 2007. View at Google Scholar
  54. L. S. Forno, “Neuropathology of Parkinson's disease,” Journal of Neuropathology and Experimental Neurology, vol. 55, no. 3, pp. 259–272, 1996. View at Google Scholar · View at Scopus
  55. M. A. Smith, P. L. R. Harris, L. M. Sayre, and G. Perry, “Iron accumulation in Alzheimer disease is a source of redox-generated free radicals,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 18, pp. 9866–9868, 1997. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Takanashi, H. Mochizuki, K. Yokomizo et al., “Iron accumulation in the substantia nigra of autosomal recessive juvenile parkinsonism (ARJP),” Parkinsonism and Related Disorders, vol. 7, no. 4, pp. 311–314, 2001. View at Publisher · View at Google Scholar · View at Scopus
  57. S. A. Schneider, C. Paisan-Ruiz, N. P. Quinn et al., “ATP13A2 mutations (PARK9) cause neurodegeneration with brain iron accumulation,” Movement Disorders, vol. 25, no. 8, pp. 979–984, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. X. Wang and E. K. Michaelis, “Selective neuronal vulnerability to oxidative stress in the brain,” Front Aging Neurosci, vol. 2, article 12, 2010. View at Google Scholar
  59. S. Shinde and K. Pasupathy, “Respiratory-chain enzyme activities in isolated mitochondria of lymphocytes from patients with Parkinson's disease: preliminary study,” Neurology India, vol. 54, no. 4, pp. 390–393, 2006. View at Google Scholar · View at Scopus
  60. N. J. MacIver, S. R. Jacobs, H. L. Wieman, J. A. Wofford, J. L. Coloff, and J. C. Rathmell, “Glucose metabolism in lymphocytes is a regulated process with significant effects on immune cell function and survival,” Journal of Leukocyte Biology, vol. 84, no. 4, pp. 949–957, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Calopa, J. Bas, A. Callén, and M. Mestre, “Apoptosis of peripheral blood lymphocytes in Parkinson patients,” Neurobiology of Disease, vol. 38, no. 1, pp. 1–7, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. D. Marazziti, G. Consoli, I. Masala, M. Catena Dell'Osso, and S. Baroni, “Latest advancements on serotonin and dopamine transporters in lymphocytes,” Mini-Reviews in Medicinal Chemistry, vol. 10, no. 1, pp. 32–40, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. P. Feldhaus, D. B. Fraga, F. V. Ghedim et al., “Evaluation of respiratory chain activity in lymphocytes of patients with Alzheimer disease,” Metabolic Brain Disease, vol. 26, no. 3, pp. 229–236, 2011. View at Publisher · View at Google Scholar
  64. G. Kroemer, L. Galluzzi, P. Vandenabeele et al., “Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009,” Cell Death and Differentiation, vol. 16, no. 1, pp. 3–11, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. J. C. Reed, “Mechanisms of apoptosis,” American Journal of Pathology, vol. 157, no. 5, pp. 1415–1430, 2000. View at Google Scholar
  66. KEGG, “The (Kyoto Encyclopedia of Genes and Genomes) PATHWAY Database. (Apoptosis),” http://www.genome.jp/kegg/pathway/hsa/hsa04210.html.
  67. L. Galluzzi, I. Vitale, J. M. Abrams et al., “Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012,” Cell Death and Differentiation, vol. 19, no. 1, pp. 107–120, 2012. View at Publisher · View at Google Scholar
  68. G. Groeger, C. Quiney, and T. G. Cotter, “Hydrogen peroxide as a cell-survival signaling molecule,” Antioxidants and Redox Signaling, vol. 11, no. 11, pp. 2655–2671, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. C. Velez-Pardo, G. Garcia-Ospina, and J. M. Del Rio, “Aβ[25–35] peptide and iron promote apoptosis in lymphocytes by a common oxidative mechanism: involvement of hydrogen peroxide (H2O2), caspase-3, NF-kappa B, p53 and c-Jun,” NeuroToxicol, vol. 23, no. 3, pp. 351–365, 2002. View at Google Scholar
  70. M. J. Del Rio, S. Moreno, G. Garcia-Ospina et al., “Autosomal recessive juvenile Parkinsonism Cys212Tyr mutation in parkin renders lymphocytes susceptible to dopamine- and iron-mediated apoptosis,” Movement Disorders, vol. 19, no. 3, pp. 324–330, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. M. J. Del Rio and C. Velez-Pardo, “Monoamine neurotoxins-induced apoptosis in lymphocytes by a common oxidative stress mechanism: Involvement of hydrogen peroxide (H2O2), caspase-3, and nuclear factor kappa-B (NF-κB), p53, c-Jun transcription factors,” Biochemical Pharmacology, vol. 63, no. 4, pp. 677–688, 2002. View at Publisher · View at Google Scholar · View at Scopus
  72. M. Jimenez Del Rio and C. Velez-Pardo, “Paraquat induces apoptosis in human lymphocytes: protective and rescue effects of glucose, cannabinoids and insulin-like growth factor-1,” Growth Factors, vol. 26, no. 1, pp. 49–60, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. I. C. Avila-Gomez, C. Velez-Pardo, and M. Jimenez-Del-Rio, “Effects of insulin-like growth factor-1 on rotenone-induced apoptosis in human lymphocyte cells,” Basic and Clinical Pharmacology and Toxicology, vol. 106, no. 1, pp. 53–61, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Jimenez Del Rio and C. Velez-Pardo, “17β-Estradiol protects lymphocytes against dopamine and iron-induced apoptosis by a genomic-independent mechanism - Implication in Parkinson's disease,” General Pharmacology: The Vascular System, vol. 35, no. 1, pp. 1–9, 2001. View at Publisher · View at Google Scholar · View at Scopus
  75. C. Velez-Pardo and M. Jimenez Del Rio, “Avoidance of Aβ[25-35]/(H2O2)-induced apoptosis in lymphocytes by the cannabinoid agonists CP55,940 and JWH-015 via receptor-independent and PI3K-dependent mechanism: role of NF-κB and p53,” Medicinal Chemistry, vol. 2, no. 5, pp. 471–479, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. C. Velez-Pardo, M. Jimenez-Del-Rio, S. Lores-Arnaiz, and J. Bustamante, “Protective effects of the synthetic cannabinoids CP55,940 and JWH-015 on rat brain mitochondria upon paraquat exposure,” Neurochemical Research, vol. 35, no. 9, pp. 1323–1332, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Jimenez Del Rio and C. Velez-Pardo, “Insulin-like growth factor-1 prevents Aβ[25–35]/ (H2O2)- induced apoptosis in lymphocytes by reciprocal NF-κB activation and p53 inhibition via PI3K-dependent pathway,” Growth Factors, vol. 24, no. 1, pp. 67–78, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. S. Schoonbroodt, V. Ferreira, M. Best-Belpomme et al., “Crucial role of the amino-terminal tyrosine residue 42 and the carboxylterminal PEST domain of I kappa B alpha in NF-kappa B activation by an oxidative stress,” J Immunol, vol. 164, no. 8, pp. 4292–4300, 2000. View at Google Scholar
  79. Y. Takada, A. Mukhopadhyay, G. C. Kundu, G. H. Mahabeleshwar, S. Singh, and B. B. Aggarwal, “Hydrogen peroxide activates NF-κB through tyrosine phosphorylation of IκBα and serine phosphorylation of p65. Evidence for the involvement of IκBα kinase and Syk protein-tyrosine kinase,” Journal of Biological Chemistry, vol. 278, no. 26, pp. 24233–24241, 2003. View at Publisher · View at Google Scholar · View at Scopus
  80. G. Gloire, E. Charlier, S. Rahmouni et al., “Restoration of SHIP-1 activity in human leukemic cells modifies NF-κB activation pathway and cellular survival upon oxidative stress,” Oncogene, vol. 25, no. 40, pp. 5485–5494, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. F. S. Lee, J. Hagler, Z. J. Chen, and T. Maniatis, “Activation of the IκBα kinase complex by MEKK1, a kinase of the JNK pathway,” Cell, vol. 88, no. 2, pp. 213–222, 1997. View at Publisher · View at Google Scholar · View at Scopus
  82. H. Wu and G. Lozano, “NF-κB activation of p53. A potential mechanism for suppressing cell growth in response to stress,” Journal of Biological Chemistry, vol. 269, no. 31, pp. 20067–20074, 1994. View at Google Scholar · View at Scopus
  83. I. A. Olovnikov, J. E. Kravchenko, and P. M. Chumakov, “Homeostatic functions of the p53 tumor suppressor: regulation of energy metabolism and antioxidant defense,” Seminars in Cancer Biology, vol. 19, no. 1, pp. 32–41, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. V. Borutaite, “Mitochondria as decision-makers in cell death,” Environmental and Molecular Mutagenesis, vol. 51, no. 5, pp. 406–416, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. F. Ricchelli, J. Šileikyte, and P. Bernardi, “Shedding light on the mitochondrial permeability transition,” Biochimica et Biophysica Acta, vol. 1807, no. 5, pp. 482–490, 2011. View at Publisher · View at Google Scholar
  86. E. Norberg, S. Orrenius, and B. Zhivotovsky, “Mitochondrial regulation of cell death: processing of apoptosis-inducing factor (AIF),” Biochemical and Biophysical Research Communications, vol. 396, no. 1, pp. 95–100, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. H. Zou, Y. Li, X. Liu, and X. Wang, “An APAf-1 · cytochrome C multimeric complex is a functional apoptosome that activates procaspase-9,” Journal of Biological Chemistry, vol. 274, no. 17, pp. 11549–11556, 1999. View at Publisher · View at Google Scholar · View at Scopus
  88. R. U. Jänicke, M. L. Sprengart, M. R. Wati, and A. G. Porter, “Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis,” Journal of Biological Chemistry, vol. 273, no. 16, pp. 9357–9360, 1998. View at Publisher · View at Google Scholar · View at Scopus
  89. M. Enari, H. Sakahira, H. Yokoyama, K. Okawa, A. Iwamatsu, and S. Nagata, “A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD,” Nature, vol. 391, no. 6662, pp. 43–50, 1998. View at Publisher · View at Google Scholar · View at Scopus
  90. V. J. Yuste, I. Sánchez-López, C. Solé et al., “The contribution of apoptosis-inducing factor, caspase-activated DNase, and inhibitor of caspase-activated DNase to the nuclear phenotype and DNA degradation during apoptosis,” Journal of Biological Chemistry, vol. 280, no. 42, pp. 35670–35683, 2005. View at Publisher · View at Google Scholar · View at Scopus
  91. H. Ichijo, E. Nishida, K. Irie et al., “Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways,” Science, vol. 275, no. 5296, pp. 90–94, 1997. View at Publisher · View at Google Scholar · View at Scopus
  92. M. Yan, T. Dai, J. C. Deak et al., “Activation of stress activated protein kinase by MEKK1 phosphorylation of its activator SEK1,” Nature, vol. 372, no. 6508, pp. 798–800, 1994. View at Google Scholar · View at Scopus
  93. D. Yang, C. Tournier, M. Wysk et al., “Targeted disruption of the MKK4 gene causes embryonic death, inhibition of c-Jun NH2-terminal kinase activation, and defects in AP-1 transcriptional activity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 7, pp. 3004–3009, 1997. View at Publisher · View at Google Scholar · View at Scopus
  94. A. Minden, A. Lin, T. Smeal et al., “c-Jun N-terminal phosphorylation correlates with activation of the JNK subgroup but not the ERK subgroup of mitogen-activated protein kinases,” Molecular and Cellular Biology, vol. 14, no. 10, pp. 6683–6688, 1994. View at Google Scholar · View at Scopus
  95. D. N. Dhanasekaran and E. P. Reddy, “JNK signaling in apoptosis,” Oncogene, vol. 27, no. 48, pp. 6245–6251, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. N. V. Oleinik, N. I. Krupenko, and S. A. Krupenko, “Cooperation between JNK1 and JNK2 in activation of p53 apoptotic pathway,” Oncogene, vol. 26, no. 51, pp. 7222–7230, 2007. View at Publisher · View at Google Scholar · View at Scopus
  97. M. Jiménez Del Río and C. Vélez-Pardo, “Transition metal-induced apoptosis in lymphocytes via hydroxyl radical generation, mitochondria dysfunction, and caspase-3 activation: an in vitro model for neurodegeneration,” Archives of Medical Research, vol. 35, no. 3, pp. 185–193, 2004. View at Publisher · View at Google Scholar · View at Scopus
  98. K. R. Bales, Y. Du, R. C. Dodel, G. M. Yan, E. Hamilton-Byrd, and S. M. Paul, “The NF-κB/Rel family of proteins mediates A β-induced neurotoxicity and glial activation,” Molecular Brain Research, vol. 57, no. 1, pp. 63–72, 1998. View at Publisher · View at Google Scholar · View at Scopus
  99. D. Uberti, E. Yavin, S. Gil, K. R. Ayasola, N. Goldfinger, and V. Rotter, “Hydrogen peroxide induces nuclear translocation of p53 and apoptosis in cells of oligodendroglia origin,” Molecular Brain Research, vol. 65, no. 2, pp. 167–175, 1999. View at Publisher · View at Google Scholar · View at Scopus
  100. N. Marín, B. Romero, F. Bosch-Morell et al., “β-Amyloid-induced activation of Caspase-3 in primary cultures of rat neurons,” Mechanisms of Ageing and Development, vol. 119, no. 1-2, pp. 63–67, 2000. View at Publisher · View at Google Scholar · View at Scopus
  101. H. Panet, A. Barzilai, D. Daily, E. Melamed, and D. Offen, “Activation of nuclear transcription factor kappa B (NF-κB) is essential for dopamine-induced apoptosis in PC12 cells,” Journal of Neurochemistry, vol. 77, no. 2, pp. 391–398, 2001. View at Publisher · View at Google Scholar · View at Scopus
  102. C. M. Troy, S. A. Rabacchi, Z. Xu et al., “β-Amyloid-induced neuronal apoptosis requires c-Jun N-terminal kinase activation,” Journal of Neurochemistry, vol. 77, no. 1, pp. 157–164, 2001. View at Publisher · View at Google Scholar
  103. H. Aleyasin, S. P. Cregan, G. Iyirhiaro et al., “Nuclear factor-κB modulates the p53 response in neurons exposed to DNA damage,” Journal of Neuroscience, vol. 24, no. 12, pp. 2963–2973, 2004. View at Publisher · View at Google Scholar · View at Scopus
  104. Y. Ohyagi, H. Asahara, D. H. Chui et al., “Intracellular Aβ42 activates p53 promoter: a pathway to neurodegeneration in Alzheimer's disease,” FASEB Journal, vol. 19, no. 2, pp. 255–257, 2005. View at Publisher · View at Google Scholar · View at Scopus
  105. Y.-O. Son, Y. S. Jang, X. Shi, and J. C. Lee, “Activation of JNK and c-Jun is involved in glucose oxidase-mediated cell death of human lymphoma cells,” Molecules and Cells, vol. 28, no. 6, pp. 545–551, 2009. View at Publisher · View at Google Scholar · View at Scopus
  106. W. S. Choi, H. M. Klintworth, and Z. Xia, “JNK3-mediated apoptotic cell death in primary dopaminergic neurons,” Methods in Molecular Biology, vol. 758, pp. 279–292, 2011. View at Publisher · View at Google Scholar
  107. A. Maheshwari, M. M. Misro, A. Aggarwal, R. K. Sharma, and D. Nandan, “N-acetyl-L-cysteine counteracts oxidative stress and prevents H2O2 induced germ cell apoptosis through down-regulation of caspase-9 and JNK/c-Jun,” Molecular Reproduction and Development, vol. 78, no. 2, pp. 69–79, 2011. View at Publisher · View at Google Scholar
  108. S. Hunot, B. Brugg, D. Ricard et al., “Nuclear translocation of NF-κb is increased in dopaminergic neurons of patients with Parkinson disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 14, pp. 7531–7536, 1997. View at Publisher · View at Google Scholar · View at Scopus
  109. Y. He, T. Lee, and S. K. Leong, “6-Hydroxydopamine induced apoptosis of dopaminergic cells in the rat substantia nigra,” Brain Research, vol. 858, no. 1, pp. 163–166, 2000. View at Publisher · View at Google Scholar · View at Scopus
  110. A. Hartmann, S. Hunot, P. P. Michel et al., “Caspase-3: a vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 6, pp. 2875–2880, 2000. View at Publisher · View at Google Scholar · View at Scopus
  111. C. Velez-Pardo, F. Lopera, and M. Jimenez Del Rio, “DNA damage does not correlate with amyloid-β-plaques and neurofibrillary tangles in familial Alzheimer's disease presenilin-1 [E280A] mutation,” Journal of Alzheimer's Disease, vol. 2, no. 1, pp. 47–57, 2000. View at Google Scholar · View at Scopus
  112. J. H. Su, M. Zhao, A. J. Anderson, A. Srinivasan, and C. W. Cotman, “Activated caspase-3 expression in Alzheimer's and aged control brain: correlation with Alzheimer pathology,” Brain Research, vol. 898, no. 2, pp. 350–357, 2001. View at Publisher · View at Google Scholar · View at Scopus
  113. G. Garcia-Ospina, J. M. Del Rio, F. Lopera, and C. Velez-Pardo, “Neuronal DNA damage correlates with a positive detection of c-Jun, nuclear factor κB, p53 and Par-4 transcription factors in Alzheimer’s disease,” Rev Neurol, vol. 36, no. 11, pp. 1004–1010, 2003. View at Google Scholar
  114. A. Thakur, X. Wang, S. L. Siedlak, G. Perry, M. A. Smith, and X. Zhu, “c-Jun phosphorylation in Alzheimer disease,” Journal of Neuroscience Research, vol. 85, no. 8, pp. 1668–1673, 2007. View at Publisher · View at Google Scholar · View at Scopus
  115. I. Ferrer, R. Blanco, M. Carmona et al., “Active, phosphorylation-dependent mitogen-activated protein kinase (MAPK/ERK), stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and p38 kinase expression in Parkinson's disease and Dementia with Lewy bodies,” Journal of Neural Transmission, vol. 108, no. 12, pp. 1383–1396, 2001. View at Publisher · View at Google Scholar · View at Scopus
  116. M. E. McLellan, S. T. Kajdasz, B. T. Hyman, and B. J. Bacskai, “In vivo imaging of reactive oxygen species specifically associated with thioflavine S-positive amyloid plaques by multiphoton microscopy,” Journal of Neuroscience, vol. 23, no. 6, pp. 2212–2217, 2003. View at Google Scholar · View at Scopus
  117. C. Wang, J. Li, Q. Liu et al., “Hydrogen-rich saline reduces oxidative stress and inflammation by inhibit of JNK and NF-κB activation in a rat model of amyloid-beta-induced Alzheimer's disease,” Neuroscience Letters, vol. 491, no. 2, pp. 127–132, 2011. View at Publisher · View at Google Scholar
  118. M. Mogi, A. Togari, T. Kondo et al., “Caspase activities and tumor necrosis factor receptor R1 (p55) level are elevated in the substantia nigra from Parkinsonian brain,” Journal of Neural Transmission, vol. 107, no. 3, pp. 335–341, 2000. View at Google Scholar · View at Scopus
  119. M. Mogi, T. Kondo, Y. Mizuno, and T. Nagatsu, “p53 protein, interferon-γ, and NF-κB levels are elevated in the parkinsonian brain,” Neuroscience Letters, vol. 414, no. 1, pp. 94–97, 2007. View at Publisher · View at Google Scholar · View at Scopus
  120. Z. Q. Liang, Y. L. Li, X. L. Zhao et al., “NF-κB contributes to 6-hydroxydopamine-induced apoptosis of nigral dopaminergic neurons through p53,” Brain Research, vol. 1145, no. 1, pp. 190–203, 2007. View at Publisher · View at Google Scholar · View at Scopus
  121. L. Y. Li, X. L. Zhao, X. F. Fei, Z. L. Gu, Z. H. Qin, and Z. Q. Liang, “Bilobalide inhibits 6-OHDA-induced activation of NF-κB and loss of dopaminergic neurons in rat substantia nigra,” Acta Pharmacologica Sinica, vol. 29, no. 5, pp. 539–547, 2008. View at Publisher · View at Google Scholar · View at Scopus
  122. A. M. Muñoz, P. Rey, R. Soto-Otero, M. J. Guerra, and J. L. Labandeira-Garcia, “Systemic Administration of N-Acetylcysteine Protects Dopaminergic Neurons Against 6-Hydroxydopamine-Induced Degeneration,” Journal of Neuroscience Research, vol. 76, no. 4, pp. 551–562, 2004. View at Publisher · View at Google Scholar · View at Scopus
  123. S. P. Braithwaite, R. S. Schmid, D. N. He et al., “Inhibition of c-Jun kinase provides neuroprotection in a model of Alzheimer's disease,” Neurobiology of Disease, vol. 39, no. 3, pp. 311–317, 2010. View at Publisher · View at Google Scholar · View at Scopus
  124. M. Jimenez-Del-Rio, A. Daza-Restrepo, and C. Velez-Pardo, “The cannabinoid CP55,940 prolongs survival and improves locomotor activity in Drosophila melanogaster against paraquat: implications in Parkinson's disease,” Neuroscience Research, vol. 61, no. 4, pp. 404–411, 2008. View at Publisher · View at Google Scholar · View at Scopus
  125. J. A. Botella, F. Bayersdorfer, F. Gmeiner, and S. Schneuwly, “Modelling Parkinson's Disease in Drosophila,” NeuroMolecular Medicine, vol. 11, no. 4, pp. 268–280, 2009. View at Publisher · View at Google Scholar · View at Scopus
  126. M. Guo, “What have we learned from Drosophila models of Parkinson's disease?” Progress in Brain Research, vol. 184, no. C, pp. 1–16, 2010. View at Publisher · View at Google Scholar · View at Scopus
  127. A. Chaudhuri, K. Bowling, C. Funderburk et al., “Interaction of genetic and environmental factors in a Drosophila parkinsonism model,” Journal of Neuroscience, vol. 27, no. 10, pp. 2457–2467, 2007. View at Publisher · View at Google Scholar · View at Scopus
  128. M. Jimenez-Del-Rio, C. Guzman-Martinez, and C. Velez-Pardo, “The effects of polyphenols on survival and locomotor activity in Drosophila melanogaster exposed to iron and paraquat,” Neurochemical Research, vol. 35, no. 2, pp. 227–238, 2010. View at Publisher · View at Google Scholar · View at Scopus
  129. H. F. Ortega-Arellano, M. Jimenez-Del-Rio, and C. Velez-Pardo, “Life span and locomotor activity modification by glucose and polyphenols in Drosophila melanogaster chronically exposed to oxidative stress-stimuli: implications in Parkinson's disease,” Neurochemical Research, vol. 36, no. 6, pp. 1073–1086, 2011. View at Publisher · View at Google Scholar
  130. B. Zhao, “Natural antioxidants protect neurons in Alzheimer's disease and parkinson's disease,” Neurochemical Research, vol. 34, no. 4, pp. 630–638, 2009. View at Publisher · View at Google Scholar · View at Scopus
  131. R. J. Williams and J. P.E. Spencer, “Flavonoids, cognition, and dementia: actions, mechanisms, and potential therapeutic utility for Alzheimer disease,” Free Radical Biology and Medicine, vol. 52, no. 1, pp. 35–45, 2012. View at Publisher · View at Google Scholar
  132. L. Bonilla-Ramirez, M. Jimenez-Del-Rio, and C. Velez-Pardo, “Acute and chronic metal exposure impairs locomotion activity in Drosophila melanogaster: a model to study Parkinsonism,” BioMetals, vol. 24, no. 6, pp. 1045–1057, 2011. View at Publisher · View at Google Scholar
  133. J. Clark, E. L. Clore, K. Zheng, A. Adame, E. Masliah, and D. K. Simon, “Oral N-Acetyl-cysteine attenuates loss of dopaminergic terminals in α-synuclein overexpressing mice,” PLoS One, vol. 5, no. 8, Article ID e12333, 2010. View at Publisher · View at Google Scholar · View at Scopus
  134. A. C. Badrick and C. E. Jones, “Reorganizing metals: the use of chelating compounds as potential therapies for metal-related neurodegenerative disease,” Current Topics in Medicinal Chemistry, vol. 11, no. 5, pp. 543–552, 2011. View at Publisher · View at Google Scholar
  135. M. Manczak, P. Mao, M. J. Calkins et al., “Mitochondria-targeted antioxidants protect against amyloid-β toxicity in Alzheimer's disease neurons,” Journal of Alzheimer's Disease, vol. 20, supplement 2, pp. S609–S631, 2010. View at Publisher · View at Google Scholar · View at Scopus
  136. H. H. Szeto and P. W. Schiller, “Novel therapies targeting inner mitochondrial membrane-from discovery to clinical development,” Pharmaceutical Research, vol. 28, no. 11, pp. 2669–2679, 2011. View at Publisher · View at Google Scholar
  137. J. S. Orange and M. J. May, “Cell penetrating peptide inhibitors of nuclear factor-kappa B,” Cellular and Molecular Life Sciences, vol. 65, no. 22, pp. 3564–3591, 2008. View at Publisher · View at Google Scholar · View at Scopus
  138. P. M. Flood, L. Qian, L. J. Peterson et al., “Transcriptional factor NF-κb as a target for therapy in Parkinson's disease,” Parkinson's Disease, vol. 2011, Article ID 216298, 8 pages, 2011. View at Publisher · View at Google Scholar
  139. X. Zhu, Q. S. Yu, R. G. Cutler et al., “Novel p53 inactivators with neuroprotective action: syntheses and pharmacological evaluation of 2-imino-2,3,4,5,6,7-hexahydrobenzothiazole and 2-imino-2,3,4,5,6,7-hexahydrobenzoxazole derivatives,” Journal of Medicinal Chemistry, vol. 45, no. 23, pp. 5090–5097, 2002. View at Publisher · View at Google Scholar · View at Scopus
  140. C. Hu, X. Li, W. Wang et al., “Design, synthesis, and biological evaluation of imidazoline derivatives as p53-MDM2 binding inhibitors,” Bioorganic and Medicinal Chemistry, vol. 19, no. 18, pp. 5454–5461, 2011. View at Publisher · View at Google Scholar
  141. S. Mehan, H. Meena, D. Sharma, and R. Sankhla, “JNK: a stress-activated protein kinase therapeutic strategies and involvement in Alzheimer's and various neurodegenerative abnormalities,” Journal of Molecular Neuroscience, vol. 43, no. 3, pp. 376–390, 2010. View at Publisher · View at Google Scholar · View at Scopus
  142. C. Polytarchou, M. Hatziapostolou, and E. Papadimitriou, “Hydrogen peroxide stimulates proliferation and migration of human prostate cancer cells through activation of activator protein-1 and up-regulation of the heparin affin regulatory peptide gene,” Journal of Biological Chemistry, vol. 280, no. 49, pp. 40428–40435, 2005. View at Publisher · View at Google Scholar · View at Scopus
  143. S. L. Payne, B. Fogelgren, A. R. Hess et al., “Lysyl oxidase regulates breast cancer cell migration and adhesion through a hydrogen peroxide-mediated mechanism,” Cancer Research, vol. 65, no. 24, pp. 11429–11436, 2005. View at Publisher · View at Google Scholar · View at Scopus
  144. I. Heirman, D. Ginneberge, R. Brigelius-Flohé et al., “Blocking tumor cell eicosanoid synthesis by GPx4 impedes tumor growth and malignancy,” Free Radical Biology and Medicine, vol. 40, no. 2, pp. 285–294, 2006. View at Publisher · View at Google Scholar · View at Scopus
  145. J. Wang and J. Yi, “Cancer cell killing via ROS: to increase or decrease, that is a question,” Cancer Biology and Therapy, vol. 7, no. 12, pp. 1875–1884, 2008. View at Google Scholar · View at Scopus
  146. J. Chen, M. Song, S. Yu et al., “Advanced glycation endproducts alter functions and promote apoptosis in endothelial progenitor cells through receptor for advanced glycation endproducts mediate overpression of cell oxidant stress,” Molecular and Cellular Biochemistry, vol. 335, no. 1-2, pp. 137–146, 2010. View at Publisher · View at Google Scholar · View at Scopus
  147. R. Małek, K. K. Borowicz, M. Jargiełło, and S. J. Czuczwar, “Role of nuclear factor kappaB in the central nervous system,” Pharmacological Reports, vol. 59, no. 1, pp. 25–33, 2007. View at Google Scholar
  148. Z. H. Qin, L. Y. Tao, and X. Chen, “Dual roles of NF-κB in cell survival and implications of NF-κB inhibitors in neuroprotective therapy,” Acta Pharmacologica Sinica, vol. 28, no. 12, pp. 1859–1872, 2007. View at Publisher · View at Google Scholar · View at Scopus
  149. N. G. Bazan, “Is NF-κB from astrocytes a decision maker of neuronal life or death? (Commentary on Dvoriantchikova et al.): commentary,” European Journal of Neuroscience, vol. 30, no. 2, pp. 173–174, 2009. View at Publisher · View at Google Scholar · View at Scopus
  150. B. K. Bednarski, A. S. Baldwin, and H. J. Kim, “Addressing reported pro-apoptotic functions of NF-κB: targeted inhibition of canonical NF-κB enhances the apoptotic effects of doxorubicin,” PLoS One, vol. 4, no. 9, Article ID e6992, 2009. View at Publisher · View at Google Scholar · View at Scopus
  151. F. Wang, H. Li, H. Shi, and B. Sun, “Pro-apoptotic role of nuclear factor-κB in adriamycin-induced acute myocardial injury in rats,” Molecular Medicine Reports, vol. 5, no. 2, pp. 400–404, 2012. View at Publisher · View at Google Scholar
  152. M. G. E. K. N. Isaac, R. Quinn, and N. Tabet, “Vitamin E for Alzheimer's disease and mild cognitive impairment,” Cochrane Database of Systematic Reviews, no. 3, Article ID CD002854, 2008. View at Publisher · View at Google Scholar · View at Scopus
  153. G. J. Brewer, “Why vitamin e therapy fails for treatment of Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 19, no. 1, pp. 27–30, 2010. View at Publisher · View at Google Scholar · View at Scopus
  154. B. J. Snow, F. L. Rolfe, M. M. Lockhart et al., “A double-blind, placebo-controlled study to assess the mitochondria- targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson's disease,” Movement Disorders, vol. 25, no. 11, pp. 1670–1674, 2010. View at Publisher · View at Google Scholar
  155. C. H. Pui, M. V. Relling, and J. R. Downing, “Mechanisms of disease: acute lymphoblastic leukemia,” New England Journal of Medicine, vol. 350, no. 15, pp. 1535–1548, 2004. View at Publisher · View at Google Scholar · View at Scopus
  156. A. R. Bonilla-Porras, M. Jimenez-Del-Rio, and C. Velez-Pardo, “Vitamin K3 and vitamin C alone or in combination induced apoptosis in leukemia cells by a similar oxidative stress signalling mechanism,” Cancer Cell International, vol. 11, article 19, 2011. View at Publisher · View at Google Scholar
  157. K. Jomova, Z. Jenisova, M. Feszterova et al., “Arsenic: toxicity, oxidative stress and human disease,” Journal of Applied Toxicology, vol. 31, no. 2, pp. 95–107, 2011. View at Publisher · View at Google Scholar
  158. A. Meshkini and R. Yazdanparast, “Involvement of oxidative stress in taxol-induced apoptosis in chronic myelogenous leukemia K562 cells,” Experimental and Toxicologic Pathology. In press. View at Publisher · View at Google Scholar
  159. L. M. Bekris, C. E. Yu, T. D. Bird, and D. W. Tsuang, “Review article: genetics of Alzheimer disease,” Journal of Geriatric Psychiatry and Neurology, vol. 23, no. 4, pp. 213–227, 2010. View at Publisher · View at Google Scholar · View at Scopus
  160. L. M. Bekris, I. F. Mata, and C. P. Zabetian, “The genetics of Parkinson disease,” Journal of Geriatric Psychiatry and Neurology, vol. 23, no. 4, pp. 228–242, 2010. View at Publisher · View at Google Scholar · View at Scopus
  161. A. H. Schapira and M. Gegg, “Mitochondrial contribution to Parkinson’s disease pathogenesis,” Parkinson's Disease, vol. 2011, Article ID 159160, 7 pages, 2011. View at Publisher · View at Google Scholar
  162. M. K. McCoy and M. R. Cookson, “Mitochondrial quality control and dynamics in parkinson's disease,” Antioxid Redox Signal, vol. 16, no. 9, pp. 869–882, 2012. View at Publisher · View at Google Scholar
  163. M. Vinish, A. Anand, and S. Prabhakar, “Altered oxidative stress levels in Indian Parkinson's disease patients with PARK2 mutations,” Acta Biochimica Polonica, vol. 58, no. 2, pp. 165–169, 2011. View at Google Scholar
  164. C. P. Ramsey and B. I. Giasson, “The E163K DJ-1 mutant shows specific antioxidant deficiency,” Brain Research, vol. 1239, no. C, pp. 1–11, 2008. View at Publisher · View at Google Scholar · View at Scopus
  165. H. Ren, K. Fu, D. Wang, C. Mu, and G. Wang, “Oxidized DJ-1 interacts with the mitochondrial protein BCL-XL,” Journal of Biological Chemistry, vol. 286, no. 40, pp. 35308–35317, 2011. View at Publisher · View at Google Scholar
  166. H. Y. Heo, J. M. Park, C. H. Kim, B. S. Han, K. S. Kim, and W. Seol, “LRRK2 enhances oxidative stress-induced neurotoxicity via its kinase activity,” Experimental cell research, vol. 316, no. 4, pp. 649–656, 2010. View at Publisher · View at Google Scholar · View at Scopus
  167. H. Mohmmad Abdul, G. L. Wenk, M. Gramling, B. Hauss-Wegrzyniak, and D. A. Butterfield, “APP and PS-1 mutations induce brain oxidative stress independent of dietary cholesterol: implications for Alzheimer's disease,” Neuroscience Letters, vol. 368, no. 2, pp. 148–150, 2004. View at Publisher · View at Google Scholar · View at Scopus
  168. A. H. Mohmmad, R. Sultana, J. N. Keller, D. K. St Clair, W. R. Markesbery, and D. A. Butterfield, “Mutations in amyloid precursor protein and presenilin-1 genes increase the basal oxidative stress in murine neuronal cells and lead to increased sensitivity to oxidative stress mediated by amyloid beta-peptide (1-42), HO and kainic acid: implications for Alzheimer's disease,” Journal of Neurochemistry, vol. 96, no. 5, pp. 1322–1335, 2006. View at Google Scholar
  169. N. Ghebranious, B. Mukesh, P. F. Giampietro et al., “A pilot study of gene/gene and gene/environment interactions in Alzheimer disease,” Clinical Medicine and Research, vol. 9, no. 1, pp. 17–25, 2011. View at Publisher · View at Google Scholar
  170. L. F. Burbulla and R. Krüger, “Converging environmental and genetic pathways in the pathogenesis of Parkinson's disease,” Journal of the Neurological Sciences, vol. 306, no. 1-2, pp. 1–8, 2011. View at Publisher · View at Google Scholar
  171. H. M. Gao and J. -S. Hong, “Gene-environment interactions: key to unraveling the mystery of Parkinson's disease,” Progress in Neurobiology, vol. 94, no. 1, pp. 1–19, 2011. View at Publisher · View at Google Scholar
  172. A. Spivey, “Rotenone and paraquat linked to Parkinson's disease: human exposure study supports years of animal studies,” Environmental Health Perspectives, vol. 119, no. 6, p. A259, 2011. View at Google Scholar
  173. J. Sian-Hülsmann, S. Mandel, M. B.H. Youdim, and P. Riederer, “The relevance of iron in the pathogenesis of Parkinson's disease,” Journal of Neurochemistry, vol. 118, no. 6, pp. 939–957, 2011. View at Publisher · View at Google Scholar
  174. Y. Qin, W. Zhu, C. Zhan et al., “Investigation on positive correlation of increased brain iron deposition with cognitive impairment in Alzheimer disease by using quantitative MR R2' mapping,” Journal of Huazhong University of Science and Technology - Medical Science, vol. 31, no. 4, pp. 578–585, 2011. View at Publisher · View at Google Scholar
  175. G. Gille and H. Reichmann, “Iron-dependent functions of mitochondria—relation to neurodegeneration,” Journal of Neural Transmission, vol. 118, no. 3, pp. 349–359, 2011. View at Publisher · View at Google Scholar
  176. O. A. Levy, C. Malagelada, and L. A. Greene, “Cell death pathways in Parkinson's disease: proximal triggers, distal effectors, and final steps,” Apoptosis, vol. 14, no. 4, pp. 478–500, 2009. View at Publisher · View at Google Scholar · View at Scopus
  177. E. Bertrand, W. Lechowicz, G. M. Szpak, E. Lewandowska, J. Dymecki, and T. Wierzba-Bobrowicz, “Limbic neuropathology in idiopathic Parkinson's disease with concomitant dementia,” Folia Neuropathologica, vol. 42, no. 3, pp. 141–150, 2004. View at Google Scholar · View at Scopus
  178. A. Ramirez, A. Heimbach, J. Gründemann et al., “Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase,” Nature Genetics, vol. 38, no. 10, pp. 1184–1191, 2006. View at Publisher · View at Google Scholar · View at Scopus
  179. Y. Compta, L. Parkkinen, S. S. O'Sullivan et al., “Lewy- and Alzheimer-type pathologies in Parkinson's disease dementia: which is more important?” Brain, vol. 134, no. 5, pp. 1493–1505, 2011. View at Publisher · View at Google Scholar
  180. A. Oda, A. Tamaoka, and W. Araki, “Oxidative stress up-regulates presenilin 1 in lipid rafts in neuronal cells,” Journal of Neuroscience Research, vol. 88, no. 5, pp. 1137–1145, 2010. View at Publisher · View at Google Scholar · View at Scopus
  181. D. -G. Jo, T. V. Arumugam, H. -N. Woo et al., “Evidence that γ-secretase mediates oxidative stress-induced β-secretase expression in Alzheimer's disease,” Neurobiology of Aging, vol. 31, no. 6, pp. 917–925, 2010. View at Publisher · View at Google Scholar
  182. K. Iijima-Ando and K. Iijima, “Transgenic Drosophila models of Alzheimer's disease and tauopathies,” Brain Structure and Function, vol. 214, no. 2-3, pp. 245–262, 2010. View at Publisher · View at Google Scholar
  183. J. M. Bonner and G. L. Boulianne, “Drosophila as a model to study age-related neurodegenerative disorders: Alzheimer's disease,” Experimental Gerontology, vol. 46, no. 5, pp. 335–339, 2011. View at Publisher · View at Google Scholar
  184. J. Park, Y. Kim, and J. Chung, “Mitochondrial dysfunction and Parkinson's disease genes: insights from Drosophila,” DMM Disease Models and Mechanisms, vol. 2, no. 7-8, pp. 336–340, 2009. View at Publisher · View at Google Scholar · View at Scopus
  185. A. J. Whitworth, “Drosophila models of Parkinson's disease,” Advances in Genetics, vol. 73, pp. 1–50, 2011. View at Google Scholar
  186. T. K. Sang, H. Y. Chang, G. M. Lawless et al., “A Drosophila model of mutant human parkin-induced toxicity demonstrates selective loss of dopaminergic neurons and dependence on cellular dopamine,” Journal of Neuroscience, vol. 27, no. 5, pp. 981–992, 2007. View at Publisher · View at Google Scholar · View at Scopus
  187. C. Wang, R. Lu, X. Ouyang et al., “Drosophila overexpressing parkin R275W mutant exhibits dopaminergic neuron degeneration and mitochondrial abnormalities,” Journal of Neuroscience, vol. 27, no. 32, pp. 8563–8570, 2007. View at Publisher · View at Google Scholar · View at Scopus
  188. I. E. Clark, M. W. Dodson, C. Jiang et al., “Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin,” Nature, vol. 441, no. 7097, pp. 1162–1166, 2006. View at Publisher · View at Google Scholar · View at Scopus
  189. M. B. Feany and W. W. Bender, “A Drosophila model of Parkinson's disease,” Nature, vol. 404, no. 6776, pp. 394–398, 2000. View at Publisher · View at Google Scholar · View at Scopus
  190. Z. Liu, X. Wang, Y. Yu et al., “A Drosophila model for LRRK2-linked parkinsonism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 7, pp. 2693–2698, 2008. View at Publisher · View at Google Scholar · View at Scopus
  191. E. Lavara-Culebras and N. Paricio, “Drosophila DJ-1 mutants are sensitive to oxidative stress and show reduced lifespan and motor deficits,” Gene, vol. 400, no. 1-2, pp. 158–165, 2007. View at Publisher · View at Google Scholar · View at Scopus
  192. D. J. Moore, L. Zhang, J. Troncoso et al., “Association of DJ-1 and parkin mediated by pathogenic DJ-1 mutations and oxidative stress,” Human Molecular Genetics, vol. 14, no. 1, pp. 71–84, 2005. View at Publisher · View at Google Scholar · View at Scopus
  193. M. Jendrach, S. Gispert, F. Ricciardi, M. Klinkenberg, R. Schemm, and G. Auburger, “The mitochondrial kinase PINK1, stress response and Parkinson's disease,” Journal of Bioenergetics and Biomembranes, vol. 41, no. 6, pp. 481–486, 2009. View at Publisher · View at Google Scholar
  194. D. C. Angeles, B. -H. Gan, L. Onstead et al., “Mutations in LRRK2 increase phosphorylation of peroxiredoxin 3 exacerbating oxidative stress-induced neuronal death,” Human Mutation, vol. 32, no. 12, pp. 1390–1397, 2011. View at Publisher · View at Google Scholar
  195. H. -L. Wang, A. -H. Chou, A. -S. Wu et al., “PARK6 PINK1 mutants are defective in maintaining mitochondrial membrane potential and inhibiting ROS formation of substantia nigra dopaminergic neurons,” Biochimica et Biophysica Acta, vol. 1812, no. 6, pp. 674–684, 2011. View at Publisher · View at Google Scholar
  196. J. Park, S. B. Lee, S. Lee et al., “Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin,” Nature, vol. 441, no. 7097, pp. 1157–1161, 2006. View at Publisher · View at Google Scholar · View at Scopus
  197. L. Y. Hao, B. I. Giasson, and N. M. Bonini, “DJ-1 is critical for mitochondrial function and rescues PINK1 loss of function,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 21, pp. 9747–9752, 2010. View at Publisher · View at Google Scholar · View at Scopus
  198. C. A. Korey, “We hold these truths to be self-evident, that all flies and men are created equal: recent progress on human disease models,” Fly, vol. 1, no. 2, pp. 118–122, 2007. View at Google Scholar · View at Scopus
  199. J. M. Bertoni, J. P. Arlette, H. H. Fernandez et al., “North American Parkinson's and melanoma survey investigators. increased melanoma risk in Parkinson disease: a prospective clinicopathological study,” Archives of Neurology, vol. 67, no. 3, pp. 347–352, 2010. View at Google Scholar
  200. R. Liu, X. Gao, Y. Lu, and H. Chen, “Meta-analysis of the relationship between Parkinson disease and melanoma,” Neurology, vol. 76, no. 23, pp. 2002–2009, 2011. View at Publisher · View at Google Scholar
  201. T. Pan, X. Li, and J. Jankovic, “The association between Parkinson's disease and melanoma,” International Journal of Cancer, vol. 128, no. 10, pp. 2251–2260, 2011. View at Publisher · View at Google Scholar
  202. S. Veeriah, B. S. Taylor, S. Meng et al., “Somatic mutations of the Parkinson's disease-associated gene PARK2 in glioblastoma and other human malignancies,” Nature Genetics, vol. 42, no. 1, pp. 77–82, 2010. View at Publisher · View at Google Scholar · View at Scopus
  203. C. Zhang, M. Lin, R. Wu et al., “Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 39, pp. 16259–16264, 2011. View at Publisher · View at Google Scholar
  204. C. A. da Costa, C. Sunyach, E. Giaime et al., “Transcriptional repression of p53 by parkin and impairment by mutations associated with autosomal recessive juvenile Parkinson's disease,” Nature Cell Biology, vol. 11, no. 11, pp. 1370–1375, 2009. View at Publisher · View at Google Scholar · View at Scopus
  205. C. Alves da Costa and F. Checler, “Apoptosis in Parkinson's disease: is p53 the missing link between genetic and sporadic Parkinsonism?” Cellular Signalling, vol. 23, no. 6, pp. 963–968, 2010. View at Publisher · View at Google Scholar · View at Scopus
  206. G. Schneider and O. H. Kramer, “NFκB/p53 crosstalk-a promising new therapeutic target,” Biochimica et Biophysica Acta, vol. 1815, no. 1, pp. 90–103, 2011. View at Publisher · View at Google Scholar
  207. K. B. Pandey and S. I. Rizvi, “Plant polyphenols as dietary antioxidants in human health and disease,” Oxidative Medicine and Cellular Longevity, vol. 2, no. 5, pp. 270–278, 2009. View at Publisher · View at Google Scholar · View at Scopus
  208. A. S. Darvesh, R. T. Carroll, A. Bishayee, W. J. Geldenhuys, and C. J. Van Der Schyf, “Oxidative stress and Alzheimer's disease: dietary polyphenols as potential therapeutic agents,” Expert Review of Neurotherapeutics, vol. 10, no. 5, pp. 729–745, 2010. View at Publisher · View at Google Scholar · View at Scopus
  209. N. Ghosh, R. Ghosh, and S. C. Mandal, “Antioxidant protection: a promising therapeutic intervention in neurodegenerative disease,” Free Radical Research, vol. 45, no. 8, pp. 888–905, 2011. View at Publisher · View at Google Scholar
  210. B. Halliwell, “Dietary polyphenols: good, bad, or indifferent for your health?” Cardiovascular Research, vol. 73, no. 2, pp. 341–347, 2007. View at Publisher · View at Google Scholar · View at Scopus
  211. B. Halliwell, “Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies?” Archives of Biochemistry and Biophysics, vol. 476, no. 2, pp. 107–112, 2008. View at Google Scholar
  212. S. Schaffer and B. Halliwell, “Do polyphenols enter the brain and does it matter? Some theoretical and practical considerations,” Genes & Nutrition, vol. 7, no. 2, pp. 99–109, 2012. View at Google Scholar
  213. F. Visioli, C. A. de la Lastra, C. Andres-Lacueva et al., “Polyphenols and human health: a prospectus,” Critical Reviews in Food Science and Nutrition, vol. 51, no. 6, pp. 524–546, 2011. View at Publisher · View at Google Scholar
  214. K. Kieburtz and B. Ravina, “Why hasn't neuroprotection worked in Parkinson's disease?” Nature Clinical Practice Neurology, vol. 3, no. 5, pp. 240–241, 2007. View at Google Scholar