Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2012 (2012), Article ID 324256, 9 pages
http://dx.doi.org/10.1155/2012/324256
Review Article

Therapeutic Approach to Neurodegenerative Diseases by Medical Gases: Focusing on Redox Signaling and Related Antioxidant Enzymes

1Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan
2Division of Neurofunctional Genomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan
3Research Center for Nucleotide Pool, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan

Received 2 March 2012; Accepted 25 April 2012

Academic Editor: Guilherme Antonio Behr

Copyright © 2012 Kyota Fujita et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Papa, “Mitochondrial oxidative phosphorylation changes in the life span. Molecular aspects and physiopathological implications,” Biochimica et Biophysica Acta, vol. 1276, no. 2, pp. 87–105, 1996. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Boveris, N. Oshino, and B. Chance, “The cellular production of hydrogen peroxide,” Biochemical Journal, vol. 128, no. 3, pp. 617–630, 1972. View at Google Scholar · View at Scopus
  3. D. F. Stowe and A. K. S. Camara, “Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function,” Antioxidants and Redox Signaling, vol. 11, no. 6, pp. 1373–1414, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. P. H. Reddy, “Mitochondrial medicine for aging and neurodegenerative diseases,” NeuroMolecular Medicine, vol. 10, no. 4, pp. 291–315, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. R. H. Swerdlow and S. M. Khan, “A “mitochondrial cascade hypothesis” for sporadic Alzheimer's disease,” Medical Hypotheses, vol. 63, no. 1, pp. 8–20, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. M. F. Beal, “Mitochondria take center stage in aging and neurodegeneration,” Annals of Neurology, vol. 58, no. 4, pp. 495–505, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. D. C. Wallace, “A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine,” Annual Review of Genetics, vol. 39, pp. 359–407, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Trushina and C. T. McMurray, “Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases,” Neuroscience, vol. 145, no. 4, pp. 1233–1248, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Miura and T. Endo, “Survival responses to oxidative stress and aging,” Geriatrics and Gerontology International, vol. 10, supplement 1, pp. S1–S9, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Moi, K. Chan, I. Asunis, A. Cao, and Y. W. Kan, “Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the β-globin locus control region,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 21, pp. 9926–9930, 1994. View at Publisher · View at Google Scholar · View at Scopus
  11. P. A. Ney, N. C. Andrews, S. M. Jane et al., “Purification of the human NF-E2 complex: cDNA cloning of the hematopoietic cell-specific subunit and evidence for an associated partner,” Molecular and Cellular Biology, vol. 13, no. 9, pp. 5604–5612, 1993. View at Google Scholar · View at Scopus
  12. N. C. Andrews, H. Erdjument-Bromage, M. B. Davidson, P. Tempst, and S. H. Orkin, “Erythroid transcription factor NF-E2 is a haematopoietic-specific basic-leucine zipper protein,” Nature, vol. 362, no. 6422, pp. 722–728, 1993. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Igarashi, K. Kataoka, K. Itoh, N. Hayashi, M. Nishizawa, and M. Yamamoto, “Regulation of transcription by dimerization of erythroid factor NF-E2 p45 with small Maf proteins,” Nature, vol. 367, no. 6463, pp. 568–572, 1994. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Igarashi, K. Itoh, H. Motohashi et al., “Activity and expression of murine small Maf family protein MafK,” The Journal of Biological Chemistry, vol. 270, no. 13, pp. 7615–7624, 1995. View at Publisher · View at Google Scholar · View at Scopus
  15. T. H. Rushmore and C. B. Pickett, “Transcriptional regulation of the rat glutathione S-transferase Ya subunit gene. Characterization of a xenobiotic-responsive element controlling inducible expression by phenolic antioxidants,” The Journal of Biological Chemistry, vol. 265, no. 24, pp. 14648–14653, 1990. View at Google Scholar · View at Scopus
  16. R. S. Friling, A. Bensimon, Y. Tichauer, and V. Daniel, “Xenobiotic-inducible expression of murine glutathione S-transferase Ya subunit gene is controlled by an electrophile-responsive element,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 16, pp. 6258–6262, 1990. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Kobayashi and M. Yamamoto, “Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species,” Advances in Enzyme Regulation, vol. 46, no. 1, pp. 113–140, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. J. A. Johnson, D. A. Johnson, A. D. Kraft et al., “The Nrf2-ARE pathway: an indicator and modulator of oxidative stress in neurodegeneration,” Annals of the New York Academy of Sciences, vol. 1147, pp. 61–69, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. N. G. Innamorato, A. I. Rojo, Á. J. García-Yagüe, M. Yamamoto, M. L. de Ceballos, and A. Cuadrado, “The transcription factor Nrf2 is a therapeutic target against brain inflammation,” Journal of Immunology, vol. 181, no. 1, pp. 680–689, 2008. View at Google Scholar · View at Scopus
  20. K. J. Hintze, A. S. Keck, J. W. Finley, and E. H. Jeffery, “Induction of hepatic thioredoxin reductase activity by sulforaphane, both in Hepa1c1c7 cells and in male Fisher 344 rats,” Journal of Nutritional Biochemistry, vol. 14, no. 3, pp. 173–179, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Ishii, K. Itoh, H. Sato, and S. Bannai, “Oxidative stress-inducible proteins in macrophages,” Free Radical Research, vol. 31, no. 4, pp. 351–355, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. L. V. Favreau and C. B. Pickett, “The rat quinone reductase antioxidant response element. Identification of the nucleotide sequence required for basal and inducible activity and detection of antioxidant response element-binding proteins in hepatoma and non-hepatoma cell lines,” The Journal of Biological Chemistry, vol. 270, no. 41, pp. 24468–24474, 1995. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Prestera, P. Talalay, J. Alam, Y. I. Ahn, P. J. Lee, and A. M. Choi, “Parallel induction of heme oxygenase-1 and chemoprotective phase 2 enzymes by electrophiles and antioxidants: regulation by upstream antioxidant-responsive elements (ARE),” Molecular Medicine, vol. 1, no. 7, pp. 827–837, 1995. View at Google Scholar · View at Scopus
  24. M. L. Ferrandiz and I. Devesa, “Inducers of heme oxygenase-1,” Current Pharmaceutical Design, vol. 14, no. 5, pp. 473–486, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Kanninen, R. Heikkinen, T. Malm et al., “Intrahippocampal injection of a lentiviral vector expressing Nrf2 improves spatial learning in a mouse model of Alzheimer's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 38, pp. 16505–16510, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. D. A. Johnson, G. K. Andrews, W. Xu, and J. A. Johnson, “Activation of the antioxidant response element in primary cortical neuronal cultures derived from transgenic reporter mice,” Journal of Neurochemistry, vol. 81, no. 6, pp. 1233–1241, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. M. R. Vargas, D. A. Johnson, D. W. Sirkis, A. Messing, and J. A. Johnson, “Nrf2 activation in astrocytes protects against neurodegeneration in mouse models of familial amyotrophic lateral sclerosis,” The Journal of Neuroscience, vol. 28, no. 50, pp. 13574–13581, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. P. C. Chen, M. R. Vargas, A. K. Pani et al., “Nrf2-mediated neuroprotection in the MPTP mouse model of Parkinson's disease: critical role for the astrocyte,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 8, pp. 2933–2938, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. M. J. Calkins, R. J. Jakel, D. A. Johnson, K. Chan, W. K. Yuen, and J. A. Johnson, “Protection from mitochondrial complex II inhibition in vitro and in vivo by Nrf2-mediated transcription,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 1, pp. 244–249, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. H. M. Schipper, W. Song, H. Zukor, J. R. Hascalovici, and D. Zeligman, “Heme oxygenase-1 and neurodegeneration: expanding frontiers of engagement,” Journal of Neurochemistry, vol. 110, no. 2, pp. 469–485, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Ciechanover and P. Brundin, “The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg,” Neuron, vol. 40, no. 2, pp. 427–446, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. B. S. Shastry, “Neurodegenerative disorders of protein aggregation,” Neurochemistry International, vol. 43, no. 1, pp. 1–7, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. W. Song, A. Patel, H. Y. Qureshi, D. Han, H. M. Schipper, and H. K. Paudel, “The Parkinson disease-associated A30P mutation stabilizes α-synuclein against proteasomal degradation triggered by heme oxygenase-1 over-expression in human neuroblastoma cells,” Journal of Neurochemistry, vol. 110, no. 2, pp. 719–733, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. P. Puigserver and B. M. Spiegelman, “Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): transcriptional coactivator and metabolic regulator,” Endocrine Reviews, vol. 24, no. 1, pp. 78–90, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. M. T. Lin and M. F. Beal, “Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases,” Nature, vol. 443, no. 7113, pp. 787–795, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. D. P. Kelly and R. C. Scarpulla, “Transcriptional regulatory circuits controlling mitochondrial biogenesis and function,” Genes and Development, vol. 18, no. 4, pp. 357–368, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. R. C. Scarpulla, “Transcriptional paradigms in mammalian mitochondrial biogenesis and function,” Physiological Reviews, vol. 88, no. 2, pp. 611–638, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. J. St-Pierre, S. Drori, M. Uldry et al., “Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators,” Cell, vol. 127, no. 2, pp. 397–408, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. L. Cui, H. Jeong, F. Borovecki, C. N. Parkhurst, N. Tanese, and D. Krainc, “Transcriptional repression of PGC-1α by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration,” Cell, vol. 127, no. 1, pp. 59–69, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. E. Martin, S. Betuing, C. Pagès et al., “Mitogen- and stress-activated protein kinase 1-induced neuroprotection in Huntington's disease: role on chromatin remodeling at the PGC-1-alpha promoter,” Human Molecular Genetics, vol. 20, no. 12, pp. 2422–2434, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. G. Mudo, J. Makela, V. Di Liberto et al., “Transgenic expression and activation of PGC-1alpha protect dopaminergic neurons in the MPTP mouse model of Parkinson's disease,” Cellular and Molecular Life Sciences, vol. 69, no. 7, article 1153, 2012. View at Google Scholar
  42. M. Lagouge, C. Argmann, Z. Gerhart-Hines et al., “Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α,” Cell, vol. 127, no. 6, pp. 1109–1122, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. H. Zong, J. M. Ren, L. H. Young et al., “AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 25, pp. 15983–15987, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Jager, C. Handschin, J. St-Pierre, and B. M. Spiegelman, “AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 29, pp. 12017–12022, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. T. F. Outeiro, O. Marques, and A. Kazantsev, “Therapeutic role of sirtuins in neurodegenerative disease,” Biochimica et Biophysica Acta, vol. 1782, no. 6, pp. 363–369, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. D. J. Ho, N. Y. Calingasan, E. Wille, M. Dumont, and M. F. Beal, “Resveratrol protects against peripheral deficits in a mouse model of Huntington's disease,” Experimental Neurology, vol. 225, no. 1, pp. 74–84, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. J. Gao, W. Y. Wang, Y. W. Mao et al., “A novel pathway regulates memory and plasticity via SIRT1 and miR-134,” Nature, vol. 466, no. 7310, pp. 1105–1109, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. G. Donmez, A. Arun, C. Y. Chung et al., “SIRT1 protects against α-synuclein aggregation by activating molecular chaperones,” The Journal of Neuroscience, vol. 32, no. 1, pp. 124–132, 2012. View at Google Scholar
  49. M. Jiang, J. Wang, J. Fu et al., “Neuroprotective role of Sirt1 in mammalian models of Huntington's disease through activation of multiple Sirt1 targets,” Nature Medicine, vol. 18, pp. 153–158, 2012. View at Publisher · View at Google Scholar
  50. D. Kim, M. D. Nguyen, M. M. Dobbin et al., “SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis,” The EMBO Journal, vol. 26, no. 13, pp. 3169–3179, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. W. Qin, T. Yang, L. Ho et al., “Neuronal SIRT1 activation as a novel mechanism underlying the prevention of alzheimer disease amyloid neuropathology by calorie restriction,” The Journal of Biological Chemistry, vol. 281, no. 31, pp. 21745–21754, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. D. J. Bonda, H. G. Lee, A. Camins et al., “The sirtuin pathway in ageing and Alzheimer disease: mechanistic and therapeutic considerations,” The Lancet Neurology, vol. 10, no. 3, pp. 275–279, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. P. Wareski, A. Vaarmann, V. Choubey et al., “PGC-1α and PGC-1β regulate mitochondrial density in neurons,” The Journal of Biological Chemistry, vol. 284, no. 32, pp. 21379–21385, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. W. T. Johnson, L. A. K. Johnson, and H. C. Lukaski, “Serum superoxide dismutase 3 (extracellular superoxide dismutase) activity is a sensitive indicator of Cu status in rats,” Journal of Nutritional Biochemistry, vol. 16, no. 11, pp. 682–692, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. J. M. McCord, “Iron- and manganese-containing superoxide dismutases: structure, distribution, and evolutionary relationships,” Advances in Experimental Medicine and Biology, vol. 74, pp. 540–550, 1976. View at Google Scholar · View at Scopus
  56. J. M. McCord and I. Fridovich, “Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein),” The Journal of Biological Chemistry, vol. 244, no. 22, pp. 6049–6055, 1969. View at Google Scholar · View at Scopus
  57. S. L. Marklund, “Human copper-containing superoxide dismutase of high molecular weight,” Proceedings of the National Academy of Sciences of the United States of America, vol. 79, no. 24 I, pp. 7634–7638, 1982. View at Google Scholar · View at Scopus
  58. S. L. Marklund, “Extracellular superoxide dismutase in human tissues and human cell lines,” Journal of Clinical Investigation, vol. 74, no. 4, pp. 1398–1403, 1984. View at Google Scholar · View at Scopus
  59. F. Celsi, A. Ferri, A. Casciati et al., “Overexpression of superoxide dismutase 1 protects against β-amyloid peptide toxicity: effect of estrogen and copper chelators,” Neurochemistry International, vol. 44, no. 1, pp. 25–33, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. C. Iadecola, F. Zhang, K. Niwa et al., “SOD1 rescues cerebral endothelial dysfunction in mice overexpressing amyloid precursor protein,” Nature Neuroscience, vol. 2, no. 2, pp. 157–161, 1999. View at Publisher · View at Google Scholar · View at Scopus
  61. V. Blanchard, S. Moussaoui, C. Czech et al., “Time sequence of maturation of dystrophic neurites associated with Aβ deposits in APP/PS1 transgenic mice,” Experimental Neurology, vol. 184, no. 1, pp. 247–263, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. J. S. Aucoin, P. Jiang, N. Aznavour et al., “Selective cholinergic denervation, independent from oxidative stress, in a mouse model of Alzheimer's disease,” Neuroscience, vol. 132, no. 1, pp. 73–86, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. X. K. Tong, N. Nicolakakis, A. Kocharyan, and E. Hamel, “Vascular remodeling versus amyloid β-induced oxidative stress in the cerebrovascular dysfunctions associated with Alzheimer's disease,” The Journal of Neuroscience, vol. 25, no. 48, pp. 11165–11174, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. R. A. Omar, Y. J. Chyan, A. C. Andorn, B. Poeggeler, N. K. Robakis, and M. A. Pappolla, “Increased expression but reduced activity of antioxidant enzymes in Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 1, no. 3, pp. 139–145, 1999. View at Google Scholar · View at Scopus
  65. L. Esposito, J. Raber, L. Kekonius et al., “Reduction in mitochondrial superoxide dismutase modulates Alzheimer's disease-like pathology and accelerates the onset of behavioral changes in human amyloid precursor protein transgenic mice,” The Journal of Neuroscience, vol. 26, no. 19, pp. 5167–5179, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. C. A. Massaad, T. M. Washington, R. G. Pautler, and E. Klann, “Overexpression of SOD-2 reduces hippocampal superoxide and prevents memory deficits in a mouse model of Alzheimer's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 32, pp. 13576–13581, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. K. Fujita, Y. Nakabeppu, and M. Noda, “Therapeutic effects of hydrogen in animal models of Parkinson's disease,” Parkinson's Disease, vol. 2011, Article ID 307875, 9 pages, 2011. View at Publisher · View at Google Scholar
  68. M. Noda, K. Fujita, Lee C. H., and T. Yoshioka, “The principle and the potential approach to ROS-dependent cytotoxicity by non-pharmaceutical therapies: optimal use of medical gases with antioxidant properties,” Current Pharmaceutical Design, vol. 17, no. 22, pp. 2253–2263, 2011. View at Google Scholar
  69. R. Von Burg, “Carbon monoxide,” Journal of Applied Toxicology, vol. 19, no. 5, pp. 379–386, 1999. View at Google Scholar · View at Scopus
  70. T. Sjostrand, “Early studies of CO production,” Annals of the New York Academy of Sciences, vol. 174, no. 1, pp. 5–10, 1970. View at Google Scholar · View at Scopus
  71. M. D. Maines, “The heme oxygenase system: update 2005,” Antioxidants and Redox Signaling, vol. 7, no. 11-12, pp. 1761–1766, 2005. View at Publisher · View at Google Scholar · View at Scopus
  72. C. A. Piantadosi, “Carbon monoxide, reactive oxygen signaling, and oxidative stress,” Free Radical Biology and Medicine, vol. 45, no. 5, pp. 562–569, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. D. Brancho, N. Tanaka, A. Jaeschke et al., “Mechanism of p38 MAP kinase activation in vivo,” Genes and Development, vol. 17, no. 16, pp. 1969–1978, 2003. View at Publisher · View at Google Scholar · View at Scopus
  74. H. P. Kim, X. Wang, J. Zhang et al., “Heat shock protein-70 mediates the cytoprotective effect of carbon monoxide: involvement of p38β MAPK and heat shock factor-1,” Journal of Immunology, vol. 175, pp. 2622–2629, 2005. View at Google Scholar · View at Scopus
  75. B. Wang, W. Cao, S. Biswal, and S. Dore, “Carbon monoxide-activated Nrf2 pathway leads to protection against permanent focal cerebral ischemia,” Stroke, vol. 42, no. 9, pp. 2605–2610, 2011. View at Google Scholar
  76. S. R. Thom, D. Fisher, Y. A. Xu, K. Notarfrancesco, and H. Lschiropoulos, “Adaptive responses and apoptosis in endothelial cells exposed to carbon monoxide,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 3, pp. 1305–1310, 2000. View at Publisher · View at Google Scholar · View at Scopus
  77. S. Carballal, M. Trujillo, E. Cuevasanta et al., “Reactivity of hydrogen sulfide with peroxynitrite and other oxidants of biological interest,” Free Radical Biology and Medicine, vol. 50, no. 1, pp. 196–205, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. M. Whiteman, J. S. Armstrong, S. H. Chu et al., “The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite “scavenger”?” Journal of Neurochemistry, vol. 90, no. 3, pp. 765–768, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. Z. Qingyou, D. Junbao, Z. Weijin, Y. Hui, T. Chaoshu, and Z. Chunyu, “Impact of hydrogen sulfide on carbon monoxide/heme oxygenase pathway in the pathogenesis of hypoxic pulmonary hypertension,” Biochemical and Biophysical Research Communications, vol. 317, no. 1, pp. 30–37, 2004. View at Publisher · View at Google Scholar · View at Scopus
  80. C. Szabo, “Hydrogen sulphide and its therapeutic potential,” Nature Reviews Drug Discovery, vol. 6, no. 11, pp. 917–935, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. I. Ohsawa, M. Ishikawa, K. Takahashi et al., “Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals,” Nature Medicine, vol. 13, no. 6, pp. 688–694, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. K. Nagata, N. Nakashima-Kamimura, T. Mikami, I. Ohsawa, and S. Ohta, “Consumption of molecular hydrogen prevents the stress-induced impairments in hippocampus-dependent learning tasks during chronic physical restraint in mice,” Neuropsychopharmacology, vol. 34, no. 2, pp. 501–508, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. Y. Gu, C. S. Huang, T. Inoue et al., “Drinking hydrogen water ameliorated cognitive impairment in senescence-accelerated mice,” Journal of Clinical Biochemistry and Nutrition, vol. 46, no. 3, pp. 269–276, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. K. I. Fukuda, S. Asoh, M. Ishikawa, Y. Yamamoto, I. Ohsawa, and S. Ohta, “Inhalation of hydrogen gas suppresses hepatic injury caused by ischemia/reperfusion through reducing oxidative stress,” Biochemical and Biophysical Research Communications, vol. 361, no. 3, pp. 670–674, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. B. M. Buchholz, D. J. Kaczorowski, R. Sugimoto et al., “Hydrogen inhalation ameliorates oxidative stress in transplantation induced intestinal graft injury,” American Journal of Transplantation, vol. 8, no. 10, pp. 2015–2024, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. A. Nakao, D. J. Kaczorowski, Y. Wang et al., “Amelioration of rat cardiac cold ischemia/reperfusion injury with inhaled hydrogen or carbon monoxide, or both,” Journal of Heart and Lung Transplantation, vol. 29, no. 5, pp. 544–553, 2010. View at Google Scholar
  87. K. Hayashida, M. Sano, I. Ohsawa et al., “Inhalation of hydrogen gas reduces infarct size in the rat model of myocardial ischemia-reperfusion injury,” Biochemical and Biophysical Research Communications, vol. 373, no. 1, pp. 30–35, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. I. Ohsawa, K. Nishimaki, K. Yamagata, M. Ishikawa, and S. Ohta, “Consumption of hydrogen water prevents atherosclerosis in apolipoprotein E knockout mice,” Biochemical and Biophysical Research Communications, vol. 377, no. 4, pp. 1195–1198, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. K. Fujita, T. Seike, N. Yutsudo et al., “Hydrogen in drinking water reduces dopaminergic neuronal loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease,” PLoS ONE, vol. 4, no. 9, Article ID e7247, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. Y. Fu, M. Ito, Y. Fujita et al., “Molecular hydrogen is protective against 6-hydroxydopamine-induced nigrostriatal degeneration in a rat model of Parkinson's disease,” Neuroscience Letters, vol. 453, no. 2, pp. 81–85, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. F. Fornai, O. M. Schlüter, P. Lenzi et al., “Parkinson-like syndrome induced by continuous MPTP infusion: convergent roles of the ubiquitin-proteasome system and α-synuclein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 9, pp. 3413–3418, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. K. I. Setsukinai, Y. Urano, K. Kakinuma, H. J. Majima, and T. Nagano, “Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species,” The Journal of Biological Chemistry, vol. 278, no. 5, pp. 3170–3175, 2003. View at Publisher · View at Google Scholar · View at Scopus
  93. L. P. Liang, J. Huang, R. Fulton, B. J. Day, and M. Patel, “An orally active catalytic metalloporphyrin protects against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity in vivo,” The Journal of Neuroscience, vol. 27, no. 16, pp. 4326–4333, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. Y. Sato, S. Kajiyama, A. Amano et al., “Hydrogen-rich pure water prevents superoxide formation in brain slices of vitamin C-depleted SMP30/GNL knockout mice,” Biochemical and Biophysical Research Communications, vol. 375, no. 3, pp. 346–350, 2008. View at Publisher · View at Google Scholar · View at Scopus
  95. A. Nakao, Y. Toyoda, P. Sharma, M. Evans, and N. Guthrie, “Effectiveness of hydrogen rich water on antioxidant status of subjects with potential metabolic syndrome—an open label pilot study,” Journal of Clinical Biochemistry and Nutrition, vol. 46, no. 2, pp. 140–149, 2010. View at Publisher · View at Google Scholar · View at Scopus