Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2012, Article ID 564093, 6 pages
http://dx.doi.org/10.1155/2012/564093
Review Article

Formation and Regulation of Adaptive Response in Nematode Caenorhabditis elegans

Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing 210009, China

Received 13 April 2012; Accepted 24 June 2012

Academic Editor: David R. Jones

Copyright © 2012 Y.-L. Zhao and D.-Y. Wang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Yanase, P. S. Hartman, A. Ito, and N. Ishii, “Oxidative stress pretreatment increases the X-radiation resistance of the nematode Caenorhabditis elegans,” Mutation Research, vol. 426, no. 1, pp. 31–39, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Demple and J. Halbrook, “Inducible repair of oxidative DNA damage in Escherichia coli,” Nature, vol. 304, no. 5925, pp. 466–468, 1983. View at Google Scholar · View at Scopus
  3. G. Olivieri, J. Bodycote, and S. Wolff, “Adaptive response of human lymphocytes to low concentrations of radioactive thymidine,” Science, vol. 223, no. 4636, pp. 594–597, 1984. View at Google Scholar · View at Scopus
  4. D. Wang and X. Xing, “Pre-treatment with mild UV irradiation suppresses reproductive toxicity induced by subsequent cadmium exposure in nematodes,” Ecotoxicology and Environmental Safety, vol. 73, no. 3, pp. 423–429, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Wang, P. Liu, and X. Xing, “Pre-treatment with mild UV irradiation increases the resistance of nematode Caenorhabditis elegans to toxicity on locomotion behaviors from metal exposure,” Environmental Toxicology and Pharmacology, vol. 29, no. 3, pp. 213–222, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Laval, “Pretreatment with oxygen species increases the resistance of mammalian cells to hydrogen peroxide and γ-rays,” Mutation Research, vol. 201, no. 1, pp. 73–79, 1988. View at Google Scholar · View at Scopus
  7. I. Dominguez, N. Panneerselvam, P. Escalza, A. T. Natarajan, and F. Cortés, “Adaptive response to radiation damage in human lymphocytes conditioned with hydrogen peroxide as measured by the cytokinesis-block micronucleus technique,” Mutation Research, vol. 301, no. 2, pp. 135–141, 1993. View at Publisher · View at Google Scholar · View at Scopus
  8. D. L. Riddle, T. Blumenthal, B. J. Meyer, J. R. Priess, and C. Elegans II, Spring Harbor Laboratory Press, Plainview, New York, NY, USA, 1997.
  9. M. C. K. Leung, P. L. Williams, A. Benedetto et al., “Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology,” Toxicological Sciences, vol. 106, no. 1, pp. 5–28, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Darr and I. Fridovich, “Adaptation to oxidative stress in young, but not in mature or old, Caenorhabditis elegans,” Free Radical Biology and Medicine, vol. 18, no. 2, pp. 195–201, 1995. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Wang and X. Xing, “Pre-treatment with mild metal exposure suppresses the neurotoxicity on locomotion behavior induced by the subsequent severe metal exposure in Caenorhabditis elegans,” Environmental Toxicology and Pharmacology, vol. 28, no. 3, pp. 459–464, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Ye, Q. Rui, Q. Wu, and D. Wang, “Metallothioneins are required for formation of cross- adaptation response to neurobehavioral toxicity from lead and mercury exposure in nematodes,” PLoS ONE, vol. 5, no. 11, Article ID e14052, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. J. R. Cypser and T. E. Johnson, “Multiple stressors in Caenorhabditis elegans induce stress hormesis and extended longevity,” Journals of Gerontology A, vol. 57, no. 3, pp. B109–B114, 2002. View at Google Scholar · View at Scopus
  14. K. J. Helmcke and M. Aschner, “Hormetic effect of methylmercury on Caenorhabditis elegans,” Toxicology and Applied Pharmacology, vol. 248, no. 2, pp. 156–164, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Mitchell, R. Mould, J. Dillon et al., “A differential role for neuropeptides in acute and chronic adaptive responses to alcohol: behavioural and genetic analysis in Caenorhabditis elegans,” PLoS ONE, vol. 5, no. 5, Article ID e10422, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. D. R. Donohoe, R. A. Jarvis, K. Weeks, E. J. Aamodt, and D. S. Dwyer, “Behavioral adaptation in C. elegans produced by antipsychotic drugs requires serotonin and is associated with calcium signaling and calcineurin inhibition,” Neuroscience Research, vol. 64, no. 3, pp. 280–289, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. H. N. Frazier and M. B. Roth, “Adaptive sugar provisioning controls survival of C. elegans embryos in adverse environments,” Current Biology, vol. 19, no. 10, pp. 859–863, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. S. T. Lamitina, R. Morrison, G. W. Moeckel, and K. Strange, “Adaptation of the nematode Caenorhabditis elegans to extreme osmotic stress,” American Journal of Physiology, vol. 286, no. 4, pp. C785–C791, 2004. View at Google Scholar · View at Scopus
  19. E. J. Masoro, “Hormesis and the antiaging action of dietary restriction,” Experimental Gerontology, vol. 33, no. 1-2, pp. 61–66, 1998. View at Publisher · View at Google Scholar · View at Scopus
  20. J. R. Cypser, P. Tedesco, and T. E. Johnson, “Hormesis and aging in Caenorhabditis elegans,” Experimental Gerontology, vol. 41, no. 10, pp. 935–939, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. T. J. Schulz, K. Zarse, A. Voigt, N. Urban, M. Birringer, and M. Ristow, “Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress,” Cell Metabolism, vol. 6, no. 4, pp. 280–293, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. P. R. Hunt, T. G. Son, M. A. Wilson et al., “Extension of lifespan in C. elegans by naphthoquinones that act through stress hormesis mechanisms,” PLoS ONE, vol. 6, no. 7, Article ID e21922, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Saul, K. Pietsch, R. Menzel, S. R. Stürzenbaum, and C. E. W. Steinberg, “The longevity effect of tannic acid in Caenorhabditis elegans: disposable soma meets hormesis,” Journals of Gerontology A, vol. 65, no. 6, pp. 626–635, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Honjoh, T. Yamamoto, M. Uno, and E. Nishida, “Signalling through RHEB-1 mediates intermittent fasting-induced longevity in C. elegans,” Nature, vol. 457, no. 7230, pp. 726–730, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. A. J. Przybysz, K. P. Choe, L. J. Roberts, and K. Strange, “Increased age reduces DAF-16 and SKN-1 signaling and the hormetic response of Caenorhabditis elegans to the xenobiotic juglone,” Mechanisms of Ageing and Development, vol. 130, no. 6, pp. 357–369, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Yanase, K. Yasuda, and N. Ishii, “Adaptive responses to oxidative damage in three mutants of Caenorhabditis elegans (age-1, mev-1 and daf-16) that affect life span,” Mechanisms of Ageing and Development, vol. 123, no. 12, pp. 1579–1587, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Yanase and N. Ishii, “Hyperoxia exposure induced hormesis decreases mitochondrial superoxide radical levels via Ins/IGF-1 signaling pathway in a long-lived age-1 mutant of Caenorhabditis elegans,” Journal of Radiation Research, vol. 49, no. 3, pp. 211–218, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Hartwig, T. Heidler, J. Moch, H. Daniel, and U. Wenzel, “Feeding a ROS-generator to Caenorhabditis elegans leads to increased expression of small heat shock protein HSP-16.2 and hormesis,” Genes and Nutrition, vol. 4, no. 1, pp. 59–67, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. G. J. Lithgow, T. M. White, S. Melov, and T. E. Johnson, “Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 16, pp. 7540–7544, 1995. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Heidler, K. Hartwig, H. Daniel, and U. Wenzel, “Caenorhabditis elegans lifespan extension caused by treatment with an orally active ROS-generator is dependent on DAF-16 and SIR-2.1,” Biogerontology, vol. 11, no. 2, pp. 183–195, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Butov, T. Johnson, J. Cypser et al., “Hormesis and debilitation effects in stress experiments using the nematode worm Caenorhabditis elegans: the model of balance between cell damage and HSP levels,” Experimental Gerontology, vol. 37, no. 1, pp. 57–66, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. S. T. Lamitina and K. Strange, “Transcriptional targets of DAF-16 insulin signaling pathway protect C. elegans from extreme hypertonic stress,” American Journal of Physiology, vol. 288, no. 2, pp. C467–C474, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. N. Kim, C. M. Dempsey, C. J. Kuan et al., “Gravity force transduced by the MEC-4/MEC-10 DEG/ENaC channel modulates DAF-16/FoxO activity in Caenorhabditis elegans,” Genetics, vol. 177, no. 2, pp. 835–845, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Jiang, R. Guo, and J. A. Powell-Coffman, “The Caenorhabditis elegans hif-1 gene encodes a bHLH-PAS protein that is required for adaptation to hypoxia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 14, pp. 7916–7921, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Taubert, M. Hansen, M. R. Van Gilst, S. B. Cooper, and K. R. Yamamoto, “The mediator subunit MDT-15 confers metabolic adaptation to ingested material,” PLoS Genetics, vol. 4, no. 2, Article ID e1000021, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Solomon, S. Bandhakavi, S. Jabbar, R. Shah, G. J. Beitel, and R. I. Morimoto, “Caenorhabditis elegans OSR-1 regulates behavioral and physiological responses to hyperosmotic environments,” Genetics, vol. 167, no. 1, pp. 161–170, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. N. Minois, “Longevity and aging: beneficial effects of exposure to mild stress,” Biogerontology, vol. 1, no. 1, pp. 15–29, 2000. View at Google Scholar · View at Scopus
  38. Z. Spiró, M. A. Arslan, M. Somogyvári et al., “RNA interference links oxidative stress to the inhibition of heat stress adaptation,” Antioxidants & Redox Signaling. In press.