Oxidative Medicine and Cellular Longevity
Volume 2012 (2012), Article ID 728430, 9 pages
http://dx.doi.org/10.1155/2012/728430
Review Article
DNA Mismatch Repair System: Repercussions in Cellular Homeostasis and Relationship with Aging
Universidad Autónoma Metropolitana Unidad Iztapalapa, 186 Avenida San Rafael Atlixco, 09340 Mexico City, DF, Mexico
Received 31 May 2012; Revised 24 September 2012; Accepted 8 October 2012
Academic Editor: William C. Burhans
Copyright © 2012 Juan Cristóbal Conde-Pérezprina et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Linked References
- D. Harman, “The free radical theory of aging,” Antioxidants and Redox Signaling, vol. 5, no. 5, pp. 557–561, 2003. View at Google Scholar · View at Scopus
- B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine, Oxford University Press, New York, NY, USA, 3rd edition, 2004.
- A. M. Florea, E. N. Yamoah, and E. Dopp, “Intracellular calcium disturbances induced by arsenic and its methylated derivatives in relation to genomic damage and apoptosis induction,” Environmental Health Perspectives, vol. 113, no. 6, pp. 659–664, 2005. View at Publisher · View at Google Scholar · View at Scopus
- S. E. Boley, V. A. Wong, J. E. French, and L. Recio, “p53 heterozygosity alters the mRNA expression of p53 target genes in the bone marrow in response to inhaled benzene,” Toxicological Sciences, vol. 66, no. 2, pp. 209–215, 2002. View at Publisher · View at Google Scholar · View at Scopus
- R. Barouki, “Ageing free radicals and cellular stress,” Medecine/Sciences, vol. 22, no. 3, pp. 266–272, 2006. View at Google Scholar · View at Scopus
- E. Moustacchi, “DNA damage and repair: consequences on dose-responses,” Mutation Research, vol. 464, no. 1, pp. 35–40, 2000. View at Publisher · View at Google Scholar · View at Scopus
- C. Bernstein, H. Bernstein, C. M. Payne, and H. Garewal, “DNA repair/pro-apoptotic dual-role proteins in five major DNA repair pathways: fail-safe protection against carcinogenesis,” Mutation Research, vol. 511, no. 2, pp. 145–178, 2002. View at Publisher · View at Google Scholar · View at Scopus
- T. Nakano, A. Katafuchi, H. Terato, T. Suzuki, B. Van Houten, and H. Ide, “Activity of nucleotide excision repair enzymes for oxanine cross-link lesions,” Nucleic Acids Symposium Series, no. 49, pp. 293–294, 2005. View at Google Scholar · View at Scopus
- T. A. Kunkel and D. A. Erie, “DNA mismatch repair,” Annual Review of Biochemistry, vol. 74, pp. 681–710, 2005. View at Publisher · View at Google Scholar · View at Scopus
- J. Jiricny, “MutLα: at the cutting edge of mismatch repair,” Cell, vol. 126, no. 2, pp. 239–241, 2006. View at Publisher · View at Google Scholar · View at Scopus
- D. Kültz, “Molecular and evolutionary basis of the cellular stress response,” Annual Review of Physiology, vol. 67, pp. 225–257, 2005. View at Publisher · View at Google Scholar · View at Scopus
- D. N. Mullins, E. L. Crawford, S. A. Khuder, D. A. Hernandez, Y. Yoon, and J. C. Willey, “CEBPG transcription factor correlates with antioxidant and DNA repair genes in normal bronchial epithelial cells but not in individuals with bronchogenic carcinoma_aptad 20050829,” BMC Cancer, vol. 5, article 141, 2005. View at Publisher · View at Google Scholar · View at Scopus
- P. Peltomäki, “Deficient DNA mismatch repair: a common etiologic factor for colon cancer,” Human Molecular Genetics, vol. 10, no. 7, pp. 735–740, 2001. View at Google Scholar · View at Scopus
- S. Santucci-Darmanin and V. Paquis-Flucklinger, “Homologs of MutS and MutL during mammalian meiosis,” Medecine Sciences, vol. 19, no. 1, pp. 85–91, 2003. View at Google Scholar · View at Scopus
- Q. H. Phung, D. B. Winter, R. Alrefai, and P. J. Gearhart, “Cutting edge: hypermutation in Ig V genes from mice deficient in the MLH1 mismatch repair protein,” Journal of Immunology, vol. 162, no. 6, pp. 3121–3124, 1999. View at Google Scholar · View at Scopus
- H. Saribasak, D. Rajagopal, R. W. Maul, and P. J. Gearhart, “Hijacked DNA repair proteins and unchained DNA polymerases,” Philosophical Transactions of the Royal Society B, vol. 364, no. 1517, pp. 605–611, 2009. View at Publisher · View at Google Scholar · View at Scopus
- H. Geng, M. Sakato, V. DeRocco et al., “Biochemical analysis of the human mismatch repair proteins hMutSα MSH2G674A-MSH6 and MSH2-MSH6T1219D,” Journal of Biological Chemistry, vol. 287, no. 13, pp. 9777–9791, 2012. View at Google Scholar
- Z. Hong, J. Jiang, K. Hashiguchi, M. Hoshi, L. Lan, and A. Yasui, “Recruitment of mismatch repair proteins to the site of DNA damage in human cells,” Journal of Cell Science, vol. 121, no. 19, pp. 3146–3154, 2008. View at Publisher · View at Google Scholar · View at Scopus
- S. V. Mudrak, C. Welz-Voegele, and S. Jinks-Robertson, “The polymerase η translesion synthesis DNA polymerase acts independently of the mismatch repair system to limit mutagenesis caused by 7,8-dihydro-8-oxoguanine in yeast,” Molecular and Cellular Biology, vol. 29, no. 19, pp. 5316–5326, 2009. View at Publisher · View at Google Scholar · View at Scopus
- F. J. López de Saro, “Regulation of interactions with sliding clamps during DNA replication and repair,” Current Genomics, vol. 10, no. 3, pp. 206–215, 2009. View at Publisher · View at Google Scholar · View at Scopus
- Y. Zhang, F. Yuan, S. R. Presnell et al., “Reconstitution of -directed human mismatch repair in a purified system,” Cell, vol. 122, no. 5, pp. 693–705, 2005. View at Publisher · View at Google Scholar · View at Scopus
- N. Constantin, L. Dzantiev, F. A. Kadyrov, and P. Modrich, “Human mismatch repair: reconstitution of a nick-directed bidirectional reaction,” Journal of Biological Chemistry, vol. 280, no. 48, pp. 39752–39761, 2005. View at Publisher · View at Google Scholar · View at Scopus
- L. Dzantiev, N. Constantin, J. Genschel, R. R. Iyer, P. M. Burgers, and P. Modrich, “A defined human system that supports bidirectional mismatch-provoked excision,” Molecular Cell, vol. 15, no. 1, pp. 31–41, 2004. View at Publisher · View at Google Scholar · View at Scopus
- Y. Lin and J. H. Wilson, “Diverse effects of individual mismatch repair components on transcription-induced CAG repeat instability in human cells,” DNA Repair, vol. 8, no. 8, pp. 878–885, 2009. View at Publisher · View at Google Scholar · View at Scopus
- H. Alazzouzi, E. Domingo, S. González et al., “Low levels of microsatellite instability characterize MLH1 and MSH2 HNPCC carriers before tumor diagnosis,” Human Molecular Genetics, vol. 14, no. 2, pp. 235–239, 2005. View at Publisher · View at Google Scholar · View at Scopus
- P. Modrich and R. Lahue, “Mismatch repair in replication fidelity, genetic recombination, and cancer biology,” Annual Review of Biochemistry, vol. 65, pp. 101–133, 1996. View at Google Scholar · View at Scopus
- A. D. Auerbach and P. C. Verlander, “Disorders of DNA replication and repair,” Current Opinion in Pediatrics, vol. 9, no. 6, pp. 600–616, 1997. View at Google Scholar · View at Scopus
- Z. Yang, R. Lau, J. L. Marcadier, D. Chitayat, and C. E. Pearson, “Replication inhibitors modulate instability of an expanded trinucleotide repeat at the myotonic dystrophy type 1 disease locus in human cells,” American Journal of Human Genetics, vol. 73, no. 5, pp. 1092–1105, 2003. View at Publisher · View at Google Scholar · View at Scopus
- K. A. Narine, K. E. Felton, A. A. Parker, V. A. Tron, and S. E. Andrew, “Non-tumor cells from an MSH2-null individual show altered cell cycle effects post-UVB,” Oncology Reports, vol. 18, no. 6, pp. 1403–1411, 2007. View at Google Scholar · View at Scopus
- C. S. Sørensen, L. T. Hansen, J. Dziegielewski et al., “The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair,” Nature Cell Biology, vol. 7, no. 2, pp. 195–201, 2005. View at Publisher · View at Google Scholar · View at Scopus
- V. Leung-Pineda, C. E. Ryan, and H. Piwnica-Worms, “Phosphorylation of Chk1 by ATR is antagonized by a chk1-regulated protein phosphatase 2A circuit,” Molecular and Cellular Biology, vol. 26, no. 20, pp. 7529–7538, 2006. View at Publisher · View at Google Scholar · View at Scopus
- M. Seifert, S. J. Scherer, W. Edelmann et al., “The DNA-mismatch repair enzyme hMSH2 modulates UV-B-induced cell cycle arrest and apoptosis in melanoma cells,” Journal of Investigative Dermatology, vol. 128, no. 1, pp. 203–213, 2008. View at Publisher · View at Google Scholar · View at Scopus
- L. C. Young, K. J. Thulien, M. R. Campbell, V. A. Tron, and S. E. Andrew, “DNA mismatch repair proteins promote apoptosis and suppress tumorigenesis in response to UVB irradiation: an in vivo study,” Carcinogenesis, vol. 25, no. 10, pp. 1821–1827, 2004. View at Publisher · View at Google Scholar · View at Scopus
- M. Kappeler, E. Kranz, K. Woolcock, O. Georgiev, and W. Schaffner, “Drosophila bloom helicase maintains genome integrity by inhibiting recombination between divergent DNA sequences,” Nucleic Acids Research, vol. 36, no. 21, pp. 6907–6917, 2008. View at Publisher · View at Google Scholar · View at Scopus
- A. M. Skinner and M. S. Turker, “Oxidative mutagenesis, mismatch repair, and aging,” Science of Aging Knowledge Environment, vol. 2005, no. 9, article re3, 2005. View at Google Scholar · View at Scopus
- P. Pitsikas, D. Lee, and A. J. Rainbow, “Reduced host cell reactivation of oxidative DNA damage in human cells deficient in the mismatch repair gene hMSH2,” Mutagenesis, vol. 22, no. 3, pp. 235–243, 2007. View at Publisher · View at Google Scholar · View at Scopus
- L. Negureanu and F. R. Salsbury Jr., “The molecular origin of the MMR-dependent apoptosis pathway from dynamics analysis of MutSα-DNA complexes,” Journal of Biomolecular Structure & Dynamics, vol. 30, no. 3, pp. 347–361, 2012. View at Google Scholar
- M. Iwaizumi, S. Tseng-Rogenski, and J. M. Carethers, “DNA mismatch repair proficiency executing 5-fluorouracil cytotoxicity in colorectal cancer cells,” Cancer Biology and Therapy, vol. 12, no. 8, pp. 756–764, 2011. View at Google Scholar
- P. C. Campos, V. G. Silva, C. Furtado et al., “Trypanosoma cruzi MSH2: functional analyses on different parasite strains provide evidences for a role on the oxidative stress response,” Molecular and Biochemical Parasitology, vol. 176, no. 1, pp. 8–16, 2011. View at Publisher · View at Google Scholar · View at Scopus
- D. H. Lee, T. R. O'Connor, and G. P. Pfeifer, “Oxidative DNA damage induced by copper and hydrogen peroxide promotes CG→TT tandem mutations at methylated CpG dinucleotides in nucleotide excision repair-deficient cells,” Nucleic Acids Research, vol. 30, no. 16, pp. 3566–3573, 2002. View at Google Scholar · View at Scopus
- S. Estes, P. C. Phillips, D. R. Denver, W. K. Thomas, and M. Lynch, “Mutation accumulation in populations of varying size: the distribution of mutational effects for fitness correlates in caenorhabditis elegans,” Genetics, vol. 166, no. 3, pp. 1269–1279, 2004. View at Publisher · View at Google Scholar · View at Scopus
- J. C. Conde-Pérezprina, A. Luna-López, N. E. López-Diazguerrero, P. Damián-Matsumura, A. Zentella, and M. Königsberg, “Msh2 promoter region hypermethylation as a marker of aging-related deterioration in old retired female breeder mice,” Biogerontology, vol. 9, no. 5, pp. 325–334, 2008. View at Publisher · View at Google Scholar · View at Scopus
- I. Y. Chang, M. Jin, P. Y. Sang et al., “Senescence-dependent MutSα dysfunction attenuates mismatch repair,” Molecular Cancer Research, vol. 6, no. 6, pp. 978–989, 2008. View at Publisher · View at Google Scholar · View at Scopus
- L. C. Young, A. C. Peters, T. Maeda et al., “DNA mismatch repair protein msh6 is required for optimal levels of ultraviolet-b-induced apoptosis in primary mouse fibroblasts,” Journal of Investigative Dermatology, vol. 121, no. 4, pp. 876–880, 2003. View at Publisher · View at Google Scholar · View at Scopus
- S. W. L. Chan and E. H. Blackburn, “New ways not to make ends meet: telomerase, DNA damage proteins and heterochromatin,” Oncogene, vol. 21, no. 4, pp. 553–563, 2002. View at Publisher · View at Google Scholar · View at Scopus
- M. R. Campbell, Y. Wang, S. E. Andrew, and Y. Liu, “Msh2 deficiency leads to chromosomal abnormalities, centrosome amplification, and telomere capping defect,” Oncogene, vol. 25, no. 17, pp. 2531–2536, 2006. View at Publisher · View at Google Scholar · View at Scopus
- P. Martinez, I. Siegl-Cachedenier, J. M. Flores, and M. A. Blasco, “MSH2 deficiency abolishes the anticancer and pro-aging activity of short telomeres,” Aging Cell, vol. 8, no. 1, pp. 2–17, 2009. View at Publisher · View at Google Scholar · View at Scopus
- A. Rizki and V. Lundblad, “Defects in mismatch repair promote telomerase-independent proliferation,” Nature, vol. 411, no. 6838, pp. 713–716, 2001. View at Publisher · View at Google Scholar · View at Scopus
- I. Siegl-Cachedenier, P. Muñoz, J. M. Flores, P. Klatt, and M. A. Blasco, “Deficient mismatch repair improves organismal fitness and survival of mice with dysfunctional telomeres,” Genes and Development, vol. 21, no. 17, pp. 2234–2247, 2007. View at Publisher · View at Google Scholar · View at Scopus
- I. Ibanez de Caceres, N. Frolova, R. J. Varkonyi et al., “Telomerase is frequently activated in tumors with microsatellite instability,” Cancer Biology and Therapy, vol. 3, no. 3, pp. 289–292, 2004. View at Google Scholar · View at Scopus
- S. Perera, L. Ramyar, A. Mitri et al., “A novel complex mutation in MSH2 contributes to both Muir-Torre and Lynch Syndrome,” Journal of Human Genetics, vol. 55, no. 1, pp. 37–41, 2010. View at Publisher · View at Google Scholar · View at Scopus
- A. Morales-Burgos, J. L. Sánchez, L. D. Figueroa et al., “MSH-2 and MLH-1 Protein expression in muir torre syndrome- related and sporadic sebaceous neoplasms,” Puerto Rico Health Sciences Journal, vol. 27, no. 4, pp. 322–327, 2008. View at Google Scholar · View at Scopus
- D. Torre, “Multiple sebaceous tumors,” Archives of Dermatology, vol. 98, no. 5, pp. 549–551, 1968. View at Publisher · View at Google Scholar · View at Scopus
- E. Vilar and S. B. Gruber, “Microsatellite instability in colorectal cancerthe stable evidence,” Nature Reviews Clinical Oncology, vol. 7, no. 3, pp. 153–162, 2010. View at Publisher · View at Google Scholar · View at Scopus
- F. C. C. da Silva, M. D. Valentin, F. D. O. Ferreira, D. M. Carraro, and B. M. Rossi, “Mismatch repair genes in Lynch syndrome: a review,” Sao Paulo Medical Journal, vol. 127, no. 1, pp. 46–51, 2009. View at Google Scholar · View at Scopus
- P. M. Lynch, “The hMSH2 and hMLH1 genes in hereditary nonpolyposis colorectal cancer,” Surgical Oncology Clinics of North America, vol. 18, no. 4, pp. 611–624, 2009. View at Publisher · View at Google Scholar · View at Scopus
- Y. H. Choi, M. Cotterchio, G. McKeown-Eyssen et al., “Penetrance of colorectal cancer among MLH1/MSH2 carriers participating in the colorectal cancer familial registry in Ontario,” Hereditary Cancer in Clinical Practice, vol. 7, no. 1, article 14, 2009. View at Publisher · View at Google Scholar · View at Scopus
- O. D. K. Maddocks, A. J. Short, M. S. Donnenberg, S. Bader, and D. J. Harrison, “Attaching and effacing Escherichia coli downregulate DNA mismatch repair protein in vitro and are associated with colorectal adenocarcinomas in humans,” PLoS ONE, vol. 4, no. 5, Article ID e5517, 2009. View at Publisher · View at Google Scholar · View at Scopus
- G. Ponti, L. Losi, G. Pellacani et al., “Malignant melanoma in patients with hereditary nonpolyposis colorectal cancer,” British Journal of Dermatology, vol. 159, no. 1, pp. 162–168, 2008. View at Publisher · View at Google Scholar · View at Scopus
- S. A. Martin, A. McCarthy, L. J. Barber et al., “Methotrexate induces oxidative DNA damage and is selectively lethal to tumour cells with defects in the DNA mismatch repair gene MSH2,” EMBO Molecular Medicine, vol. 1, no. 6-7, pp. 323–337, 2009. View at Publisher · View at Google Scholar · View at Scopus
- F. Fostira, G. Thodi, I. Konstantopoulou, R. Sandaltzopoulos, and D. Yannoukakos, “Hereditary cancer syndromes,” Journal of B.U.ON., vol. 12, no. 1, pp. S13–S22, 2007. View at Google Scholar · View at Scopus
- A. Agarwal, S. Gupta, and R. K. Sharma, “Role of oxidative stress in female reproduction,” Reproductive Biology and Endocrinology, vol. 3, article 28, 2005. View at Publisher · View at Google Scholar · View at Scopus
- K. Yamane, J. E. Schupp, and T. J. Kinsella, “BRCA1 activates a G2-M cell cycle checkpoint following 6-thioguanine-induced DNA mismatch damage,” Cancer Research, vol. 67, no. 13, pp. 6286–6292, 2007. View at Publisher · View at Google Scholar · View at Scopus
- R. A. Jensen, M. E. Thompson, T. L. Jetton et al., “BRCA1 is secreted and exhibits properties of a granin,” Nature Genetics, vol. 12, no. 3, pp. 303–308, 1996. View at Publisher · View at Google Scholar · View at Scopus
- G. Neuweiler, The Biology of Bats, Oxford University Press, New York, NY, USA, 2000.
- J. C. Conde-Pérezprina, A. Luna-López, V. Y. González-Puertos, T. Zenteno-Savín, M. A. León-Galván, and M. Königsberg, “DNA MMR systems, microsatellite instability and antioxidant activity variations in two species of wild bats: myotis velifer and Desmodus rotundus, as possible factors associated with longevity,” Age. In press.
- G. S. Wilkinson and J. M. South, “Life history, ecology and longevity in bats,” Aging Cell, vol. 1, no. 2, pp. 124–131, 2002. View at Google Scholar · View at Scopus
- J. H. Fitch, K. A. Shump, and A. U. Shump, “Myotis velifer,” Mammalian Species, vol. 149, pp. 1–5, 1981. View at Google Scholar
- K. D. Jürgens and J. Prothero, “Scaling of maximal lifespan in bats,” Comparative Biochemistry and Physiology A, vol. 88, no. 2, pp. 361–367, 1987. View at Google Scholar · View at Scopus
- R. D. Lord, F. Muradali, and L. Lazaro, “Age composition of vampire bats (Desmodus rotundus) in Northern Argentina and Southern Brazil,” Journal of Mammalogy, vol. 57, pp. 573–575, 1976. View at Google Scholar
- A. Balmori, “El estudio de los quirópteros a través de sus emisiones ultrasónicas,” Galemys Boletín SECEM, vol. 10, pp. 12–19, 1998. View at Google Scholar
- A. K. Brunet-Rossinni and S. N. Austad, “Ageing studies on bats: a review,” Biogerontology, vol. 5, no. 4, pp. 211–222, 2004. View at Publisher · View at Google Scholar · View at Scopus
- T. Arai, M. Sawabe, T. Hosoi, and N. Tanaka, “Role of DNA repair systems in malignant tumor development in the elderly,” Geriatrics and Gerontology International, vol. 8, no. 2, pp. 65–72, 2008. View at Publisher · View at Google Scholar · View at Scopus
- K. Wimmer and J. Etzler, “Constitutional mismatch repair-deficiency syndrome: have we so far seen only the tip of an iceberg?” Human Genetics, vol. 124, no. 2, pp. 105–122, 2008. View at Publisher · View at Google Scholar · View at Scopus
- S. Krüger, M. Kinzel, C. Walldorf et al., “Homozygous PMS2 germline mutations in two families with early-onset haematological malignancy, brain tumours, HNPCC-associated tumours, and signs of neurofibromatosis type 1,” European Journal of Human Genetics, vol. 16, no. 1, pp. 62–72, 2008. View at Publisher · View at Google Scholar · View at Scopus
- N. Pabla, Z. Ma, M. A. McIlhatton, R. Fishel, and Z. Dong, “hMSH2 recruits ATR to DNA damage sites for activation during DNA damage-induced apoptosis,” Journal of Biological Chemistry, vol. 286, no. 12, pp. 10411–10418, 2011. View at Publisher · View at Google Scholar · View at Scopus