Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2012, Article ID 740280, 8 pages
http://dx.doi.org/10.1155/2012/740280
Research Article

Reactive Oxygen Species Formation and Apoptosis in Human Peripheral Blood Mononuclear Cell Induced by 900 MHz Mobile Phone Radiation

1Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
2Department of Electronic Engineering, Jinan University, Guangzhou 510632, China

Received 12 February 2012; Accepted 10 April 2012

Academic Editor: Marcos Dias Pereira

Copyright © 2012 Yao-Sheng Lu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Hardell and C. Sage, “Biological effects from electromagnetic field exposure and public exposure standards,” Biomedicine and Pharmacotherapy, vol. 62, no. 2, pp. 104–109, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. V. G. Khurana, C. Teo, M. Kundi, L. Hardell, and M. Carlberg, “Cell phones and brain tumors: a review including the long-term epidemiologic data,” Surgical Neurology, vol. 72, no. 3, pp. 205–214, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. N. Salama, T. Kishimoto, and H. O. Kanayama, “Effects of exposure to a mobile phone on testicular function and structure in adult rabbit,” International Journal of Andrology, vol. 33, no. 1, pp. 88–94, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Abdus-salam, T. Elumelu, and A. Adenipekun, “Mobile phone radiation and the risk of cancer; a review,” African Journal of Medicine and Medical Sciences, vol. 37, no. 2, pp. 107–118, 2008. View at Google Scholar · View at Scopus
  5. D. Krewski, B. W. Glickman, R. W. Y. Habash et al., “Recent advances in research on radiofrequency fields and health: 2001–2003,” Journal of Toxicology and Environmental Health—Part B, vol. 10, no. 4, pp. 287–318, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Agarwal, N. R. Desai, K. Makker et al., “Effects of radiofrequency electromagnetic waves (RF-EMW) from cellular phones on human ejaculated semen: an in vitro pilot study,” Fertility and Sterility, vol. 92, no. 4, pp. 1318–1325, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. G. N. De Iuliis, R. J. Newey, B. V. King, and R. J. Aitken, “Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro,” PLoS ONE, vol. 4, no. 7, Article ID e6446, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Sokolovic, B. Djindjic, J. Nikolic et al., “Melatonin reduces oxidative stress induced by chronic exposure of microwave radiation from mobile phones in rat brain,” Journal of Radiation Research, vol. 49, no. 6, pp. 579–586, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. W. Stankiewicz, M. P. Dabrowski, R. Kubacki, E. Sobiczewska, and S. Szmigielski, “Immunotropic influence of 900 MHz microwave GSM signal on human blood immune cells activated in vitro,” Electromagnetic Biology and Medicine, vol. 25, no. 1, pp. 45–51, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Dasdag, H. M. Bilgin, M. Z. Akdag, H. Celik, and F. Aksen, “Effect of long term mobile phone exposure on oxidative-antioxidative processes and nitric oxide in rats,” Biotechnology and Biotechnological Equipment, vol. 22, no. 4, pp. 992–997, 2008. View at Google Scholar · View at Scopus
  11. C. Colombo, M. Cosentino, F. Marino et al., “Dopaminergic modulation of apoptosis in human peripheral blood mononuclear cells,” Annals of the New York Academy of Sciences, vol. 1010, pp. 679–682, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Jenny, M. Klieber, D. Zaknun et al., “In vitro testing for anti-inflammatory properties of compounds employing peripheral blood mononuclear cells freshly isolated from healthy donors,” Inflammation Research, vol. 60, no. 2, pp. 127–135, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Prigione, B. Begni, A. Galbussera et al., “Oxidative stress in peripheral blood mononuclear cells from patients with Parkinson's disease: negative correlation with levodopa dosage,” Neurobiology of Disease, vol. 23, no. 1, pp. 36–43, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Zhu, M. Belcher, and P. van der Harst, “Healthy aging and disease: role for telomere biology?” Clinical Science, vol. 120, no. 10, pp. 427–440, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. J. P. Gupta, “Microwave radiation hazards from radars and other high power microwave generators,” Defence Science Journal, vol. 38, no. 3, pp. 287–292, 1988. View at Google Scholar · View at Scopus
  16. L. Puranen and K. Jokela, “Radiation hazard assessment of pulsed microwave radars,” Journal of Microwave Power and Electromagnetic Energy, vol. 31, no. 3, pp. 165–177, 1996. View at Google Scholar · View at Scopus
  17. R. C. Petersen, “Electromagnetic radiation from selected telecommunications systems,” Proceedings of the IEEE, vol. 68, no. 1, pp. 21–24, 1980. View at Google Scholar · View at Scopus
  18. International Commission on Non-ionizing Radiation Protection, ICNIRP Guidelines, 1998.
  19. S. M. Mann, Exposure to Radio Waves Near Mobile Phone Base Stations, National Radiological Protection Board, Oxon, UK, 2000.
  20. X. H. Cao, S. S. Zhao, D. Y. Liu et al., “ROS-Ca2+ is associated with mitochondria permeability transition pore involved in surfactin-induced MCF-7 cells apoptosis,” Chemico-Biological Interactions, vol. 190, no. 1, pp. 16–27, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. D. B. Zorov, C. R. Filburn, L. O. Klotz, J. L. Zweier, and S. J. Sollott, “Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes,” Journal of Experimental Medicine, vol. 192, no. 7, pp. 1001–1014, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. D. G. Breckenridge and D. Xue, “Regulation of mitochondrial membrane permeabilization by BCL-2 family proteins and caspases,” Current Opinion in Cell Biology, vol. 16, no. 6, pp. 647–652, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. D. R. Green and J. C. Reed, “Mitochondria and apoptosis,” Science, vol. 281, no. 5381, pp. 1309–1312, 1998. View at Google Scholar · View at Scopus
  24. N. Mohamad, A. Gutiérrez, M. Núñez et al., “Mitochondrial apoptotic pathways,” Biocell, vol. 29, no. 2, pp. 149–161, 2005. View at Google Scholar · View at Scopus
  25. D. Spierings, G. McStay, M. Saleh et al., “Connected to death: the (unexpurgated) mitochondrial pathway of apoptosis,” Science, vol. 310, no. 5745, pp. 66–67, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. S. P. Verma and A. Singhal, “Low levels of the pesticide, δ-hexachlorocyclohexane, lyses human erythrocytes and alters the organization of membrane lipids and proteins as revealed by Raman spectroscopy,” Biochimica et Biophysica Acta, vol. 1070, no. 1, pp. 265–273, 1991. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Levin, “Apoptosis, necrosis, or oncosis: what is your diagnosis? A report from the cell death nomenclature committee of the society of toxicologie pathologists 1,” Toxicological Sciences, vol. 41, no. 2, pp. 155–156, 1998. View at Google Scholar · View at Scopus
  28. G. Majno and I. Joris, “Apoptosis, oncosis, and necrosis: an overview of cell death,” American Journal of Pathology, vol. 146, no. 1, pp. 3–15, 1995. View at Google Scholar · View at Scopus
  29. S. Scarfì, M. Magnone, C. Ferraris et al., “Ascorbic acid pre-treated quartz stimulates TNF-α release in RAW 264.7 murine macrophages through ROS production and membrane lipid peroxidation,” Respiratory Research, vol. 10, no. 1, article 25, 2009. View at Publisher · View at Google Scholar · View at Scopus