Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2012, Article ID 821936, 12 pages
http://dx.doi.org/10.1155/2012/821936
Research Article

Prevention of Diabetic Nephropathy by Sulforaphane: Possible Role of Nrf2 Upregulation and Activation

1Department of Nephrology, The Second Hospital Jilin University, 218 Ziqiang Street, Changchun 130041, China
2Department of Pediatrics, University of Louisville, 570 South Preston Street, Baxter I, Suite 304F, Louisville, KY 40202, USA
3The People’s Hospital of Jilin Province, Changchun, China
4Department of Ophthalmology, The Second Hospital Jilin University, Changchun, China
5School of Public Health Jilin University, Changchun, China
6Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical College, Wenzhou, China
7Department of Medicine, University of Louisville, Louisville, KY, USA
8Departments of Radiation Oncology and Pharmacology & Toxicology, University of Louisville, Louisville, KY, USA

Received 17 July 2012; Revised 18 August 2012; Accepted 23 August 2012

Academic Editor: Jingbo Pi

Copyright © 2012 Wenpeng Cui et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. B. Lee, M. R. Yu, Y. Yang, Z. Jiang, and H. Ha, “Reactive oxygen species-regulated signaling pathways in diabetic nephropathy,” Journal of the American Society of Nephrology, vol. 14, no. 8, supplement 3, pp. S241–S245, 2003. View at Google Scholar · View at Scopus
  2. C. E. Alpers and K. L. Hudkins, “Mouse models of diabetic nephropathy,” Current Opinion in Nephrology and Hypertension, vol. 20, no. 3, pp. 278–284, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. E. J. Valk, J. A. Bruijn, and I. M. Bajema, “Diabetic nephropathy in humans: pathologic diversity,” Current Opinion in Nephrology and Hypertension, vol. 20, no. 3, pp. 285–289, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Cai, “Diabetic cardiomyopathy and its prevention by metallothionein: experimental evidence, possible mechanisms and clinical implications,” Current Medicinal Chemistry, vol. 14, no. 20, pp. 2193–2203, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. G. P. Sykiotis, I. G. Habeos, A. V. Samuelson, and D. Bohmann, “The role of the antioxidant and longevity-promoting Nrf2 pathway in metabolic regulation,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 14, no. 1, pp. 41–48, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. M. McMahon, K. Itoh, M. Yamamoto, and J. D. Hayes, “Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression,” Journal of Biological Chemistry, vol. 278, no. 24, pp. 21592–21600, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. J. B. de Haan, “Nrf2 activators as attractive therapeutics for diabetic nephropathy,” Diabetes, vol. 60, no. 11, pp. 2683–2684, 2011. View at Google Scholar
  8. B. Li, S. Liu, L. Miao et al., “Prevention of diabetic complications by activation of nrf2: diabetic cardiomyopathy and nephropathy,” Experimental Diabetes Research, vol. 2012, Article ID 216512, 7 pages, 2012. View at Publisher · View at Google Scholar
  9. J. W. Fahey and P. Talalay, “Antioxidant functions of sulforaphane: a potent inducer of phase II detoxication enzymes,” Food and Chemical Toxicology, vol. 37, no. 9-10, pp. 973–979, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. J. D. Clarke, A. Hsu, D. E. Williams et al., “Metabolism and tissue distribution of sulforaphane in NRF2 knockout and wild-type mice,” Pharmaceutical Research, vol. 28, no. 12, pp. 3171–3179, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. D. H. Shin, H. M. Park, K. A. Jung et al., “The NRF2-heme oxygenase-1 system modulates cyclosporin A-induced epithelial-mesenchymal transition and renal fibrosis,” Free Radical Biology and Medicine, vol. 48, no. 8, pp. 1051–1063, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Y. Yoon, N. I. Kang, H. K. Lee, K. Y. Jang, J. W. Park, and B. H. Park, “Sulforaphane protects kidneys against ischemia-reperfusion injury through induction of the Nrf2-dependent phase 2 enzyme,” Biochemical Pharmacology, vol. 75, no. 11, pp. 2214–2223, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Zheng, S. A. Whitman, W. Wu et al., “Therapeutic potential of Nrf2 activators in streptozotocin-induced diabetic nephropathy,” Diabetes, vol. 60, no. 11, pp. 3055–3066, 2011. View at Google Scholar
  14. M. J. Rane, Y. Song, S. Jin et al., “Interplay between Akt and p38 MAPK pathways in the regulation of renal tubular cell apoptosis associated with diabetic nephropathy,” American Journal of Physiology, vol. 298, no. 1, pp. F49–F61, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Cai and Y. J. Kang, “Oxidative stress and diabetic cardiomyopathy: a brief review,” Cardiovascular Toxicology, vol. 1, no. 3, pp. 181–193, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. A. K. Mohamed, A. Bierhaus, S. Schiekofer, H. Tritschler, R. Ziegler, and P. P. Nawroth, “The role of oxidative stress and NF-κB activation in late diabetic complications,” Biofactors, vol. 10, no. 2-3, pp. 157–167, 1999. View at Google Scholar · View at Scopus
  17. W. Wei, Q. Liu, Y. Tan, L. Liu, X. Li, and L. Cai, “Oxidative stress, diabetes, and diabetic complications,” Hemoglobin, vol. 33, no. 5, pp. 370–377, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Wang, W. Feng, W. Xue et al., “Inactivation of GSK-3β by metallothionein prevents diabetes-related changes in cardiac energy metabolism, inflammation, nitrosative damage, and remodeling,” Diabetes, vol. 58, no. 6, pp. 1391–1402, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. X. He, H. Kan, L. Cai, and Q. Ma, “Nrf2 is critical in defense against high glucose-induced oxidative damage in cardiomyocytes,” Journal of Molecular and Cellular Cardiology, vol. 46, no. 1, pp. 47–58, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Jiang, Z. Huang, Y. Lin, Z. Zhang, D. Fang, and D. D. Zhang, “The protective role of Nrf2 in streptozotocin-induced diabetic nephropathy,” Diabetes, vol. 59, no. 4, pp. 850–860, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Xue, Q. Qian, A. Adaikalakoteswari, N. Rabbani, R. Babaei-Jadidi, and P. J. Thornalley, “Activation of NF-E2-related factor-2 reverses biochemical dysfunction of endothelial cells induced by hyperglycemia linked to vascular disease,” Diabetes, vol. 57, no. 10, pp. 2809–2817, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Suzuki, T. Betsuyaku, Y. Ito et al., “Down-regulated NF-E2-related factor 2 in pulmonary macrophages of aged smokers and patients with chronic obstructive pulmonary disease,” American Journal of Respiratory Cell and Molecular Biology, vol. 39, no. 6, pp. 673–682, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. H. J. Kim and N. D. Vaziri, “Contribution of impaired Nrf2-Keap1 pathway to oxidative stress and inflammation in chronic renal failure,” American Journal of Physiology, vol. 298, no. 3, pp. F662–F671, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Yoh, A. Hirayama, K. Ishizaki et al., “Hyperglycemia induces oxidative and nitrosative stress and increases renal functional impairment in Nrf2-deficient mice,” Genes to Cells, vol. 13, no. 11, pp. 1159–1170, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Palsamy and S. Subramanian, “Resveratrol protects diabetic kidney by attenuating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via Nrf2-Keap1 signaling,” Biochimica et Biophysica Acta, vol. 1812, no. 7, pp. 719–731, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Li, L. Zhang, F. Wang et al., “Attenuation of glomerular injury in diabetic mice with tert- butylhydroquinone through nuclear factor erythroid 2-related factor 2-dependent antioxidant gene activation,” American Journal of Nephrology, vol. 33, no. 4, pp. 289–297, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. Z. F. Luo, W. Qi, B. Feng et al., “Prevention of diabetic nephropathy in rats through enhanced renal antioxidative capacity by inhibition of the proteasome,” Life Sciences, vol. 88, no. 11-12, pp. 512–520, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Cai, J. Wang, Y. Li et al., “Inhibition of superoxide generation and associated nitrosative damage is involved in metallothionein prevention of diabetic cardiomyopathy,” Diabetes, vol. 54, no. 6, pp. 1829–1837, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. C. E. Guerrero-Beltrán, M. Calderón-Oliver, J. Pedraza-Chaverri, and Y. I. Chirino, “Protective effect of sulforaphane against oxidative stress: recent advances,” Experimental and Toxicologic Pathology, vol. 64, no. 5, pp. 503–508, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Song, C. Li, and L. Cai, “Fluvastatin prevents nephropathy likely through suppression of connective tissue growth factor-mediated extracellular matrix accumulation,” Experimental and Molecular Pathology, vol. 76, no. 1, pp. 66–75, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Song, J. Wang, V. Li et al., “Cardiac metallothionein synthesis in streptozotocin-induced diabetic mice, and its protection against diabetes-induced cardiac injury,” American Journal of Pathology, vol. 167, no. 1, pp. 17–26, 2005. View at Google Scholar · View at Scopus
  32. J. Yang, Y. Tan, F. Zhao et al., “Angiotensin ii plays a critical role in diabetic pulmonary fibrosis most likely via activation of nadph oxidase-mediated nitrosative damage,” American Journal of Physiology, vol. 301, no. 1, pp. E132–E144, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. G. Zhou, X. Li, D. W. Hein et al., “Metallothionein suppresses angiotensin II-induced nicotinamide adenine dinucleotide phosphate oxidase activation, nitrosative stress, apoptosis, and pathological remodeling in the diabetic heart,” Journal of the American College of Cardiology, vol. 52, no. 8, pp. 655–666, 2008. View at Publisher · View at Google Scholar · View at Scopus