Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2012, Article ID 907162, 16 pages
http://dx.doi.org/10.1155/2012/907162
Review Article

The Antioxidant Mechanisms Underlying the Aged Garlic Extract- and S-Allylcysteine-Induced Protection

1Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Insurgentes Sur 3877, 14269 México, DF, Mexico
2Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Insurgentes Sur 3877, 14269 México, DF, Mexico

Received 14 January 2012; Revised 2 March 2012; Accepted 9 March 2012

Academic Editor: Ramatis Birnfeld de Oliveira

Copyright © 2012 Ana L. Colín-González et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Aged garlic extract (AGE) is an odorless garlic preparation containing S-allylcysteine (SAC) as its most abundant compound. A large number of studies have demonstrated the antioxidant activity of AGE and SAC in both in vivo—in diverse experimental animal models associated to oxidative stress—and in vitro conditions—using several methods to scavenge reactive oxygen species or to induce oxidative damage. Derived from these experiments, the protective effects of AGE and SAC have been associated with the prevention or amelioration of oxidative stress. In this work, we reviewed different antioxidant mechanisms (scavenging of free radicals and prooxidant species, induction of antioxidant enzymes, activation of Nrf2 factor, inhibition of prooxidant enzymes, and chelating effects) involved in the protective actions of AGE and SAC, thereby emphasizing their potential use as therapeutic agents. In addition, we highlight the ability of SAC to activate Nrf2 factor—a master regulator of the cellular redox state. Here, we include original data showing the ability of SAC to activate Nrf2 factor in cerebral cortex. Therefore, we conclude that the therapeutic properties of these molecules comprise cellular and molecular mechanisms at different levels.